New Conditions for Local Regularity of a Weak Solution to the Navier–Stokes Equation

Jiri Neustupa neustupa@marian.fsik.cvut.cz

Czech Technical University, Prague, Czech Republic

We assume that (v, p) is a suitable weak solution of the Navier–Stokes initial value problem in $\mathbb{R}^3 \times (0, T)$. The external body force is for simplicity assumed to be zero. (x_0, t_0) is a chosen point in $\mathbb{R}^3 \times (0, T)$, whose regularity will be discussed.

We assume that $\rho > 0$ and r > 0 and we denote

$$\begin{aligned} \epsilon(t) &= \sqrt{t_0 - t} \quad (\text{for } t \le t_0), \\ U_r^\rho &= \{(x, t) \in Q_T; \ t_0 - r^2/\rho^2 < t < t_0, \ \epsilon(t)\rho < |x - x_0| < r\}, \\ V_r^\rho &= \{(x, t) \in Q_T; \ t_0 - r^2/\rho^2 < t < t_0, \ |x - x_0| < \epsilon(t)\rho\}. \end{aligned}$$

We work with the conditions

- $(A_1)_r^{\rho} \ v \in L^{a,b}(U_r^{\rho})^3$ for some $a \ge 3, b > 3$ such that $\frac{2}{a} + \frac{3}{b} = 1$,
- $(\mathbf{A}_2)_r^{\rho} \|v\|_{L^{\infty,3}(U_r^{\rho})^3} < \epsilon_1,$

$$(\mathcal{B}_1)_r^{\rho} \ p_- \in L^{\alpha,\beta}(V_r^{\rho})$$
 for some $\alpha \ge 3/2, \ \beta > 3/2$ such that $\frac{2}{\alpha} + \frac{3}{\beta} = 2,$

 $(\mathbf{B}_2)_r^{\rho} \|p_-\|_{L^{\infty,3/2}(V_r^{\rho})} < \epsilon_2.$

 p_{-} denotes the negative part of pressure p: $p_{-} = 0$ if $p \ge 0$, $p_{-} = -p$ if p < 0. The main result is:

Theorem 1. Suppose that there exist $\rho > 0$ and r > 0 such that a) condition $(A_1)_r^{\rho}$ or condition $(A_2)_r^{\rho}$ (with ϵ_1 sufficiently small) is satisfied and b) condition $(B_1)_r^{\rho}$ or condition $(B_2)_r^{\rho}$ (with ϵ_2 sufficiently small) is satisfied. Then (x_0, t_0) is a regular point of solution (v, p).