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Input-Output Invariants
for Descriptor Systems

Tatjana Stykel*

Abstract

We study continuous-time and discrete-time descriptor systems from the time domain and
frequency domain points of view. We present some input-output invariants for descriptor
systems like transfer function, impulse and frequency responses, convolution and Hankel
operators, Hankel singular values. These invariants are of great importance in robust
control and approximation theory. Some norms for descriptor systems are introduced and
their representations via the different input-output invariants are given.
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controllability and observability Gramians, convolution operator, Hankel operator, Hankel
singular values, system norm.
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1 Introduction

Consider a linear time-invariant descriptor system

E(Dx(t
y(
where Dz(t) = #(t), t € R, in the continuous-time case and Dz(t) = x441, t € Z, in the
discrete-time case. Here £, A € R¥", B e R*»™ C € RP", D € RP™ z(t) € R" is the state

vector, u(t) € R™ is the control input, y(¢) € RP is the output and z° € R” is the initial
value.

)) = Az(t) + Bu(t), z(0)=2°,
t

) = Ca(t) + Du(t), (1.1)

For E = I, system (1.1) is standard state space system. Such a system has been extensively
studied for a long time, see [11, 15, 35] and the references therein. Descriptor systems (or
generalized state space systems) with singular F arise naturally in many applications [6, 8, 22]
and have been investigated in [5, 6, 8, 19, 20, 23, 32, 33].

The main goal of this paper is to analyze linear time-invariant descriptor systems from the
time domain and frequency domain viewpoints. We consider some important linear system
concepts for such systems including fundamental solution matrices, state transition matrices,
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2 T. STYKEL

controllability and observability, stability, transfer functions and realizations. These concepts
are essential for system analysis and design. The continuous-time and discrete-time case are
treated in parallel. We present generalizations for descriptor systems of impulse and fre-
quency responses, controllability and observability Gramians, convolution operators, Hankel
operators and closely related Hankel singular values. The Gramians and the Hankel singular
values play an important role in model reduction via balanced truncation methods [11, 24, 29].
System norms for (1.1) are also introduced and their features are studied.

We will assume without loss of generality that D = 0 in (1.1). If D # 0, then we may
consider an extended descriptor system

o o ]@a = [ ] ]ew+| p Juo, .
ut) = [0, ~DiEw,

where D = DD, is a factorization of D, for example, D; = I and Dy = D. System (1.1) is
equivalent to (1.2) in the sense that z(¢) is the solution of (1.1) with a given input u(¢) if and
only if £(t) = [ —]:J_U)S;)(t) ] satisfies (1.2).

Throughout the paper we will denote by R™™ and C*™ the spaces of n x m real and
complex matrices, respectively. The imaginary axis is denoted by iR and the unit circle is
denoted by T. The matrix A” stands for the transpose of real A, the matrix A* denotes the
complex conjugate transpose of complex A, and A~7 = (A™1)7. An identity matrix of order
m is denoted by I,,. The matrix A is positive definite (positive semidefinite) if z7 Az > 0
(zT Az > 0) for all nonzero =z € R", and A is positive definite on a subspace X C R if
zT Az > 0 for all nonzero x € X. The largest singular value of a matrix A € R™»™ is
denoted by omax(A) and the trace of A € R™" is designated by tr(A4). We will denote by
lz|| = \/2? + - - - + 22 the Euclidean vector norm of z € R?, by || All2 = omax(A) the spectral
matrix norm and by ||A||p = \/tr(AT A) the Frobenius matrix norm of A € R™™.

2 Discrete-time descriptor systems

Since the results for the continuous-time case are partly related to the discrete-time case, we
begin our discussion with the discrete-time descriptor system

Ezgiq Axy, + Buy, 9= 2",

yp = Cuog.

(2.1)

Assume that the matrix pencil AE — A is regular, that is, det(A\E — A) # 0 for some
A € C. In this case AE — A can be reduced to the Weierstrass canonical form [28]. There
exist nonsingular matrices W and 7" such that

I, 0

E:W[ 0 N

J 0
]T and A_W[OI%]T, (2.2)

where J and N are matrices in Jordan canonical form and N is nilpotent with index of
nilpotency v. The numbers n; and ny are the dimensions of the deflating subspaces of
AE — A corresponding to the finite and infinite eigenvalues, respectively, and v is the index
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of the pencil AE — A. The matrices

Pr:Tl[Igf g]T, Pl:W[Igf S]Wl (2.3)

are the spectral projections onto the right and left deflating subspaces of the pencil AE — A
corresponding to the finite eigenvalues.

