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Abstract

This is a slightly expanded version of a talk given at the Workshop on Aperi-
odic Order, held in Victoria, B.C. in August, 2002. The general subject of the talk
was the densest packings of simple bodies, for instance spheres or polyhedra, in Eu-
clidean or hyperbolic spaces, and describes recent joint work with Lewis Bowen. One
of the main points was to report on our solution of the old problem of treating opti-
mally dense packings of bodies in hyperbolic spaces. The other was to describe the
general connection between aperiodicity and nonuniqueness in problems of optimal
density.
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I. Packings of Euclidean space

For motivation we begin with packings of regular pentagons in the Euclidean
plane, E2. First we recall that by a “packing” p of pentagons in a square C, we
mean a collection of congruent copies, pentj , of such a body, all contained in C and
with pairwise disjoint interiors. By the “density” of such a packing p we mean:∑

j volume(pentj)
volume(C)

. (1)

It is clear that for given square C there exists some maximum possible value of
this density, over all p. We are however more interested in an optimum density in
regions of infinite volume rather than C, and therefore we need a more sophisticated
definition.

To analyze the optimum density in the whole of E2 we proceed as follows. First,
for each square C and packing p of the whole plane, we consider the relative density

dC(p) ≡
∑

j volume(pentj ∩ C)
volume(C)

(2)

and then obtain a density for p as

d(p) ≡ lim
C

∑
j volume(pentj ∩ C)

volume(C)
, (3)

in which we allow C to grow so as to contain every point of E2.
It is not hard to construct packings p for which this limiting density d(p) does

not exist, for instance by constructing p to have arbitrarily large regions empty of
pentagons, so that the relative density oscillates instead of having a limit. This
is an essential feature of analyzing density in spaces of infinite volume. Density is
inherently a global quantity, and fundamentally requires a formula somewhat like
(3) for its definition [FeK]. As a consequence we are trying to optimize d(p) over
packings p even though d(p) is undefined for some p. However this does not prevent
us from showing the existence of a convincing optimal density for our pentagon
problem, for instance as follows.

First consider a sequence of squares Cn with sides of length n. It is easy to
show the existence of packings pn of E2 which achieve a maximum for the relative
density dCn

(·). We then trim pn by removing all pentagons from it which have
nonempty intersection with the complement of Cn, and “periodize” the result by
appropriate translations, obtaining a packing p̃n invariant under two perpendicular
translations of length n. For n >> 1 the density of p̃n is still reasonably high relative
to any square of edge length n since the only relevant loss is those pentagons lying
on the boundary of Cn (and its translates), and the volume of these is negligible
for purposes of density, for large n. It is then easy to show that the density of p̃n

has a well defined limit as n → ∞, and it is reasonable to accept this limit as the
optimum density of regular pentagons in E2. And finally, it is also easy to show the
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existence of a packing which has this value as a well defined density, in the sense of
(3).

The above technique allows us not only to prove the existence of an optimal
density (for regular pentagons or other bodies) but even to estimate its value –
though not to actually determine the optimum value. In fact it is difficult to de-
termine the optimal density for most simple bodies. One of the first interesting
examples was that of unit disks in E2. The history of this, culiminating in the fully
acceptable proof of L. Fejes Toth in 1940, is interesting; see [Rog], [Fe5].

Of particular relevance here are the optimal packings of E2 by congruent copies
of the two bodies in Figure 1, known as the kite and dart, introduced by Roger Pen-
rose in 1977 [Gar]. It is possible to construct tilings of the plane with these bodies
(see Figure 2), which are evidently the densest packings. (See [Rad] for a general in-
troduction to the mathematics of these sorts of tilings.) The relevant point however
is that every such optimal packing/tiling of kites and darts has “low symmetry”:
the symmetry group of such a packing does not have a compact fundamental do-
main in E2. (A packing is called “periodic” (resp. “nonperiodic”) if it has (resp.
does not have) a symmetry group with compact fundamental domain, and we say
an optimal packing problem is “aperiodic” if all its optimally dense packings are
nonperiodic.)

One of our main points is that aperiodicity is strongly connected to the unique-
ness of the packing problem.

Theorem 1. If there is only one optimally dense packing of Ed or Hd, up to
congruence, by congruent copies of bodies from some fixed, finite collection, then
that packing must have a symmetry group with compact fundamental domain.

(We sketch the proof later, after introducing some notation.) So we may con-
clude for instance that there are many kite and dart tilings, that is, many equiva-
lence classes modulo congruence. Another interesting feature of the kite and dart
tilings, besides their low symmetry, is that they are all “locally identical”: every
bounded region of one such tiling has a congruent copy in every other such tiling.
So the nonuniqueness in this case cannot be seen locally – it is an essentially global
feature. Of course the optimally dense packing for a given collection of bodies may
fail to be unique up to congruence in a simpler way: for unit spheres in E3 this
follows from an accidental degeneracy wherein optimal packings can have different
bounded regions.

