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1 Introduction

If an estimator is strongly consistent, the error of estimation will be small with arbitrarily high
probability as long as the sample size is large enough (depending on F , the distribution of the
data.) However, a key feature of the statistical robustness theory is the uncertainty about the
probabilistic model underlying the data. The distribution F is not completely specified but it is
rather assumed to belong to a family F of plausible distributions. From this point of view, it is
required to study the uniform asymptotic behavior over F of robust estimators. Conditions for the
uniform strong consistency of the mean are given in Shorack (2000), p. 252. Different approaches on
uniform asymptotics for some kinds of estimators can be found in Davies (1998), Salibian-Barrera
and Zamar (2001) and Zielinski (1998). In this paper, we give a general result on uniform strong
consistency (Section 2) and apply it to study the consistency of some classes of robust estimators
over contamination neighborhoods (Section 3).

2 A general result on uniform strong consistency

Assume that we have a sample X1, . . . , Xn of independent, identically distributed random variables
drawn from a distribution F , which may be any distribution of certain family F . We will consider
the general class of estimators that solve an estimating equation. That is, provided that we have
an interesting score function f(t;X1, . . . , Xn), decreasing in t, θ̂n satisfies f(θ̂n;X1, . . . , Xn) ≈ 0.
To cope with discontinuous or non strictly monotone score functions, the estimator θ̂n is precisely
defined as

θ̂n
.= inf{t : f(t;X1, . . . , Xn) < 0}. (1)

Let fn(t, F ) .= EF [f(t;X1, . . . , Xn)] and define θn
.= inf{t : fn(t, F ) < 0}. Under some conditions,

it can be shown that the difference between θ̂n and θn vanishes a.s. uniformly over F as n → ∞
[see (2) below]. Next, we list the precise assumptions and state the main result.

A1 Monotonicity assumption: The score function f(t;x1, . . . , xn) is decreasing as a function of t,
for all x1, . . . , xn.

A2 Bounded difference assumption: For each i = 1, . . . , n there exists ci ∈ IR such that

sup
x1, . . . , xn
x′i ∈ IR

|f(t;x1, . . . , xi, . . . , xn)− f(t;x1, . . . , x
′
i, . . . , xn)| ≤ ci,

and
∑∞
n=1 exp(−γ/

∑n
i=1 c

2
i ) <∞, for all γ > 0.

A3 Uniform lower bound assumption: For all δ > 0, α = α(δ) .= infn infF∈F fn(θn − δ, F ) > 0 and
β = β(δ) .= − infn infF∈F fn(θn + δ, F ) > 0.

Theorem 1 Under assumptions A1, A2 and A3, it holds

lim
n→∞

sup
F∈F

PF { sup
m≥n
|θ̂m − θm| > δ} = 0, for all δ > 0. (2)
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3 Some applications

Given a distribution function F0, we define the ε-contamination neighborhood Fε as

Fε = {F = (1− ε)F0 + εH : H arbitrary distribution}.

In this section, we apply the general result of Section 2 to some classes of robust estimators when
F = Fε. It is assumed that F0 is symmetric and strictly increasing.

3.1 M-estimators

If we consider f(t,X1, . . . , Xn) = n−1
∑n
i=1 ψ(Xi− t) in (1), then θ̂n is a location M-estimator [see

Huber, 1981]. Under some mild conditions on ψ, assumptions A1, A2 and A3 hold for Fε with
ε < ε∗, where ε∗ is the breakdown point of the estimator.

3.2 Location estimators based on U-statistics

Maritz et al. (1977) and Brown and Hettmansperger (1994) studied a class of robust location

estimators defined as in (1) with f(t,X1, . . . , Xn) =
(
n
2

)−1∑
i<j ψ

(
Xi − cXj − (1 − c)t

)
, where

ψ(x) = sgn(x) and c ∈ [−1, 1). The case c = 0 corresponds to the median whereas c = −1 yields
the Hodges-Lehmann estimator θ̂n = medi<j{(Xi + Xj)/2}. Assumptions A1, A2 and A3 can
also be checked for these estimators.

3.3 Generalized S-estimators

The class of dispersion generalized S-estimators (GS-estimators) was defined by Croux, Rousseeuw
and Hössjer (1994) in the context of linear regression. They are defined as in (1) with

f(t,X1, . . . , Xn) =
(
n
2

)−1∑
i<j

χ
[
(Xi −Xj)/t

]
− b,

for a score function χ and a constant b ∈ (0, 1). When χ(x) is even, bounded and increasing in
(0,∞), with at most a finite number of discontinuities, χ(0) = 0 and χ(∞) .= supx χ(x) = 1, it can
be shown that assumptions A1, A2 and A3 hold for Fε and ε < ε∗ = min{b, 1−b}, the breakdown
point of the estimator.
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