Some Results on Wavelet Frames

Xingwei Zhou xwzhou@nankai.edu.cn

Nankai Institute of Mathematics

There have been many results for the system $\{a^{-m/2}\psi(a^{-m}x-nb)\}_{m,n\in\mathbb{Z}}$ to be a frame for $L^2(R)$, where a > 1 and b > 0. In this talk we first study some general conditions for the system $\psi_{j,k}(x) = s_j^{-1/2}\psi(s_j^{-1}x-b_k)$, $j,k \in \mathbb{Z}$, to be a frame, where $s_j > 0$ and b_k are reals. First we give a necessary condition which extremely extends the one obtained by Chui and Shi in 1993. Secondly we point out that the necessary condition is also sufficient when ψ is band-limited, moreover we give sufficient conditions, which exclusively depend on ψ , for $\{\psi_{j,k}\}$ to be a frame for a large class of $\{s_j\}$ and $\{b_k\}$. At the last we characterize a bounded measurable E such that ψ is a frame function with $\hat{\psi} = \chi_E$.

The main results of this paper are as follows.

Theorem 1 If $s_j^{-1/2}\psi(s_j^{-1}x-b_k)$, $j,k \in \mathbb{Z}$, is a frame with bounds A > 0 and $B < \infty$, where $\psi \in L^2(R)$, $s_j > 0$ and $\{b_k\}$ is a r-Fourier frame sequence , then

$$\frac{A}{B_r} \le \sum_{j \in \mathbb{Z}} |\hat{\psi}(s_j w)|^2 \le \frac{B}{A_r}, \ a.e.$$

Theorem 2 Suppose $\psi \in B_{\Omega} \cap L(R)$ for some $\Omega > 0$, where $B_{\Omega} = \{f \in L^{2}(R) : f(w) = 0$ for any $|w| > \Omega\}$, and $s_{j} > 0$. Then the following two assertions are equivalent: (i) There is a r-Fourier frame sequence $\{b_{k}\}$ with $r > 2\Omega$ such that $\psi_{j,k}(x) = s_{j}^{-1/2}\psi(s_{j}^{-1}x - b_{k}), j, k \in \mathbb{Z}$, is a frame for $L^{2}(R)$; (ii) $a \leq \sum_{j \in \mathbb{Z}} |\hat{\psi}(s_{j}w)|^{2} \leq b$, a.e., for some a > 0 and $b < \infty$. Furtheremore if (ii) is satisfied, then $\{\psi_{j,k}\}$ is a frame for any r-Fourier frame sequence $\{b_{k}\}$, where $r > 2\Omega$.

Theorem 3 Suppose $\psi \in B_{\Omega} \cap L(R)$ for some $\Omega > 0$. If $|\hat{\psi}(w)| \leq A|w|^{\alpha}$ near w = 0 for some A > 0 and $\alpha > 0$ and 0 is an isolated zero of $\hat{\psi}(w)$, then $\{s_j^{-1/2}\psi(s_j^{-1}x - b_k)\}_{j,k\in\mathbb{Z}}$ is a frame for $L^2(R)$ for any sequence $\{s_j\}_{j\in\mathbb{Z}}$ of positives satisfying $0 < \inf_j \frac{s_j}{s_{j+1}} \leq \sup_j \frac{s_j}{s_{j+1}} < 1$ and any r-Fourier frame sequence $\{b_k\}_{k\in\mathbb{Z}}$, where $r > 2\Omega$.

Theorem 4 Suppose that E is a bounded set with $0 < m(E) < \infty$, a > 1 and $\hat{\psi}(w) = \chi_E(w)$. Then ψ is a frame function for this a and some b > 0, if and only if there is an integer K such that

$$E_{+} \stackrel{\triangle}{=} E \bigcap (0,\infty) = \bigcup_{k=-\infty}^{K} a^{k} A_{k} , \ E_{-} \stackrel{\triangle}{=} E \bigcap (-\infty,0) = \bigcup_{k=-\infty}^{K} a^{k} B_{k} ,$$

where $\{A_k\}_{k\leq K}$ and $\{B_k\}_{k\leq K}$ are finitely disjoint partitions of (1,a] and [-a,-1) respectively. Furthermore when the condition (??) is satisfied, ψ is a frame function for this a and any b with $0 < b < \frac{1}{\sup E - \inf E}$.

Acknowledgement: Thanks to Mr.Xu Yang for his help to this talk.