Using the Weierstrass canonical form (2.2), we obtain the following Laurent expansion at
infinity for the generalized resolvent

(AE—-A)~! = f: 179 (2.4)

k=—00

where the coefficients Fj, have the form

k
T—l[JO g]W_l, k=0,1,2...,
F, = 0 . (2.5)
Tl[o _N_k_l]Wl, E=-1,-2,....

Note that Fy, = 0 for £ < —v, where v is the index of the pencil A\E — A. The matrices F}, are
said to be fundamental matrices. They play an essential role for the discrete-time descriptor
system (2.1).

It is well known [8, 19] that if the pencil AE — A is regular and if the initial value z° is
consistent, that is, it satisfies

v—1

(I-P)2® = F_j 1Buj,
7=0

then the discrete-time descriptor system (2.1) has a unique solution zy for all £ > 0. Using
the fundamental matrices F}, this solution can be written as

k+v—1
zp = FyBz’+ Y Fyj 1Buj, k>0 (2.6)
=0

One can see that this solution belongs to a manifold

v—1
X={ zeR' : (I-P)z=)» F; Bwj, wjER" (2.7)
§=0

that is called the solution space for the descriptor system (2.1). Moreover, equation (2.6)
shows that to determine z; we need not only past inputs u;, 7 < k, but also future inputs
uj, k < j < k+v —1. This concept is often called non-causality of discrete-time descriptor
systems. For a causal system (2.1), the state z is determined completely by the initial vector
2% and control inputs ug, uy, ..., ug. Clearly, system (2.1) is causal if the pencil \E — A is of
index at most one.
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2.1 The transfer function and realizations

Let Z denote the set of integers. Consider a two-sided Z-transform [18] that maps a sequence
{fx}rez with fi € R" into the function f(z) of complex variable z defined via

f(z) = Z[fi] = Z frz "

k=—00

The complex variable z is called frequency in the discrete-time case. Applying the
Z-transform to the descriptor system (2.1), we obtain that y(z) = C(2E — A)~! Bu(z), where
u(z) and y(z) are the Z-transforms of the sequences {uy}xcz and {yx}rez, respectively. The
rational matrix-valued function G(z) = C(zE — A)™'B is called the transfer function of the
discrete-time descriptor system (2.1). It gives a transfer relation between the Z-transforms
of the input u; and the output yx. In other words, the transfer function G(z) describes the
input-output behaviour of system (2.1) in the frequency domain.

For any rational matrix-valued function G(z), there exist matrices F, A, B and C such
that G(z) = C(2E — A) !B, see [8]. A descriptor system (2.1) with these matrices is called
a realization of G(z). We will also denote a realization of G(z) by G = [E, A, B, C]. Note
that the realization of G(z) is, in general, not unique [8].

Definition 2.1. Two realizations [E, A, B, C]and [E, A, B, C] are restricted system equi-
valent if there exist nonsingular matrices W and 7' such that

E =WET, A=WAT, B =WB, C=CT.
The pair (W,T) is called system equivalence transformation.

The notion of restricted system equivalence is consistent with [25]. A characteristic quan-
tity of system (2.1) is said to be input-output invariant if it is preserved under a system
equivalence transformation. The transfer function G(z) is input-output invariant, since

G(z)=C(zE—- A 'B=CTT '(2E - A~ "W 'WB=C(E - A)~!

Other important results from the theory of rational functions and realization theory may
be found in [8, 14, 32].

2.2 Controllability and observability

In contrast to standard state space systems, for discrete-time descriptor systems, there are
several different notions of controllability and observability, see [5, 8, 19, 20, 32] and the
references therein.

Definition 2.2.System (2.1) and the triplet (E, A, B) are called R-controllable if
rank [AE — A, Bl =n for all finite X € C. (2.8)
System (2.1) and the triplet (F, A, B) are called I-controllable if
rank [E, AKg, B] = n, where the columns of Kg span Ker E.

