Maximal Regularity of the Stokes Operator in an Infinite Cylinder

Reinhard Farwig farwig@mathematik.tu-darmstadt.de Darmstadt University of Technology, Germany

Global weak solutions of the instationary Navier-Stokes equations pose a (famous) open problem on uniqueness and regularity in \mathbb{R}^3 . For bounded and exterior domains $\Omega \subseteq \mathbb{R}^3$ it is known by *Leray's structure theorem* that the set of possibly singular points in time has a vanishing Haudorff measure $\mathcal{H}^{1/2}$. The essential tools in the proof of Leray's theorem are the so-called *strong energy inequality* and – in unbounded domains – the *maximal regularity* estimate of the Stokes operator $A = -P\Delta$, i.e.,

 $||u_t||_{L^p(0,T;X)} + ||Au||_{L^p(0,T;X)} \le c||f||_{L^p(0,T;X)}$

for solutions u of the instationary Stokes equation $u_t + Au = f$, u(0) = 0 in $X = L^q_{\sigma}(\Omega)$. The maximal regularity is known for $\Omega = \mathbb{R}^n$, \mathbb{R}^n_+ , bounded and exterior domains and can e.g. be proved when the imaginary powers A^{is} , $s \in \mathbb{R}$, of the Stokes operator are bounded operators in L(X).

In this talk we consider the problem of the Stokes resolvent $\lambda u + Au = f \in X$ and of maximal regularity in an infinite tube $\Omega = \Sigma \times \mathbb{R}$ with constant cross section Σ . Using a partial Fourier transform w.r.t. x_n the resolvent problem is transformed into an ADNelliptic system with parameters λ and the Fourier variable $\zeta \in \mathbb{R}$. This system yields a linear solution operator $M_{\lambda}(\zeta)$ on the space $L^r(\Sigma)$, $1 < r < \infty$, with a uniform estimate

$$||M_{\lambda}(\zeta)|| + ||\zeta \frac{\partial M_{\lambda}(\zeta)}{\partial \zeta}|| \le c.$$

Since $M_{\lambda}(\zeta)$ is operator-valued, the application of standard multiplier theorems is not straightforward. Therefore we refer to recent results on multiplier techniques, on *R*-bounded operator families and to improved resolvent estimates of $(R_{\lambda\zeta})$ in weighted L^r -spaces with arbitrary weights of Muckenhoupt type.