Actions of \mathbb{Z}^k associated to higher rank graphs

Alex Kumjian, U. Nevada, Reno & David Pask, U. Newcastle, Australia

Aperiodic Order, Dynamical Systems, Operator Algebras and Topology, University of Victoria, August 2002

We construct an action of \mathbb{Z}^k on a compact zero dimensional space from a higher rank graph Λ satisfying a mild assumption generalizing the construction of the Markov shift associated to a nonnegative integer matrix. The stable Ruelle algebra $R_s(\Lambda)$ is shown to be strongly Morita equivalent to $C^*(\Lambda)$. Hence, $R_s(\Lambda)$ is simple, stable and purely infinite, if Λ satisfies the aperiodicity condition.

Preprint archive: OA/0112049

Introduction

Given a finite directed graph one constructs the associated topological Markov shift as the shift map on the space of two-sided infinite paths, a compact zero dimensional space when endowed with the natural topology.

This dynamical system is a Smale space in the sense of Ruelle. Using the theory of groupoids and the stable equivalence relation of a Smale space, Putnam constructed the stable C^* -algebra S and its crossed product, the Ruelle algebra R_s , intended as a generalization of a Cuntz-Krieger algebra.

We will show that these constructions apply to a k-graph (a combinatorial notion inspired by work of Robertson and Steger). There is a natural action of \mathbb{Z}^k on the space of two-sided paths which enjoys all the key properties of a Smale space.

We invoke the theory of groupoid equivalence to show that the C^* -algebra of a k-graph is strongly Morita equivalent to its Ruelle algebra.

Higher rank graphs

A pair (Λ, d) , with Λ a countable small category and $d: \Lambda \to \mathbb{N}^k$ a morphism, is said to be a k-graph if the factorization property holds: for every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$, there exist unique elements $\mu, \nu \in \Lambda$ such that

$$\lambda = \mu \nu, \quad m = d(\mu), \quad n = d(\nu).$$

For $n \in \mathbb{N}^k$ write $\Lambda^n = \{\lambda \in \Lambda : d(\lambda) = n\}$. It will be convenient to identify Λ^0 with the objects of Λ . Let $r, s : \Lambda \to \Lambda^0$ denote the range and source maps.

Let $E=(E^0,E^1)$ be a directed graph. Then the set of finite paths E^* together with the length map defines a 1-graph.

Every 2-graph arises from a pair of commuting graphs with a common vertex set.

A k-graph Λ is said to be irreducible if for every $u,v\in\Lambda^0$ there is an element $\lambda:v\to u$ in Λ of nonzero degree.

Given a k-graph Λ , the opposite Λ^{OP} is also a k-graph.

Standing Hypothesis:

For each $n \in \mathbb{N}^k$ the restrictions of r and s to Λ^n are surjective and finite to one.

Definition:

Let Λ be a k-graph. Then $C^*(\Lambda)$ is defined to be the universal C*-algebra generated by a family $\{t_{\lambda}: \lambda \in \Lambda\}$ of operators satisfying:

i. $t_v, v \in \Lambda^0$ are mutually orth. projections,

ii.
$$t_{\lambda\mu}=t_{\lambda}t_{\mu}$$
 for $\lambda,\mu\in\Lambda$ with $s(\lambda)=r(\mu)$,

iii.
$$t_{\lambda}^* t_{\lambda} = t_{s(\lambda)}$$
 for $\lambda \in \Lambda$,

iv. for $v \in \Lambda^0$ and $n \in \mathbf{N}^k$ we have

$$t_v = \sum_{\substack{r(\lambda) = v \\ \lambda \in \Lambda^n}} t_{\lambda} t_{\lambda}^*.$$

This generalizes the usual definition of the Cuntz-Krieger algebra of a graph.

Gauge action:

There is a canonical action $\alpha: \mathbb{T}^k \to \operatorname{Aut}(C^*(\Lambda))$ such that

$$\alpha_z(t_\lambda) = z^{d(\lambda)} t_\lambda$$

for $z \in \mathbb{T}^k$ and $\lambda \in \Lambda$.

There is a natural \mathbb{Z}^k action on the analog of the two-sided path space of a k-graph Λ .

Define a k-graph Δ with object space \mathbb{Z}^k :

$$\Delta = \{(m,n) : m,n \in \mathbb{Z}^k, m \leq n\};$$

The structure maps are given by:

$$r(m,n) = m, \ s(m,n) = n, \ d(m,n) = n - m,$$

 $(\ell,n) = (\ell,m)(m,n).$

Use Δ to form the two-sided path space:

$$\Lambda^{\Delta} = \{x : \Delta \to \Lambda : x \text{ is a } k\text{-graph morphism}\}.$$

We endow Λ^{Δ} with a topology as follows: for $n \in \mathbb{Z}^k$ and $\lambda \in \Lambda$ set

$$Z(\lambda, n) = \{x \in \Lambda^{\Delta} : x(n, n + d(\lambda)) = \lambda\}.$$

The collection of all such cylinder sets forms a basis for a topology on Λ^{Δ} for which each such subset is compact. Hence, Λ^{Δ} is a zero dimensional space and if Λ^0 is finite, then Λ^{Δ} is itself compact. Note Λ^{Δ} is nonempty.