System (2.1) and the triplet (E, A, B) are called C- controllable if (2.8) holds and rank[FE, B]=n.
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C-controllability implies that for any given initial state 2z € R* and final state x reR,
there exists a control input u;, that transfers the system from 2 to z 7 in finite time. This
notion follows [5, 33] and is consistent with the definition of controllability given in [8].

R-controllability ensures that for any initial and final states z°, = 7 € X with X as in (2.7),
there exists a control input that transfers the system from z° to z 7 in finite time. In the case
of E = I, R-controllability coincides with C-controllability and is the usual controllability of
standard state space systems [15].

I-controllability means that for any given initial state 20 € R”, there exists a state feedback
control uy = Fzyp + v with a feedback matrix F' € R"™" and a new control input vy € R™
such that the closed-loop system FEzy.; = (A + BF)zy + Buy is causal [8]. Note that the
descriptor system (2.1) with the pencil AE — A of index at most one is I-controllable.

Observability is a dual property of controllability. System (2.1) and the triplet (E, A4, C)
are called R (I, C)-observable if (ET, AT, CT) is R (I, C)-controllable.

For equivalent algebraic and geometric characterizations of different concepts of control-
lability and observability for descriptor systems, see [8, 20, 29, 33].

It should be noted that the controllability and observability conditions for the descriptor
system (2.1) are input-output invariant.

2.3 Stability
We now present some results on the asymptotic stability for the descriptor system (2.1).
Definition 2.3. The discrete-time descriptor system (2.1) is called asymptotically stable if
kli)n(;lo xr, = 0 for all solution zj, of the system Ezp, 1 = Axy.

The following theorem gives equivalent conditions for system (2.1) to be asymptotically

stable.

Theorem 2.4. [8, 31] Consider the discrete-time descriptor system (2.1), where the pencil
AE — A is regular. Let P, and P, be the spectral projections as in (2.3). The following
statements are equivalent.

1. System (2.1) is asymptotically stable.
2. All finite eigenvalues of the pencil A\E — A lie inside the unit circle.

3. The projected generalized discrete-time Lyapunov equation
ATXA—-E"XE =-Pl'Qp, X =XP, (2.9)

has a unique Hermitian, positive semidefinite solution X for every Hermitian positive
definite matriz Q.

4. For all matrices C such that the triplet (E, A,C) is R-observable, the projected gene-
ralized discrete-time Lyapunov equation (2.9) with Q = CTC has a unique solution X
which is Hermitian and positive definite on the subspace Im P;.

We see that asymptotic stability of the descriptor system (2.1) can be characterized in
terms of the generalized spectrum of the pencil AE — A. Note that although the eigenvalue
at infinity lies outside the unit circle, it has no effect on the asymptotic stability of system
(2.1). In the following, the pencil AE — A will be called d-stable if A\E — A is regular and all
finite eigenvalues of AE' — A lie inside the unit circle.
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2.4 Impulse and frequency responses

The purpose of this subsection is to generalize the impulse and frequency responses [17, 35]
for discrete-time descriptor systems.

Using (2.4) the transfer function G(z) = C(2E — A)™! B can be expanded into a Laurent
series [18] around z = oo as follows

G(z) = Y GpzF, (2.10)

where Gy = CFy_ 1B and Fy are as in (2.5). The sequence {Gy}rcz defines an impulse
response of the discrete-time descriptor system (2.1). We see that the transfer function G(z)
is just the Z-transform of the impulse response. Observe that Gy = 0 for k¥ < —v, where v is
the index of the pencil A\E' — A. Physically the impulse response of (2.1) can be interpreted
as follows.

Consider the system of difference equations

EXyi1 = AXy + BUy, Y, = CXy, (211)

where X, € R*™, U € R™™ and Y}, € RP™. For an impulsive input Uy, = éo 1, where §;
is the Kronecker delta, system (2.11) has the solution X} = Fy_1B for k € Z. In this case
the output of (2.11) has the form Yy = CFj_1B = Gj. Thus, the elements Gy of the impulse
response of system (2.1) coincide with the output matrices Y}, of the matrix difference system
(2.11) produced by the impulsive input.

