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Important Properties of Tilings

Important properties and concepts:

• finite number of local patterns up to translation

(finite local comlexity)

• repetitive

• well-defined patch frequencies

• translation module

• local isomorphism (LI classes)

• mutual local derivability

Quasiperiodic Tilings

Irrational sections through a periodic klotz tiling.

Such tiligs are often called canonical projection tilings.

Every vertex, tile, etc, has its acceptance domain.

Translation module is projection of higher-dimensional

lattice on physical space.

Cut positions touching boundaries of acceptance

domains are called singular.

Mutual Local Derivability

Two tilings are MLD, if one can be constructed in a

local way from the other, and vice versa.

Acceptance domains of one tiling must be constructible

by finite unions and intersections of acceptance

domains of the other.

MLD induces a bijection between LI classes.



The hull of a tiling

Consider a tiling T in R
d of finite local complexity.

We introduce a metric on the set of translates of T :

Two tilings have distance < ε, if they agree in a ball of

radius 1/ε around the origin, up to a translation < ε.

The hull ΩT is the closure of {T − x|x ∈ R
d} with

respect to this metric.

ΩT is a compact metric space, on which R
d acts

naturally by translation.

If T is repetitive, every orbit is dense in ΩT .

ΩT then consists of the LI class of T .

The topology of ΩT is generated by cylinder sets

C(P, x, ε), consisting of tilings T ′ such that T ′ + y

has the finite pattern P at x for y ∈ Bε(0).

For projection tilings, there is a unique translation

invariant measure on ΩT .

The measure of cylinder sets is proportional to the

frequency of the pattern P (and to the measure of Bε).

Cohomology of the Hull

The cohomology of the hull can be defined and

computed in several equivalent ways.

One option is to define it as Cech cohomology, which is

what we shall do.

There are explicit formulae for canonical projection

tilings of codimension d⊥ ≤ 3 (Forrest, Hunton, and

Kellendonk).

The cohomology groups of canonical projection tilings

are free.

Their dimensions are computed from the set of singular

cut positions, and how the translation lattice acts on it.

We consider in the following the case d = d⊥ = 2, with

quadratic embedding of physical space.

Let Γ be the lattice projected to E⊥.

For a canonical projection tiling, the singular set in E⊥

is the union of L1 Γ-orbits of lines Hα.

The cohomology is finitely generated iff the number L0

of Γ-orbits of singular points is finite.

Let Γα be the stabilizer of Hα in Γ, and Lα
0 the

number of Γα-orbits of singular points on Hα.

Then we have Hk(Ω) ∼= Z
Dk , with:

D2 = 3 + L1 + e− r

D1 = 4 + L1 − r

D0 = 1

with e = −L0 +
∑

α Lα
0 the Euler characteristic

D2 −D1 + D0, and r the rank of the span of all Λ2Γα.

Approximating the Hull by CW-spaces

We define a sequence of cellular CW-spaces Ωn which

approximate Ω.

The d-cells of Ω0 are the interiors of the tiles.

The lower dimensional cells are the interiors of the tile

boundaries; two tile boundaries are identified if they

occur as the common boundary of the two tiles

somewhere in the tiling.

For Ωn we proceed as for Ω0, except that we first color

the tiles according to their nth corona.

There is a continuous cellular mapping h : Ωn → Ωn−1,

which simply forgets part of the coloring.

We define Ω∞ as the inverse limit lim←−Ωn, consisting of

all sequences {xk}
∞

k=0
, with xk ∈ Ωk and

h(xk) = xk−1.

The continuous mapping h induces a homomorphism

h∗ : H∗(Ωn)→ H∗(Ωn+1); the cohomology of Ω∞ is

the direct limit

H∗(Ω∞) ∼= lim H∗(Ωn)



It is quite obvious from the construction that Ω and

Ω∞ are homeomorphic, and hence have isomorphic

Cech cohomology.

This can be shown also directly.

For each n, Ω has a finite open covering Cn with

cylinder sets, whose patterns are the tiles colored

according to the nth corona.

From Cn we can construct a finite open covering C ′
n of

Ωn, whose nerve is isomorphic to the nerve of Cn.

The seqence of coverings Cn can be chosen such that

eventually every open set in Ω is contained in some Cn.