We summarize some of the above as follows. If we consider the optimization
problem in which we seek to optimize the density of packings of Ed by congruent
copies bodies from some some fixed, finite collection, we see from the above that
there always exists an optimally dense packing, but that the solution may not be
unique (up to congruence) — not just because of accidental (local) degeneracy as
in sphere packings of E3, but more fundamentally (globally), as in the kite and dart
tilings. We will see later that other considerations suggest a small modification
of the framework of this problem, which may eliminate the sort of nonuniquess
associated with aperiodicity.
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II. Packings of hyperbolic space

Roger Penrose also introduced another example of interest here, in 1978 [Pen].
Congruent copies of the body shown in Figure 3 can tile the hyperbolic upper-half
plane, as in Figure 4, but only nonperiodically, the latter following from an elegant
argument. If a tiling by copies of that body had a symmetry group with compact
fundamental domain, that domain would have to contain as many dents as bumps,
since they would be paired up. But the body under consideration has two (inward,
triangular) dents and one (outward, triangular) bump, and since the compact do-
main can only contain finitely many bodies, there is an automatic imbalance! (This
example led to the following interesting works: [BlW], [Moz], [MaM], [Goo].)

We are bringing up this example in the context of optimally dense packings
in part to show a connection with the packings of congruent disks published a few
years earlier by Karoly Böröczky [Bo1]; see Figure 5. Those disk packings had been
influential in convincing the discrete geometry community that there could not in
fact be a consistent theory of densest packings in hyperbolic spaces; see [Fe1-5], [Bo1-
2], [BoF], [FeK], [FKK], [Kup]. Basically, there have been attempts for at least 50
years to deal with the global notion of density in hyperbolic space, in particular for
packings of congruent spheres, and the effort has essentially died out, and turned
to various local substitutes. We sketch the two-part argument against a theory of
optimal density as follows.

First we note that the technique used above, to prove the existence of optimally
dense packings of Euclidean spaces, does not have a simple analog for hyperbolic
spaces; the weak point is where the bodies straddling the boundary of the square Cn

are thrown out. In hyperbolic spaces the role of the Cn could naturally be played
by compact fundamental domains, but the problem is that in a hyperbolic space a
large fundamental domain has a finite fraction of its volume near its boundary, so
the bodies straddling the boundary would not be negligible.

Of course this was only one approach to proving existence of optimally dense
packings. However this boundary phenomenon underscores the intrinsic difficulty
of proving that limits of the form (3) would exist for any but the simplest sorts of
packings.

The other part of the argument, based on Böröczky’s packing, is as follows. In
Figure 6 the packing is displayed together with a copy of Penrose’s tiling – a tiling
by congruent bodies. Consider the two regions in dark outline in Figure 7, each
made from three copies of the Penrose tile (and therefore the two regions have the
same volume). From each of these we could, in an obvious way, make congruent
copies to produce a tiling of the hyperbolic plane. But each of these tilings then
suggests an obvious value for the density of the packing: the relative density in each
of its tiles of the disks contained in the tile. But this would suggest one density
twice the value of the other!

A similar inconsistency can be demonstrated between the densities based on
Voronoi tilings and Dirichlet tilings associated with Böröczky’s packing.

In summary, one part of the difficulty of dealing with optimally dense packings
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in hyperbolic space has been proving the existence of limiting densities of the form
(3) for nonperiodic packings, and the other part was the inconsistencies that arise
when trying to avoid the limit definition of density by appealing to densities relative
to associated tilings.

The other of our main goals here, besides the connection between aperiodicity
and nonuniqueness, is to show how a standard part of mathematics, ergodic theory,
can in fact be used to prove the existence of limiting densities of the form (3) for
complicated (nonperiodic) packings, enough to produce a useful theory of optimally
dense packings. We now outline this approach, for the simple case of packings of
hyperbolic space, Hd, by balls of fixed radius R; see [BR1] and [BR2] for details.

Consider the space XR of all possible “relatively dense” packings of hyperbolic
space by balls of fixed radius R, and put a metric topology on XR such that con-
vergence of a sequence of packings corresponds to uniform convergence on compact
subsets of hyperbolic space. (A packing of R-balls is relatively dense if every sphere
of radius R intersects a ball in the packing.) Such a metric makes XR compact,
and makes continuous the natural action on XR of the group Gd of rigid motions
of hyperbolic space. We then consider Borel probability measures on XR which are
invariant under Gd.

