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Robust estimation methods for regression have been developed for many years. Well-known exam-
ples are M-estimates (Huber, 1981) and S-estimates (Rousseeuw and Yohai, 1984). A more recent
approach is “Constrained M-estimates”, or CM-estimates for short, which has attractive statistical
properties (Mendes and Tyler, 1995). We can formulate CM-estimation for regression the following
way.

Consider the linear model

yi = xTi β + ei, i = 1, 2, . . . , n

where y = (y1, y2, . . . , yn)T is the response vector, xi is the i:th row in the (n × p) design matrix
X, β a p-dimensional vector of unknowns and e = (e1, e2, . . . , en)T the error vector.

Define the residuals as ri = yi−xTi β, i = 1, 2, . . . , n. Using the notation “ave” for the arithmetic
average, the CM-estimation problem is to find the global minimum of

L(β, σ) = ave{ρc(ri/σ)}+ log(σ)

over β ∈ Rp and σ ∈ R+ subject to the constraint

ave{ρc(ri/σ)} ≤ ερc(∞) (1)

Here ρc(t) is a bounded, nondecreasing function of t ≥ 0 with tuning parameter c > 0. If strict
inequality holds in the constraint (1) we get the redescending M-estimating equations for β and σ.
To find the S-estimate, we minimize L with respect to σ. This implies equality in the constraint
(1).

The CM-estimates, which are the solutions of a nonlinear minimization problem with an in-
equality constraint, cannot be expressed explicitly. Computing CM-estimates numerically is a chal-
lenging problem, since we like to minimize an object function where many local minima exist. In
Arslan et al. (2001) an algorithm is presented for linear S- and CM-regression. We have modified
this code e.g. to register all local minima of the object function. By running the code extensively
we can get an answer to the question how many local minima do exist. We have performed such
investigations for real as well as artificial problems. On these problems we can also see how well
different algorithms manage to find the global minimum within a given time frame. We will present
the result of such an investigation.

The corresponding multivariate estimation problem can be formulated the following way. Let
Xn = {x1, x2, . . . , xn} be a data set in Rp, p ≥ 1, and consider the problem of estimating the
location and scatter parameters of Xn. CM-estimates for multivariate estimation, which have good
local and global robustness properties, were introduced by Kent and Tyler (1996). They are defined
as the global minimum of the objective function

L(µ,Σ;Xn) = ave{ρ(si)}+
1
2

log |Σ|

over µ ∈ Rp and Σ ∈ P subject to the constraint

ave{ρ(si)} ≤ ερ(∞) (2)
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where P is the set of positive definite symmetric matrices, si = (xi−µ)TΣ−1(xi−µ), for i = 1, . . . , n,
0 < ε < 1, and ρ(s) is bounded, nondecreasing function of s ≥ 0. Here, µ and Σ are unknown
location and scatter parameters.

Similar to the regression case, when constraint (2) reduces to an equality, the CM-estimates
will be the S-estimates for the location and the scatter parameters of the data (Lopuhaä, 1989).

We will discuss different algorithmic approaches and also explain why the regression code
(Arslan et al., 2001) cannot be immediately generalized to the multivariate case.

What may be possible, on the other hand, is to generalize the method for finding M-estimates
in regression models with non-linear dependence on β (Edlund et al., 1997), to also handle S- and
CM-estimates. This may be accomplished by using techniques similar to, though modified from,
the ones presented here and in Arslan et al. (2001).
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W. Härdle and R.D. Martin, editors, Robust and Nonlinear Time Series Analysis, pp. 256–
272. Springer-Verlag, New York.

D. Ruppert (1992). Computing S estimators for regression and multivariate location/dispersion.
Journal of Computational ad Graphical Statistics, 1, 253–270.


