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Abstract

We will focus our attention on the log-gamma regression model. However, our main results remain
valid for a more general class of regression models with a continuous asymmetric errors. In our
case it is convenient to parametrize the gamma family so that the family of densities is given by

f(z, α, µ) =
αα

µα Γ(α)
zα−1 e−(α/µ) z.

where µ is the expected value and α is the shape parameter. This distribution is denoted by
Γ(α, µ),

We observe response variables zi and covariate vectors xi, (1 ≤ i ≤ n), such that z1, ... zn are
independent, zi ∼ Γ(α, µi) and their conditional expected values and the covariates are related by
the equation log(µi) = x′iβ,. The parameter α does not depend on the covariates, hence it is the
same for all the observations and β is the vector of regression coefficients to be estimated. If we
consider the transformed variables yi = log(zi), we obtain the linear regression model

yi = x′iβ+ui, (1)

where the errors ui are i.i.d. with distribution log Γ(α, 1).
The maximum likelihood estimator (MLE) of β can be obtained minimizing the deviance.

Unfortunately, the MLE is not robust and can be upset by a few outliers.
Since the deviance components can be factorized as di = 2α d∗(yi, xi, β),where d∗(yi, xi, β)

does not depend on α and its distribution does not depend on β, the MLE can be defined as the
minimum of

n∑
i=1

d∗(yi, xi, β).

We propose a family of robust estimates based on the same idea as the MM-estimators for the
linear regression model introduced by Yohai (1987). Let us consider first M-estimators of β given
by the minimization of

n∑
i=1

ρ1(
√
d∗(yi, xi, β)), (2)

where ρ1 is bounded, monotone increasing, differentiable and ρ1(0) = 0.
We prove that the estimates given by (2) are Fisher-consistent. Then, even if the distribution

of d∗ is asymmetric it is not necessary to introduce a correction term to get asymptotic unbiased
estimates. This result is not only valid for a regression model with log-gamma residuals, but for
any model of the form (1) where the ui’s have a density f0 strictly unimodal and continuous.



2 Robust log-gamma regression

The function ρ1 can be chosen in a family defined by ρ1(t) = ρ0(t/k) with ρ0 satisfying the
assumptions given above. One possible choice is the family of Tukey’s bisquare functions.

The M-estimates are asymptotically normal under mild regularity conditions. Their asymptotic
covariance matrix differs from that of the the MLE by a factor that only depends on k1 and α. If
ρ′0 (0) = 0 and ρ′′0 (0) > 0, there exists a constant k∗(α) for which the M-estimate of β achieves a
desired efficiency under the central model. So, in order to calibrate efficiency of the M- estimate it
is necessary to have an estimate of α.

A way to compute simultaneously an estimate of α and an initial estimate of β is through an
S-estimate. Consider the M-scale estimate s(β) that solves

1
n

n∑
i=1

ρ0

(√
d∗(yi, xi, β)
s(β)

)
= b (3)

and define so = minβ s(β). Then the S-estimator of β is β̂ = arg minβ s(β). Since for any α, we
have a value s∗(α) that solves the equation

Eα

(
ρo

( √
d∗

s∗(α)

))
= b,

we define α̂ = (s∗)−1(so).
If we choose b in (3) so that the M-scale estimate has breakdown point 0.5 and then we compute

the M-estimator in (2) taking ρ1(t) = ρ0(t/k1) with k1 = k1(α̂), we will obtain a MM-estimator
which has simultaneously high breakdown point and the desired efficiency under the central log-
gamma regression model.
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