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1 Introduction

Quantile regression, which was introduced by Koenker and Bassett (1978), estimates and conducts
inference about conditional quantile functions.
A real valued random variable may be characterized by its distribution function,

F(y) = Prob (¥ <y)

while for any 0 < 7 < 1,
Q(r) = inf {y: F(y) > 7}

is called the 7-th quantile of Y. The median, (1/2), plays the central role. Like the distribution
function, the quantile function provides a complete characterization of the random variable, Y.

For a random sample {y1,...,yn} of Y, it is well known that the sample median is the solution
of the optimization problem

n
min lys — &
geR;

The general 7-th sample quantile £(7), which is an analogue of Q(7), may be formulated as the
solution of the optimization problem

min 3" p, (y; — &),
geR;< )

where p,(2) = 2(t —I(2 < 0)),0< 7 < L.
As estimating the unconditional mean, viewed as the minimizer,

fi = argmin . p > (y; — p)’°

can be extended to estimation of the linear conditional mean function E(Y|X = z) = z'f by
solving

N 7

B = argming . pr z:(yZ — :ci,B)2,

the linear conditional quantile function, Q, (7|X = z) = z;5(7), can be estimated by solving

A

B(r) = argming e > pr (i — 7).

The median case, 7 = 1/2, which is equivalent to minimizing the sum of absolute values, is
usually known as the L; regression.
An LP Problem
Let p=[y— XB4, v=[XB—yl+, ¢ =[B]+, and ¢ = [—F]+, where [2]4 is the nonegative part of
z.
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Let Drar(8) = S0, |lvi — z;8] and D,_(8) = 7, ps(yi — ;). For the L; problem, the
simplex approach solves ming Dy, 4r(#) by the reformulation

mﬁin{elu +evly=XB+p—v,{uv}eRL},

where e denotes an n-vector of ones. , o )
Let B=[X —XI —-1I,0=(pppv),andd=(0 0 e e) where 0 = (00 ... 0),. The
reformulation presents a standard LP problem:

nbindIQ
Bo=y
6> 0.

This problem has the dual formulation
maxy z
Bz <d.

It can be simplified as ) )
max{y z|X z =0,z € [-1,1]"},
z

or, equivalently, , ,
min{y z|X z =0,z € [-1,1]"}.

By setting n = 1z + le,b=1X'e, it is

min{y n|X 7 = b,n € [0,1]"}.
n

For quantile regression ming > p, (y; — w; B), a similar processing presents the dual formulation:
min{y 2| X z =7X"e,z € [0,1]"}.
z

Since the early 1950’s it has been recognized that median regression (L; regression) can be
formulated as linear programming problems and efficiently solved with some form of the simplex
algorithm. For this purpose, the algorithm of Barrodale and Roberts (1974) has proven partic-
ularly influential. However, in large statistical applications, the simplex algorithm is regarded as
computationally highly demanding. In theory, the worst-case performance of the simplex algorithm
shows exponentially increasing number of iterations with sample size.

To solve the L; regression for larger data set, several alternate algorithms have been developed.
Rather than moving from vertex to vertex around the outer surface of the constraint set as dictated
by the simplex, the interior point approach of Karmarkar (1984) solves a sequence of quadratic
problems in which the relevant interior of the constraint set is approximated by an ellipsoid. The
worst-case performance of the interior point algorithm is demonstrated better than that of the
simplex algorithm.

These algorithms developed for the general LP problems may not fully deploy the properties of
the original L; or quantile regression and have their own shortcomings. For example, the interior
point algorithm can only give the approximate solutions of the original problem and rounding
has to been done if one requires the same accuracy as that of the simplex algorithm. For some
problems, this rounding step requires some significant extra computing time. In this case, some
heuristic approaches demonstrate advantages on both speed and accuracy. One of them which will
be explored in this paper is the smoothing method.

The smoothing method, also called the continuation method, was used by Clark and Osborne
(1986), Madsen and Nielsen (1993) for the L; regression. In this paper, we extend this approach to
the general quantile regression. The extension is quite natural; however, in quantile regression we



consider the solutions for a series of quantiles or the whole regression quantile process. We develop
an efficient finite algorithm for computing any finite regression quantiles based on the uniformally
finite convergence property of the smoothing algorithm for any finite quantiles.

Numerical comparison shows that the finite smoothing algorithm dominates the simplex al-
gorithm in computing speed. Compared with the interior point algorithm introduced by Portnoy
and Koenker (1997), it is competitive overall; however, it is significantly faster than the interior
point algorithm when the design matrix in the quantile regression is fat and dense. Section 2 intro-
duces the Huber-type smoothing function and its relation to the objective function of the quantile
regression. Section 3 proves the uniformally finite convergence property for the solutions of the
smoothed problems. Section 4 describes an efficient algorithm based on the uniformally finite con-
vergence property. Section 5 displays the numerical comparison of this algorithm with the simplex
and interior point algorithms.
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