Definition 2.5. A transfer function G(z) is said to be proper if zlggo G(z) < oo, and improper,

otherwise. If li)m G(z) = 0, then G(z) is said to be strictly proper.
Z—200

Taking into account (2.10), the transfer function G(z) can be additively decomposed as

oo v—1
G(z) = Ggp(z) + P(z), where Ggp(z) = Zsz*k and P(z) = ZG_kzk are, respectively,
k=1 k=0

the strictly proper part and is the polynor?w'al part of G(z). The transfer function G(z) is
strictly proper if and only if G, = 0 for k < 0. Moreover, G(z) is proper if and only if Gy, =0
for £ < —1. Obviously, if the pencil \E — A is of index at most one, then G(z) is proper.

Remark 2.6. Note that the causal descriptor system (2.1) has the proper transfer function
G(z). However, system (2.1) with proper G(z) is not necessarily causal.

Example 2.7. The descriptor system (2.1) with

100 100 1
E=|00 1]/, A=101 0], B=|0|=0"
000 00 1 1

is non-causal, although the transfer function G(z) = (2 — z)/(z — 1) is proper.

As in the standard state space case [17], the frequency response of the discrete-time de-
scriptor system (2.1) is given by the values of the transfer function on the unit circle G(e*).
It follows from (2.10) that

G(e™) = Y Gre ™, (2.12)

k=—00
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that is, the impulse response {Gy}rez is a sequence of the Fourier coefficients [9, 18] of the
frequency response G(e*’). System (2.1) with an input sequence {e**ug}rcz, where w € R
and ug € R™, has the output

o o
Yk = Z CFk_j_lBei"’juo = Z Gje_i“’j (ei"’kuo) = G(eW) (ei“’kuo) .
j=-00 j=—00
Thus, the frequency response G(e™) gives a transfer relation between the input sequence

up, = e“*ug and the output sequence gy of system (2.1).

It should be noted that the impulse response {Gy }xcz and the frequency response G (™)
are input-output invariants of the discrete-time descriptor system (2.1).

2.5 Controllability and observability Gramians
Consider now the causal controllability matriz and the causal observability matriz given by
C,=[FB,..., ;B ...] and O, =[F;C", ..., F'c”, ...]7, (2.13)

respectively, where the matrices Fj, are as in (2.5). If the pencil AE — A is d-stable, then the
causal controllability Gramian of the descriptor system (2.1) is defined via

o0
Gace = C+CL =) FBB"F] (2.14)
k=0

and the causal observability Gramian of system (2.1) has the form

o
Gaco =070, =Y FIC'CF, (2.15)
k=0

see [3, 29]. The non-causal controllability matriz and the non-causal observability matriz are
given by

C_=[F,B, ..., F,4B] and O_=[FL T, ..., FI,CcTT, (2.16)
respectively. The matrix

-1
gdnc = C—CT = Z FkBBTFkT
k=—v
is called the non-causal controllability Gramian of the discrete-time descriptor system (2.1)
and the matrix

-1
Gano=0T0_= > FICTCF,
k=—v

is called the non-causal observability Gramian of (2.1). In summary, the controllability Gra-
mian of the discrete-time descriptor system (2.1) is defined via G4 = Gace + Gane, and the
observability Gramian of system (2.1) is given by Gy, = Gaco + Ganeo-

If E =1, then G4.c = G4. and Ggeo = G40 are the usual controllability and observability
Gramians for standard state space systems [11, 35].

The following theorem shows that the Gramians of system (2.1) satisfy generalized disc-
rete-time Lyapunov equations with special right-hand sides.
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Theorem 2.8. Consider the discrete-time descriptor system (2.1), where the pencil \E — A
is d-stable.

1. The causal controllability and observability Gramians Gyce and Gyco are the unique sym-
metric, positive semidefinite solutions of the projected generalized discrete-time Lya-

punov equations
AgdccAT - EgdccET = _IDIBBTIDZTa

2.17
gdcc = P’r gdccPr,’-T ( )
and
AngcoA - EngcoE = —PTTCTCPT,
T (2.18)
Gdco = Pl Gaco b
respectively.

