ARRANGEMENTS OF SIGNS AND REARRANGEMENTS OF VECTORS IN \mathbb{R}^n

W. BANASZCZYK

Let $x_1, \ldots, x_m \in \mathbb{R}^n$ be arbitrary vectors with $||x_k||_2 \leq 1$. It is proved that there exist signs $\varepsilon_1, \ldots, \varepsilon_m = \pm 1$ and a permutation π of $\{1, \ldots, m\}$ such that

$$\|\varepsilon_1 x_{\pi(1)} + \dots + \varepsilon_k x_{\pi(k)}\|_2 \le C\sqrt{n} \qquad (k = 1, \dots, m),$$

where C is some numerical constant. Let γ_n be the *n*-dimensional standard Gaussian measure on \mathbb{R}^n with density $(2\pi)^{-n/2}e^{-\|x\|_2^2/2}$ and let U be a symmetric convex body in \mathbb{R}^n such that $1 - \gamma_n(U) \leq (2m)^{-1}$. Then there exist signs $\varepsilon_1, \ldots, \varepsilon_m = \pm 1$ such that

$$\|\varepsilon_1 x_1 + \dots + \varepsilon_k x_k\|_U \le C' \qquad (k = 1, \dots, m),$$

where C' is some other numerical constant; it follows that there exist $\varepsilon_1, \ldots, \varepsilon_m = \pm 1$ such that

 $\|\varepsilon_1 x_1 + \dots + \varepsilon_k x_k\|_2 \le C' \sqrt{n} + C' \sqrt{2\log 2m} \qquad (k = 1, \dots, m).$

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$