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2 Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal

Keywords: Common principal components, Influence functions, Projection–pursuit, Robust estimation.

1 Introduction

In multivariate analysis, we often deal with situations involving several populations, such as dis-
criminant analysis, where the assumption of equality of covariance matrices is usually assumed.
Yet sometimes, this assumption is not adequate but problems related to an excessive number of
parameters will arise if we estimate the covariance matrices separately for each population. In
many practical situations, this problem can be avoided if the covariance matrices of the different
populations exhibit some common structure. Several authors, as for instance Flury (1988), have
studied models for common structure dispersion. One such basic common structure assumes that
the k covariance matrices have different eigenvalues but identical eigenvectors, i.e., there is an or-
thogonal matrix β ∈ IRp×p such that Λi = β′Σiβ, i = 1, . . . , k where Σi is the covariance matrix
of the i-th population and Λi = diag (λi1, ..., λip). This model, proposed by Flury (1984), became
known as the Common Principal Components (CPC ) model. He derived the maximum likelihood
estimates of β and Λi assuming multivariate normality of the original variables Xi, i = 1, ..., k.
It is well known that in practice the classical CPC analysis can be affected by the existence of
outliers in a sample. In order to obtain robust estimates, one approach is to consider robust affine
equivariant estimators of the covariance matrices Σi, i = 1, ..., k, as done by Boente and Orellana
(2001) and Boente, Pires and Rodrigues (2001). These authors also studied an approach based on
the projection–pursuit principles. In this last case, the estimates of β and Λi are the solution of

r(β̂1) = sup
‖b‖=1

k∑
i=1

τi s
2(X′ib) r(β̂j) = sup

b∈Bj

k∑
i=1

τis
2(X′ib) 2 ≤ j ≤ p , (1)

where Bj = {b : ‖b‖ = 1,b′β̂m = 0 for 1 ≤ m ≤ j − 1} and s is a univariate scale estimate. A
more general approach is to consider a score function applied to the scale estimate. In this case,
the estimates of the common principal axes are obtained by solving iteratively
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where f is a strictly increasing score function.
In both cases, the estimates of the eigenvalues and the covariance matrix of the i-th population

are computed as λ̂ij = s2(X′iβ̂j), for 1 ≤ j ≤ p, Vi =
∑p
j=1 λ̂ijβ̂jβ̂

′
j , for 1 ≤ i ≤ k.

2 Influence functions and Asymptotic variances

With the aim of evaluating the robustness of our procedure we derive the partial influence functions
of the estimates defined by (2). Let σ(·) be the scale functional related to the scale estimate s.
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Assume that Λ−
1
2

i xi1 = zi has the same spherical distribution G for all 1 ≤ i ≤ k and that
σ(G0) = 1 where G0 is the distribution of z11. Moreover, assume that f is twice continuously
differentiable and that the function (ε, y)→ σ ((1− ε)G0 + εδy) is twice continuously differentiable
at (0, y). Then, we have that for any x
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where DIF(y, σ,G) denotes the derivative of IF(y, σ,G) with respect to y, νjs =
k∑
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νj = νjj and νjs 6= νjj for s 6= j.

These expressions allow us to derive heuristically the asymptotic variance of the estimates
defined by (2), as
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For the particular case of a proportional model, the optimal estimates defined through (2) in the
sense of minimizing the asymptotic variance given by (6), for any strictly increasing score function
f twice continuously differentiable, are those related to f(t) = ln(t).

Through a simulation study these estimates are compared with those related to f(t) = t for
small samples.
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