
Robust Bootstrap: Influence Function Approach

A. M. Pires1 and C. Amado1
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1 Introduction

The existence of outliers in a sample is an obvious problem which can become worse when the
usual bootstrap is applied, because some resamples may have a higher contamination level than
the initial sample. Bootstrapping using robust estimators may be a solution to this problem.
However, in many instances, this will not be enough because it can lead to several complications,
such as: i) the breakdown point for the whole procedure may be small even when based on an
estimator with a high breakdown point (Stromberg, 1997; Singh, 1998); ii) mathematical difficulties;
iii) very high computation time. In order to solve these problems, we suggest a modification of
the bootstrap procedure which consists of forming each bootstrap sample by resampling with
different probabilities so that the potentially more harmful observations have smaller probabilities
of selection. The aim is to protect the whole procedure against a given number of arbitrary outliers.

2 Robust Bootstrap

As far as we know three authors have addressed this matter previously. Stromberg (1997) studies
alternative bootstrap estimates of variability for robust estimators. Singh (1998) suggests a robus-
tification of bootstrap via winsorization for certain L and M estimators and presents a general
formula for computing the breakdown point for the pth bootstrap quantile of a statistic (a prac-
tical difficulty of this method is the winsorization of multivariate samples). Salibian-Barrera and
Zamar (2000) introduce a robust bootstrap based on a weighted representation for MM-regression
estimates.

Our suggestion for the bootstrap robustification is also to introduce a control mechanism in
the resampling plan, consisting of an alteration of the resampling probabilities, by ascribing more
importance to some sample values than others and using the influence function to compute those
selection probabilities. In general, this procedure leads to resampling less frequently highly influent
(in the sense of Hampel’s influence function, Hampel et al., 1986) observations while, at the same
time, resampling with equal probabilities the observations belonging to the main structure. We
assume that the actual distribution of the data belong to a contamination “neighbourhood” of a
certain specified “central” parametric model, Fθ. On this context it is necessary to define a robust
standardized empirical influence function (with a high breakdown point, in order to avoid masking,
and not depending on the observations’ scale).

Consider two estimators of θ, a robust one, θ̂r, and a non-robust one, θ̂nr, which can both be
represented by Fisher consistent functionals. We first define the Standardized Influence Function
(SIF ) of θ̂ (either θ̂r or θ̂nr) as

SIF (x; θ̂, Fθ) =
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where IF denotes the theoretical influence function and
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is the asymptotic variance of θ̂. Let us assume that, as usual, SIF (x; θ̂r, Fθ) (SIF (x; θ̂nr, Fθ))
depends on Fθ only through a vector of unknown parameters, Ω1, (Ω2), and that it has certain
invariance properties.

We can then define two robust empirical influence functions by plugging in SIF robust esti-
mates, Ω̂r1 or Ω̂r2 of the unknown parameters Ω1 or Ω2, which will be denoted by RESIF (x; θ̂r, Ω̂r1)
or RESIF (x; θ̂nr, Ω̂r2) . (Two other functions of the same kind could be defined by using non robust
estimators of Ωi, i = 1, 2. This does not obviously make sense for θ̂r. For θ̂nr it is well known that it
would suffer from masking.) From the two defined RESIF’s only the second is useful to our method.
Since most robust estimators have bounded theoretical influence functions it remains impossible to
detect dangerous observations (that is, observations that are not harmful when considered alone,
but which may cause the collapse of the bootstrap procedure by appearing too often). However,
those observations will be easily recognised by a high value of the second RESIF. Pison, Rousseeuw,
Filzmoser and Croux (2000) in a different context define similar, but non-standardised, empirical
influence functions and also recommend the use of the one corresponding to our second. If, for
example, we consider multivariate location with multivariate normal distribution as central model
then RESIF (x;Tnnr, Ω̂r2), with Tn

nr = x̄, is simply the robust Mahalanobis distance currently
used for (robust) outlier detection in multivariate data sets.

We are now able to present the Influence Function Bootstrap (IFB) procedure. Let Xn =
(x1,x2, ...,xn) be an available sample (uni or multivariate), Tn an estimator of a population char-
acteristic, θ, and tn its sample value. Obtain RESIF (x;Tnnr, Ω̂r2) at each data point: RESIFi =
RESIF (xi;Tnnr, Ω̂r2), i = 1, 2, . . . , n. Then compute weights, wi, according to

wi = I[0,c] (|RESIF i|) + ψ (c, |RESIF i|)× I]c,+∞] (|RESIF i|) , i = 1, 2, . . . , n

where c > 0 is a tuning constant and ψ ≥ 0 is a function verifying lim
t→∞

t2ψ(c, t) = 0 (for fixed c).

Finnally get the resampling probabilities, pi = wi/
∑n
j=1 wj (i = 1, 2, . . . , n). The choice of ψ, the

determination of c and some theoretical aspects will be discussed.

3 Applications

The results of Monte Carlo studies comparing the performance of the proposed method, the win-
sorized bootstrap and the ususal bootstrap, will be presented for the following situations: bootstrap
point estimates and confidence intervals for univariate location and for the correlation coefficient,
and selection of variables in two-group linear discriminant analysis. Applications to real data sets
will also be presented.
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