2. The non-causal controllability and observability Gramians Gane and Ggno are the unique
symmetric, positive semidefinite solutions of the projected generalized discrete-time Lya-
punov equations

AgdncAT - EgdncET = (I - B)BBT(I - ]Dl)Ta

2.19
PrgdncP;F =0 ( )
and
AngnoA - EngnoE = (I - PT)TCTC(I - Pr)a (2 20)
PnganIDl = 0, ’
respectively.

3. The controllability and observability Gramians Gg. and G4, are the unique symmetric,
positive semidefinite solutions of the projected generalized discrete-time Lyapunov equa-

foms AGa AT — EG4.ET = —PBBTPT + (I - P)BBT(1 - P)T,
Gac = (I~ P)Gac(I — P)T (221
and
ATGyoA — E*G4oE = —~PFCTCP, + (I - B)'CTC(I - By),
Gao = (I — P)TGao(I — P)), (2:22)
respectively.
Proof. See [29, 31]. O

The controllability and observability Gramians can be used to characterize controllability
and observability properties of system (2.1).

Theorem 2.9. [3, 29] Consider the discrete-time descriptor system (2.1). Assume that the
pencil A\E — A is c-stable.

1. System (2.1) is R-controllable if and only if the causal controllability Gramian Ggc. is
positive definite on the subspace Tm P .

2. System (2.1) is I-controllable if the non-causal controllability Gramian Ggne is positive
definite on the subspace Ker P! .
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3. System (2.1) is C-controllable if and only if the controllability Gramian Gg. is positive
definite.

4. System (2.1) is R-observable if and only if the causal observability Gramian Ggeo is
positive definite on the subspace Im Pj.

5. System (2.1) is I-observable if the non-causal observability Gramian Ggn, is positive
definite on the subspace Ker P,.

6. System (2.1) is C-observable if and only if the observability Gramian Gg, is positive
definite.

The following example shows that I-controllability of (2.1) does not imply that Gg,. is
positive definite on Ker PTT and the I-observable system (2.1) may have the non-causal ob-
servability Gramian Gg,. that is not positive definite on Ker P;.

Example 2.10. The descriptor system (2.1) with

100 1/2 0 0 2
E=]00 0]/, A= 0 1 0|, B=|1|=CT
000 0 0 1 0

is I-controllable and I-observable. The improper controllability and observability Gramians
have the form

0 0O
gdnc = 010 = gdnoa
0 00

and Ker P, = Ker PI'. We get v7'Gyncv = v1 Ggnov = 0 for v =[0,0,1]7 € Ker P,.

2.6 Causal and non-causal Hankel singular values

The controllability and observability Gramians of the descriptor system (2.1) are not input-
output invariants. However, we know that for standard state space systems the spectrum
of the product of the controllability and observability Gramians does not change under the
system equivalence transformation [35]. For the discrete-time descriptor system (2.1), we
will show that the spectrum of a matrix ®; = GueeE” GaeoE is an input-output invariant.
Indeed, under a system equivalence transformation (W, T) the causal controllability Gramian
Gace and the causal observability Gramian Gge, are transformed to Ggoe = T'Gaeed” and
Gaco = WTGgeoW , respectively. Then

éd = gdccEngcoE = ngcclngdcoET_1 = Tq)dT_l-
Moreover, we can prove that the matrix ®; has the real and non-negative spectrum.

Lemma 2.11. Let \E — A be d-stable and let ®4 = Ggoe BT GaooE. Then all eigenvalues of
D4 are real and non-negative.

Proof. Tt follows from (2.14) and (2.15) that the matrices Gy, and E7Gg.,E are symmetric
and positive semidefinite. In this case there exists a nonsingular matrix 7" such that

b 0 3 0

22 T_TEngcoET_l =

ngccTT = 0 ’

33 ’
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where X1, 39, 33 are diagonal matrices with positive diagonal elements [35]. Then

sx el T 51 20
TO4T™ =TGiec B GacoET™" = 0 01’
i.e., @, is similar to the diagonal matrix with real non-negative diagonal elements. O

An analogous result holds for the matrix Uy = G AL GanoA.
Lemma 2.12. All eigenvalues of the matriz Uy = Ggne AT GanoA are real and non-negative.

The matrices 5 and ¥, play the same role for descriptor systems as the product of the
controllability and observability Gramians for standard state space systems [11]. Using these
matrices we can define the causal and non-causal Hankel singular values for the descriptor
system (2.1) as follows.