For $n \in \mathbb{Z}^k$ define a map $\sigma^n : \Lambda^{\Delta} \to \Lambda^{\Delta}$ by

$$\sigma^n(x)(\ell,m) = x(\ell+n,m+n).$$

Note that σ^n is a homeomorphism for every $n \in \mathbb{Z}^k$, $\sigma^{n+m} = \sigma^n \sigma^m$ for $n, m \in \mathbb{Z}^k$ and σ^0 is the identity map. Thus σ defines an action of \mathbb{Z}^k on Λ^{Δ} .

For each 0 < r < 1 there is a metric ρ defined as follows: Let e = (1, ..., 1); set $\rho(x, y) = 1$ if $x(0) \neq y(0)$ and set $\rho(x, y) = r^{n+1}$ where

 $n=\max\{m\in\mathbb{N}:x\in Z(y(-me,me),-me)\}$ if x(0)=y(0) (but $x\neq y$).

Proposition:

The action is expansive, that is, there is an $\varepsilon>0$ such that for all $x,y\in\Lambda^{\Delta}$, if

$$\rho(\sigma^n(x), \sigma^n(y)) < \varepsilon$$

for all n, then x = y.

Proof: Take $\varepsilon = r$. If $\rho(\sigma^n(x), \sigma^n(y)) < r$ for all $n \in \mathbb{Z}^k$, then

$$x(n-e, n+e) = y(n-e, n+e)$$

for all $n \in \mathbb{Z}^k$. Hence, x = y.

A k-graph Λ is said to be primitive if there is $n \in \mathbb{N}^k$ so that for every $u, v \in \Lambda^0$ there is $\lambda \in \Lambda^n$ with $r(\lambda) = u$ and $s(\lambda) = v$.

Proposition:

If Λ is primitive, then σ is topologically mixing in the sense that for any two nonempty open sets U and V in Λ^{Δ} there is an $N \in \mathbb{Z}^k$ so that $U \cap \sigma^n(V)$ is nonempty for all $n \geq N$.

 Λ^{Δ} decomposes locally into contracting and expanding directions for the shift. For $x \in \Lambda^{\Delta}$ there are closed subsets $E_x, F_x \subset \Lambda^{\Delta}$ such that the unit ball is homeomorphic to $E_x \times F_x$; we have

$$\rho(\sigma^e(y), \sigma^e(z)) \le r\rho(y, z)$$

for $y,z \in E_x$ and

$$\rho(\sigma^{-e}(y), \sigma^{-e}(z)) \le r\rho(y, z)$$

for $y, z \in F_x$.

Our \mathbb{Z}^k action satisfies Ruelle's axioms for a Smale space.

Miscellaneous details

 E_x and F_x are defined as follows:

$$E_x = \{ y \in \Lambda^{\Delta} : x(m,n) = y(m,n), 0 \le m \le n \}$$

 $F_x = \{ y \in \Lambda^{\Delta} : x(m,n) = y(m,n), m \le n \le 0 \}.$

If x(0) = y(0) there is a unique element in $F_x \cap E_y$; this element is denoted [x,y]. The map $(x,y) \mapsto [x,y]$ defines a homeomorphism

$$E_z \times F_z \cong Z(z(0),0)$$

for $z \in \Lambda^{\Delta}$.

The one-sided path space Λ^{Ω} is defined in terms of the k-graph:

$$\Omega = \{(m, n) : m, n \in \mathbb{N}^k, m \le n\}.$$

The map $\pi: \Lambda^{\Delta} \to \Lambda^{\Omega}$ defined by restriction is a continuous open surjection. This will be used later to construct a groupoid equivalence.

Note that $E_x = \pi^{-1}(x)$.

Perron-Frobenius and the Parry measure

Henceforth suppose that Λ is irreducible and Λ^0 is finite. By Perron-Frobenius there exist $a:\Lambda^0\to\mathbb{R}_+$, $b:\Lambda^0\to\mathbb{R}_+$ and $\theta\in\mathbb{R}_+^k$ with

$$\sum_{v \in \Lambda^0} a(v)b(v) = 1$$

such that for all $p \in \mathbb{N}^k$ we have

$$\sum_{u \in \Lambda^0} a(u) |\Lambda^p|(u, v) = \theta^p a(v)$$
$$\sum_{v \in \Lambda^0} |\Lambda^p|(u, v)b(v) = \theta^p b(u)$$

where $|\Lambda^p|(u,v)$ is the number of elements $\lambda: v \to u$ of degree p.

