
Dimension Reduction and Nonparametric Regression: A
Robust Combination

C. Becker1

1 Department of Statistics, University of Dortmund, D-44221 Dortmund, Germany

Keywords: DAME, Robustness, SIR, Taut String Method.

1 Introduction

In modern statistical analysis, we often aim at determining a functional relationship between
some response and a high-dimensional predictor variable. It is well-known that estimating this
relationship from the data in a nonparametric setting can fail due to the curse of dimensionality.
But a lower dimensional regressor space may be sufficient to describe the relationship of interest.

In the following, we consider the two main steps of a combined procedure in this setting: the
dimension reduction step and the step of estimating the functional relation in the reduced space.
The occurrence of outliers can disturb this process in several ways. When finding the reduced
regressor space, the dimension may be wrongly determined. If the dimension is correctly estimated,
the space itself may not be found correctly. As a consequence, it may happen that the functional
relationship cannot be found, or an incorrect relation is determined. If both, dimension and space
are correctly identified, outliers may still influence the function estimation. Hence, we aim at
constructing robust methods which are able to detect irregularities such as outliers in the data and
at the same time can adjust the dimension and estimate the function without being affected by
such phenomena.

2 The Method

Consider the situation that, given some response variable Y ∈ R and explanatory variables
X1, . . . , Xd ∈ R, we assume a functional relationship of the form Y = g(X1, . . . , Xd, ε) = g(X, ε),
where X = (X1, . . . , Xd)T is some Rd-valued random vector, E(X) = µ ∈ Rd, Cov(X) = Σ posi-
tive definite and symmetric, X, ε are stochastically independent. The link function g is unknown
and the aim is to estimate g in a suitable way, based on a sample (yi,xi) of size n, yi ∈ R,xi ∈ Rd,
i = 1, . . . , n. However, if the dimension d of X is too large, then the well-known curse of dimen-
sionality lets usual nonparametric regression methods fail in such a case (Friedman, 1994).

One possibility to deal with this problem is to find out whether the dimension of the regressor
space can be reduced in such a way that the reduced space still contains the important information
on the relation between Y and X. In this case, after estimating the reduced space, estimation of
the functional relationship (now being Y = f(βT1X, . . . ,βTKX, ε), where βi ∈ Rd, i = 1, . . . ,K,
are unknown so-called dimension reducing directions, and K � d) can be done within this lower
dimensional space. A method to estimate the dimension reduced regressor space in the above
mentioned regression setting is Sliced Inverse Regression (SIR, Li, 1991). Gather et al. (2002) show
that SIR may be very prone to outliers in the regressor variable X. They introduce a robustified
dimension adjustment method (DAME, Gather et al., 2001), referring to Li’s (1991) fundamental
approach, but replacing all classical nonrobust estimators used in SIR by robust ones.

It is near at hand to combine DAME with a procedure for outlier detection. We cannot do
the same with SIR because the estimators used therein are themselves rather susceptible for the
influence of outliers. Outliers in Y do not affect SIR but may cause trouble in the next step. Hence,
the estimation of f should also be done by methods which are insensitive against outliers.
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As pointed out for example by Cook (1998), in practical situations we often find that the di-
mension K of the reduced space equals one. We therefore and for didactic reasons restrict ourselves
to this case here. A nonparametric method for estimating f in the case of a univariate regressor
variable is the so-called taut strings method (Davies and Kovac, 2001). The idea is to determine the
number and locations of the extremes of f and to approximate f by a piecewise constant function
with an according number and according locations of extremes. To get rid of the step function,
after applying the run method we can of course smoothe the resulting curve.
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