As examples of such measures, one can identify the orbit O(p) of a periodic
packing p with the quotient of Gd by the symmetry group of p, and thus project
Haar measure on the Gd to O(p). This idea is easily exploited to prove Theorem
1, first for cofinite symmetry groups and then using results on complete saturation
[Bow] to handle the cocompact case.

We define the density d(µ) of each invariant measure µ on XR as µ(A), where
A is the following set of packings:

A ≡ {p ∈ XR | the origin of Hd is in a ball in p}. (4)

(It is easy to see from the invariance of µ that this definition is independent of the
choice of origin.) We may now introduce the key notion of optimal density.

Definition 1. A probability measure µ̄ on the space XR of packings, ergodic under
rigid motions, is “optimally dense” if d(µ̄) = supµ d(µ) = supµ µ(A); the value d(µ̄)
is the “optimal density” for packing balls of radius R.

(An invariant measure µ is “ergodic” if it cannot be expressed as an average:
µ = a1µ1 + a2µ2, with a1, a2 > 0 and µ1, µ2 invariant.) It is easy to show the
existence of such optimal measures. The terminology is then justified – that is,
related to the density of packings in the sense of (3) – by recent ergodic theorems
of Nevo et al [Nev], [NeS], as follows.
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Theorem 2 (Nevo et al). Let µ be a Borel probability measure on the compact
metric space X , ergodic with respect to an action of the isometry group Gd of Hd.
For any open subset A of X ,

µ(A) =
∫

X

χ
A(q) dµ(q)

= lim
k→∞

1
ν[Gd(k)]

∫
Gd(k)

χ
A[g(p)] dν(g)

(5)

for µ-a.e. p, where χ
A is the indicator function for A, ν is Haar measure on Gd

and:
Gd(k) = {g ∈ Gd : mH[g(O), O] < k}, (6)

where mH is the metric on, and O the origin in, Hd.

We use this ergodic theorem as follows. With A as in (4), the theorem shows
the existence of a limiting density, in the sense of (3), (with expanding spheres
instead of squares) for µ-a.e. packing p. (We improved Nevo’s theorem slightly in
[BR2] to obtain existence relative to any “origin” O.)

Now that we have a mechanism to prove the existence of limiting densities in
packings, we define “optimally dense packings” as those packings which reproduce
an optimally dense measure.

Definition 2. A packing p ∈ XR is “optimally dense” if for some optimally dense
measure µ̄, and all continuous functions f on XR:∫

XR

f(q) dµ̄(q) = lim
k→∞

1
ν[Gd(k)]

∫
Gd(k)

f [g(p)] dν(g). (7)

It follows easily from the above that for every optimally dense µ̄, µ̄-almost
every packing is optimally dense (and in particular optimally dense packings exist!)

From the next result we see that optimally dense packings need not be periodic.

Theorem 3. For most R > 0 (all but countably many), the densest packing of Hd

by spheres of radius R is not unique (up to rigid motion) – in fact for most fixed
radii R the sphere packing problem in Hd is aperiodic.

III. Conclusion

It is appropriate to step back and see what this formalism, introduced to solve
the old problem of densest packings of bodies in hyperbolic spaces, has to say about
the general problem, for Euclidean as well as hyperbolic spaces. (Our definitions
of optimal density are easily shown to agree with the standard ones for packings
in Euclidean space – using Birkhoff’s pointwise ergodic theorem instead of Nevo’s.)
As we saw, in Euclidean spaces the phenomenon of aperiodicity, as exemplified for
instance by the Penrose kite and dart tilings, could be understood as a certain
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(global) form of nonuniqueness, up to congruence, of the optimally dense packings
of some set of bodies. For natural reasons, aperiodicity was first noted when the
bodies were polyhedra and the densest packings were tilings. (See [Sch], which was
not sufficiently appreciated when first published.) We now see that in hyperbolic
space this same phenomenon already appears in the simpler setting of densest pack-
ings of congruent spheres. And the ergodic theory formalism, which we introduced
to overcome the conceptual difficulties of densest packings in hyperbolic space, also
suggests that the nonuniqueness associated with aperiodicity could be eliminated
by reformulating the optimization problem as having its solutions be invariant mea-
sures, rather than packings which reproduce such measures. Indeed, it is reasonable
to conjecture that, with an appropriate notion of genericity, the problem of opti-
mally dense packings of Ed or Hd, by copies of a generic finite set of bodies, has a
unique invariant measure as solution.
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Figure 1. The kite and dart tiles

Figure 2. A kite and dart tiling of the Euclidean plane
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Figure 3. The hyperbolic Penrose tile

Figure 4. A hyperbolic Penrose tiling

10



Figure 5. The Böröczky disk packing of the hyperbolic plane
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Figure 6. Böröczky’s packing of disks, with tiling background
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Figure 7. Böröczky’s packing with two tiles in dark outline
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