Definition 2.13. Let the pencil AE' — A be d-stable and let n; and n be the dimensions
of the deflating subspaces of A — A corresponding to the finite and infinite eigenvalues,
respectively. The square roots of the n; largest eigenvalues of the matrix ®4, denoted by ¢j,
are called the causal Hankel singular values of the discrete-time descriptor system (2.1). The
square roots of the ny, largest eigenvalues of the matrix ¥4, denoted by 6, are called the
non-causal Hankel singular values of the discrete-time descriptor system (2.1).

The causal and non-causal Hankel singular values together form the set of Hankel singular
values of the discrete-time descriptor system (2.1). Clearly, the causal Hankel singular values
are defined only for asymptotically stable descriptor systems. Since the spectra of ®; and ¥,
do not change under system equivalence transformations, the causal and non-causal Hankel
singular values are input-output invariants of system (2.1). For E = I, the causal Hankel
singular values are the classical Hankel singular values of standard discrete-time state space
systems [11].

Since the causal and non-causal controllability and observability Gramians are symmetric
and positive semidefinite, there exist full fank factorizations

gdcc = RCRZ, gdco = LZLca

2.23
gdnc = RnR;l;a gdno = LgLna ( )

where the matrices R., L., Ry, LL are full column rank factors [16]. The following lemma
gives a connection between the proper and improper Hankel singular values and the standard
singular values of the matrices L .FR,. and L, AR,,.

Lemma 2.14. Let A\E — A be a d-stable pencil. Consider the full rank factorizations (2.23)
of the causal and non-causal Gramians of the descriptor system (2.1). Then the non-zero
causal Hankel singular values are the non-zero singular values of the matriz L .ER,, while

the non-zero non-causal Hankel singular values are the non-zero singular values of the matriz
L,AR,.

Proof. We have
< = Nj(ReR{ E" L] L.E) = X;(RIE" L{L.ER.) = 0}(L.ER,),
07 = Xj (R Ry ATLi Ly A) = \j(RTAT LT Ly ARy) = 07 (LnARy),

where \;(-) and o;(-) denote, respectively, the eigenvalues and singular values of the corres-
ponding matrices. O
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As a consequence of Theorem 2.9 and Lemma 2.14 we obtain the following result.

Corollary 2.15. Consider the discrete-time descriptor system (2.1). Assume that the pencil
AE — A is d-stable.

1. All causal Hankel singular values of (2.1) are non-zero if and only if system (2.1) is
R-controllable and R-observable.

2. All non-causal Hankel singular values of (2.1) are non-zero if and only if

rank [E, B]=n and  rank[ET, CT] =n. (2.24)

3. All causal and non-causal Hankel singular values of (2.1) are non-zero if and only if
system (2.1) is C-controllable and C-observable.

2.7 System norms

In this subsection we generalize convolution and Hankel operators [1, 17] to the discrete-time
descriptor system (2.1). Moreover, we extend some known system norms [2, 35] to (2.1) and
establish their connection with the controllability and observability Gramians G4, and Gg,,
the matrices &, and ¥4, the convolution and Hankel operators as well the Hankel singular
values. System norms are important in robust control and system approximation [1, 2, 11, 35].

2.7.1 15™(T)-norm and hy-norm

Let L™ (T) be the Hilbert space of matrix-valued functions F : T — CP™ that have bounded
2™ (T)-norm
1/2

IFllggm ry = (% /0 % tr(F*(eiw)F(eiw)) dw) . (2.25)

A subspace of L5 (T') which consists of all rational transfer functions that have no poles in
the exterior of the closed unit disk is denoted by hy. The ho-norm of a transfer function
G(z) € hy is defined by

61, = (i [ w(eeae) as) = (L [ iew )

If G(z) is strictly proper and A\E — A is d-stable, then G(z) = C(zE — A)™'B € hy. On
the other hand, if G(z) € hg, then G(z) is strictly proper, but the pencil AE — A is not
necessarily d-stable.

1/2

Example 2.16. Let

1 00 2 0 0
E=|010/|, A=|01/2 0|, B=|1|=CT.
000 0 0 1 0

We have G(z) = 2/(2z — 1) € hy, but the pencil AE — A is not d-stable.
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The transfer function G(z) of the descriptor system (2.1) may be improper. In this case,
if the pencil AE — A has no eigenvalues on the unit circle, then G(z) € IL5™(T).