This fact allows one to define the analog of the Parry measure.

Proposition:

There is a shift invariant probability measure μ on Λ^{Δ} such that

$$\mu(Z(\lambda, n)) = \theta^{-d(\lambda)} a(r(\lambda)) b(s(\lambda)),$$

for all $\lambda \in \Lambda$ and $n \in \mathbb{Z}^k$.

Consider the stable and unstable equivalence relations (cf. Putnam):

$$x \sim_s y$$
 if $\lim_{j \to \infty} \rho(\sigma^{je}(x), \sigma^{je}(y)) = 0$

and

$$x \sim_u y \text{ if } \lim_{j \to \infty} \rho(\sigma^{-je}(x), \sigma^{-je}(y)) = 0$$

for $x, y \in \Lambda^{\Delta}$.

The stable equivalence relation yields a groupoid

$$G_s(\Lambda) = \{(x, y) \in \Lambda^{\Delta} \times \Lambda^{\Delta} : x \sim_s y\}$$

endowed with an inductive limit topology. $G_u(\Lambda)$ is defined similarly.

The shift invariant measure μ gives rise to Haar systems for both groupoids and we obtain the stable and the unstable C*-algebras:

$$S(\Lambda) = C^*(G_s(\Lambda)),$$

 $U(\Lambda) = C^*(G_u(\Lambda)).$

Note $U(\Lambda) = S(\Lambda^{OP})$.

Lemma:

 $S(\Lambda)$ is strongly Morita equivalent to $C^*(\Lambda)^{\alpha}$ and is therefore AF. Moreover, $S(\Lambda)$ is simple if Λ is primitive.

Ruelle algebras

The shift action on Λ^{Δ} induces actions β_s, β_u of \mathbb{Z}^k on both $S(\Lambda)$ and $U(\Lambda)$. We define the Ruelle algebras as the crossed products:

$$R_s(\Lambda) = S(\Lambda) \times_{\beta_s} \mathbb{Z}^k,$$

 $R_u(\Lambda) = U(\Lambda) \times_{\beta_u} \mathbb{Z}^k.$

Note that $R_s(\Lambda) = C^*(G_s(\Lambda) \times \mathbb{Z}^k)$.

Theorem:

 $R_s(\Lambda)$ is strongly Morita equivalent to $C^*(\Lambda)$. Hence, $R_s(\Lambda)$ is nuclear and in the bootstrap class for which the UCT holds. Moreover, if Λ satisfies the aperiodicity condition, then $R_s(\Lambda)$ is simple, stable and purely infinite.

Hence, by the Kirchberg-Phillips theorem the isomorphism class of $R_s(\Lambda)$ is determined by its K-theory.

 Λ satisfies the aperiodicity condition if there is a path $x \in \Lambda^{\Omega}$ which is not eventually periodic.

Idea of proof:

Use the notion of equivalence of groupoids of Muhly, Renault and Williams to show that the associated C*-algebras are strongly Morita equivalent.

Note that $C^*(\Lambda) = C^*(\mathcal{G}_{\Lambda})$ where \mathcal{G}_{Λ} is the path groupoid of Λ ; the unit space is identified with Λ^{Ω} , the one-sided path space. The elements of \mathcal{G}_{Λ} are triples (x,n,y) with $x,y\in \Lambda^{\Omega}$, $n\in \mathbb{Z}^k$ such that $\sigma^{\ell}x=\sigma^m y$ and $n=\ell-m$ for some $\ell,m\in \mathbb{N}^k$.

The equivalence of groupoids follows from the isomorphism:

$$G_s(\Lambda) \times \mathbb{Z}^k \cong \Lambda^{\Delta} \star \mathcal{G}_{\Lambda} \star \Lambda^{\Delta}$$

given by

$$((x,y),n)\mapsto (x,(\pi(x),n,\pi(\sigma^n y)),\sigma^n y),$$

where $\pi: \Lambda^{\Delta} \to \Lambda^{\Omega}$ is the restriction map.

Selected references

Cuntz and Krieger, A class of C*-algebras and topological Markov chains, 1980

Kaminker, Putnam and Spielberg, *Operator* algebras and hyperbolic dynamics, 1997

Kumjian and Pask, *Higher rank graph C*-algebras*, 2000

Muhly, Renault and Williams, Equivalence and isomorphism for groupoid C*-algebras, 1987

Putnam, C*-algebras from Smale spaces, 1996

Robertson and Steger, Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras, 1999

Ruelle, Thermodynamic Formalism, 1978