Hence:

H∗(Ω) ∼= H∗(Ω∞) ∼= lim H∗(Ωn)

For the cellular spaces Ωn, the Cech cohomology agrees

with the cellular cohomology, and is easily computable.

Our procedure is similar to that of Anderson and

Putnam (Ergod. Th. & Dynam. Sys. 18, 509 (1998)),

who use a single CW-space Ω′, and a mapping Ω′ → Ω′

induced by inflation. This is equivalent to the

refinements according to the nth corona.

Similar constructions have also been used by Bellissard,

Benedetti and Gambaudo (math.DS/0109062).

Application to canonical projection tilings

We first consider the Fibonacci case:

Periodic approximant:

Next we consider the projection from a 3D cubic lattice

to a generic one-dimensional line.

Here, the stabilizer Γα of each singular line Hα has

rank 1.

Hence, there is a rank 2 lattice of singular lines parallel

to Hβ , and so there are infinitely many Γα-orbits of

intersections of these with Hα. L0 is thus infinite, and

the cohomology not finitely generated.

How can one see this in our approach?

After some coloring steps, the singular set in 3D

consists of continuous, 2D strips of finite width, one for

each singular line.

When coloring further, some of these strips will collide,

and the cohomology of Ωn changes.

Since there are infinitely many Γα-orbits of singular

strips, there will always be more collisions of singular

strips, and the cohomology never saturates.

Ammann-Beenker tiling

Also here, the klotz tile boundaries to be extended by

the coloring project on singular lines in E⊥.

Let F be the full singular set projecting on a singular

line Hα. It is stabilized by a sublattice Γα of rank 2.

With every klotz tile boundary there is an entire

Γα-orbit of such boundaries.

If there are finitely many orbits, then after finitely many

refinements the topology of the singular set F is that of

a thickened 2-plane.

Further refinements won’t change it. It is sufficient to

consider the nth corona for some fixed, computable n.

There won’t be further collisions with other singular

2-planes.

Which corona is required? We have to couple flipping

hexagons:

Closing the gaps in the singular set F is also required

to make maching rules nearest neighbor ones!



Relation to Matching Rules

Suppose a canonical projection tiling T admits local

matching rules.

If a decoration is given, which makes the matching

rules nearest neighbor local, the CW-space of the

decorated (but not further colored) tiles has

cohomology isomorphic to that of the hull ΩT .

Conversely, if the cohomology of the hull ΩT is known,

this gives a criterion on the decoration being sufficient

to make the matching rules nearest neighbor local.

Tiling H0 H1 H2 e

Penrose Z
1

Z
5

Z
8 4

Tübingen Triangle Tiling Z
1

Z
5

Z
24 20

Ammann-Beenker undecorated Z
1

Z
5

Z
9 5

Ammann-Beenker decorated Z
1

Z
8

Z
23 16

Socolar undecorated Z
1

Z
7

Z
28 22

Socolar decorated Z
1

Z
12

Z
59 48

Towards an Interpretation

The advantage of our approach is that the homology

and cohomology of Ωn is given in terms of concrete

chains and co-chains of colored tiles.

Consider a continuous sequence of edges in the tiling,

representing a 1-chain.

This 1-chain is closed if the two end points are

equivalent 0-cells. The homology classes of 1-chains

thus include the translation module of the tiling, and

the cohomology classes its dual, the reciprocal lattice.

Example: Ammann-Beenker tiling

All 0-cells are equivalent; there is a fifth cohomology

class, taking the difference of the number of arrows

with and against the orientation of each 1-cell.

Example: Penrose tiling

Here, there are 4 classes of 0-cells.

The fifth cohomology class counts the number of

white arrows in 5 of the 10 directions.

For the Penrose and Ammann-Beenker tiling,

H1 contains more than the reciprocal lattice.

It distinguishes inequivalent colorings.

For the Fibonacci chain, H1 contains just the

reciprocal lattice.

Conclusions

The cohomology of the hull is computable from the

local tile patterns, and how they are arranged.

For canonical projection tilings, tile patterns up to a

fixed size are sufficient.

Cohomology classes are explicitly given by

representative co-chains of (colored) tiles.

This should help arriving at a more intuitive

understanding of these topological invariants.