Consider now the Hilbert space 15" (Z) containing matrix-valued sequences S = {Si }xcz,
Sk € RP™ | that have bounded 15" (Z)-norm

o 1/2 o 1/2
1Sl (zy = ( >t (SkTSlc)> = ( > ||Sk||%“) :

k=—o00 k=—00

By Parseval’s identity [26] we find from (2.12) that

o 1/2
1G e ry = G zy = ( 3 ||Gk||%> , (2.26)

k=—o00
where G = {Gj }kez is the impulse response of the descriptor system (2.1). Moreover, if the
pencil A\E — A is d-stable, then substituting Gy, = CFj_1B in (2.26) we get

o (e o]
> tr(B"F,C"CF,1B) = > tr(CF.1BB"F]_,C")

k=—00 k=—o00

= tr (BTGy,B) = tr (CG4.CT) .

IG5

These relations give a simple numerical algorithm for computing the 12" (T')-norm of G(z)
with the d-stable pencil AEF — A. Note that we do not need to calculate the controllability
or observability Gramian explicitly. It is sufficient to determine the full rank factorization
Gise = RR" or G4, = LTL, where Gy, and Gg, satisfy the projected generalized Lyapunov
equation (2.21) and (2.22), respectively. Then the 12 (T')-norm of G(z) can be computed
as ||Gllpm @y = ILBllr = |CR| r.

In summary, we have the following algorithm to compute the 15" (T')-norm of G(z) using,
for example, the full rank factor of the controllability Gramian Gg.

Algorithm 2.17. Computing the 15™ (T)-norm of the transfer function G(z).

Input: A realization G = [E, A, B, C], where the pencil A\E — A is d-stable.

Output: The 15™(T)-norm of the transfer function G(z) = C(zE — A) !B,

1. Use the generalized Schur-Hammarling method [29] to compute the full rank factor R of
the controllability Gramian Gg. = RRT which satisfies (2.21).

2. Compute | Gllugm r) = | CRllr.

2.7.2 15" (T)-norm and h-norm

Let 15" (T) be the Banach space of matrix-valued functions F : T — CP'™ that are
(essentially) bounded on T. The subspace of 153" (T') denoted by hy, consists of all ratio-
nal transfer functions that are analytic in the exterior of the closed unit disk. The hy-norm
of the transfer function G(z) € hy, is defined by

Gt = sUP Omas (G(e™)) = sup [|G(e™)]2.
w€[0,27] we[0,27]

Clearly, the hy,-norm of G(z) is finite only if G(z) € 15" (T') is proper.
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Consider a convolution operator K4 for the discrete-time descriptor system (2.1) that maps
the inputs uy into the outputs y; defined via

k+v—1

Yk = (chu)k = (G * u)k = Z Gk,juj = Z Gk,juj. (2.27)

j=—o0 j=—o0

Writing the sequences {yx }kez and {ug}rez as the column vectors

Y-1 U—1
Yy = Y0 and u= U ,

Al U1

relation (2.27) can be represented as a linear system y = K4u, where

Gy G1 Go

Ki=|- - Gi Gy G-

Go Gi Go

is the matrix representation of the convolution operator. We see that the operator K; has
block Toeplitz structure and gives an input-output relationship in the time domain. Note
that X4 is input-output invariant.

If the pencil \E' — A is d-stable, then K; is the bounded linear operator that maps 15*(Z)
into 15(Z). The spectral norm of K4 is given by

| K qu| e
1Kall2 = Supi%(z)_
wto |ullipz)

By Parseval’s identity [26] we have

1Kall2 = SUPW _ Sup% = |G|z (g
w20 lulhp@)  wzo ullup @ =" (1)

Thus, the 15" (T')-norm of the transfer function G(z) can be interpreted as a ratio of the
output energy to the input energy of the descriptor system (2.1).

