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Quasicrystals

• intermetallic alloys

• well ordered, but aperiodic

• non-crystallographic symmetries: 5-, 8-, 10- or

12-fold rotation axis, icosahedral symmetry

• quasiperiodic: density formally given by Fourier

series

ρ(x, x⊥) =
∑

h∈Zn

ah ei
∑

j
hj(kj+k

⊥

j )·(x+x
⊥)

with n > d rationally independent basis vectors kj

In real space: cut through n-dimensional crystal

Electron density in 5-fold plane of i-ZnMgHo:

(H. Takakura et al., Phys. Rev. Lett. 86, 236 (2001))

Atom positions form Delone set:

uniformly discrete and relatively dense

(minimal distance of atoms, no big voids).

For any R: only finitely many patches of radius R up to

translation (finite local complexity).

Can describe quasicrystal as decoration of a tiling, with

finitely many tiles up to translation:



Quasiperiodic tilings: section through

higher-dimensional periodic tiling:

Translation module, repetitivity

Translation module T (P ) of a patch P :

Z-module generated by distance vectors between all

translates of P .

Finite local complexity: T (P ) has finite rank!

Limit translation module T : intersection of all T (P ).

T can be non-trivial.

In quasiperiodic case: projection of higher-dimensional

lattice.

Dual T ∗ of T : union of all T ∗(P ), with T ∗(P ) the

linear functionals on T (P ) with values in Z.

Primitive substitution tilings, canonical projection

tilings: pure point part of diffraction pattern has

support contained in T ∗.

T trivial −→ T ∗ not finitely generated.

Tiling is called repetitive, if the set of translates of any

patch is relatively dense.

Homogeneity condition with physical motivation!

Equivalence concepts I: Local Isomorphism

Two tilings are called locally isomorphic, if any patch in

one occurs also in the other (up to translation), and

vice versa.

Such tilings are indistinguishable by any local means.

Finite range interactions cannot distinguish them

−→ physically equivalent.

Tilings form local isomorphism (LI) classes.

Repetitive tilings: LI class invariant under translation.

LI class can be given natural a topology: two tilings are

close if they agree in a large ball around the origin, up

to a small translation.

Translations then act by homeomorphisms on LI class

−→ tiling dynamical system.

Repetitive tilings: tiling dynamical system is minimal.

The symmetry of a tiling should be defined as the

symmetry of its LI class.

Equivalence concepts II: Local Derivability

Given the set of atoms, there is some arbitraryness in

the choice of a tiling:

Two tilings are mutually locally derivable (MLD),

if one can be constructed in a local way from the other,

and vice versa.

Translation module is an invariant of a MLD class, can

only increase under local derivation.

MLD induces a bijection between LI classes.



Matching Rules

R-atlas of a tiling: collection of all patches of radius up

to R; It is an invariant of the LI class.

Some LI classes are completely characterized by the

R-atlas AR for some fixed, finite R: any tiling with

R-patches from AR is also in this LI class.

Such an LI class of tilings is said to have

perfect matching rules of radius R.

Finite range matching rules can never distinguish

different tilings from the same LI class.

Having finite range matching rules is an invariant of an

MLD class, but the matching rules radius may change

under local derivation.

Some LI classes of tilings admit finite range perfect

matching rules only after a non-local decoration.

Example: Ammann-Beenker tiling

The vertex decoration is non-local.

Finite range perfect matching rules make it possible

that the LI class forms the set of ground state

structures of some finite range interaction.

Covering Rules

The atlas of allowed R-patches is often rather big, and

thus the matching rules complicated.

A simpler solution is often obtained with covering rules:

the structure is required to be covered by copies of

some patch or cluster.

Overlaps are allowed, but are subject to some

constraints.

Ideally, the overlap constraints are imposed by the

internal structure of the patch.

Physical motivation: the covering patch represents an

energetically favourable local configuration.

If the whole structure is covered, all local configurations

are favourable.

Gummelt’s Aperiodic Decagon

Petra Gummelt (1995, 1996) defined overlap rules for a

decagon, such that the set of admissible coverings of

the plane is MLD to the LI class of Penrose tilings:

In the overlap region the coloring must match:



Covering Cluster for Octagonal Tiling

The following cluster completely covers the arrowed

octagonal tiling:

The arrowing enforces the alternation condition:

This is not a perfect matching rule: it enforces ordered,

quasiperiodic tilings, which are in general only 4-fold

symmetric (A. Katz, 1995).

The covered tilings form a 1-parameter family of

LI classes; however, among these the octagonal

one has the highest octagon density.

The octagonal LI class consists of those structures that

are maximally covered.

For physical applications, the arrowing can be encoded

by the atomic decoration.

Structure of octagonal AlMnSi can be interpreted as

maximal cluster covering (S.I. Ben-Abraham, F.G.).

This structure is a stacking of layers . . . ABAB′ . . .

Each octagon corresponds to an octagonal prism.

Prisms of different coloring are shifted against each

other in the vertical direction.

The overlap rules due to the atomic decoration enforce

the alternation condition, and thus an ordered tiling.

Among these structures the octagonal ones have the

highest cluster density.