For computing the 15" (T')-norm of G(z) we can use a midpoint rule [13, 21, 27] or a cubic
interpolation method [10] that are based on the fact that ||G|[zm gy < v for some v > 0 if
and only if a matrix pencil

E —4'BBT A 0
AE, — Ay = A 0 _AT ]_[,chTC _gT
has no eigenvalues on the unit circle [27]. These iterative methods have quadratic convergence
and provide lower and upper bounds on the 53" (T')-norm of the transfer function G(z).
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2.7.3 Hilbert-Schmidt-Hankel norm

Let Z~ and Z(‘f denote the sets of negative and non-negative integers, respectively. A causal
Hankel operator H. : 174(Z~) — 15(Z{§) for the discrete-time descriptor system (2.1) with
the d-stable pencil A\E — A is defined via

—1
yr = (Heu)p = Z Gk_j’u,j, k> 0. (2.28)
j=—00
If we set
Yo U-1
yr = | N and u_ = | U-2 [,

then (2.28) can be written as a linear system y, = H.u_, where

G Gy G3
Gy Gy Gy -
He=| Gy Gy G5 --- (2.29)

has block Hankel structure and is the matrix representation of the causal Hankel operator.
The operator H,. maps past inputs (uy = 0 for k£ > 0) to present and future outputs (yx = 0
for k < 0).

A non-causal Hankel operator H,, for the discrete-time descriptor system (2.1) is given by

o0
Y = (?—[nu)k = ZGk,ﬂ_lu]‘, k <0.
Jj=0
For
Y-=1| y o and ur = | oy |
Y- ()

we have a linear system y_ = Hpyu4, where

-t G Gy (2.30)
3 G_a G
5 G

Q.

Go

is the matrix representation of the non-causal Hankel operator. We see that the operator H,
also has block Hankel structure and maps present and future inputs (uy = 0 for £ < 0) to
past outputs (yx = 0 for £ > 0). Clearly, the causal and non-causal Hankel operators are
input-output invariants of system (2.1).

We will now establish a connection between the singular values of the causal Hankel
operator H. and the causal Hankel singular values of (2.1).
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Lemma 2.18. Consider the discrete-time descriptor system (2.1), where the pencil \E — A
is d-stable. Let H. be a causal Hankel operator as in (2.29). Then H. has a finite set of
non-zero singular values o;(H.) that coincide with the non-zero causal Hankel singular values

of (2.1).

Proof. Note that o;(H.) = /Aj(HIH,.), where \j(HI#H,) denote the eigenvalues of HIH..
Consider the matrices C; and O, as in (2.13). Using the Weierstrass canonical form (2.2)
and (2.5), we obtain that F;EF, = F; for j,k > 0. Then O, EC, = H. Hence,
g]? = );j(CLCTETOYOLE) = UJZ.(O+EC+) = O'JZ-(HC). O

An analogous result holds for the singular values of the non-causal Hankel operator #,,
and the non-causal Hankel singular values of system (2.1).

Lemma 2.19. Consider the descriptor system (2.1). Let H,, be a non-causal Hankel operator
as in (2.30). Then Hy, has a finite set of non-zero singular values oj(Hy,) that are the non-zero
non-causal Hankel singular values of (2.1).

It immediately follows from Corollary 2.15 and Lemmas 2.18, 2.19 that rank(#.) < ny
and rank(H,) < n, where ny and ny are the dimensions of the deflating subspaces of the
pencil AE — A corresponding to the finite and infinite eigenvalues, respectively. We have
rank(#.) = ny if and only if system (2.1) is R-controllable and R-observable. Furthermore,
rank(H,) = n if and only if relations (2.24) hold.

Let the causal and non-causal Hankel singular values of system (2.1) be ordered decrea-
singly, that is, ¢t > ... > ¢4, and 61 > ... > 6, . The Frobenius and spectral norms of the
causal and non-causal Hankel operators are computed as

“HCHF = \/§12+"'+g727,fa ”HTLHF = \/ 9%++072100’

“HCH? = S1, ||Hn||2 = 0,.

A Hilbert-Schmidt-Hankel norm or HSH-norm of the transfer function G(z) is defined via

ng Noo
IGlmsm = \/tr (HTHe + HIHn) = [ Hellp+ [Halle = | S s2+ Y62
j=1 j=1

Using (2.29) and (2.30) we obtain

hE

Z tr (G{Gk + sz+1G—k+1)
=1k

E(1GklF + 1G-k11l1F) -

o
GGy =

<
Il
<

(2.31)

I
NE

=
Il

1

Furthermore, from Lemmas 2.18 and 2.19 it follows that the squared non-zero singular va-
lues of the causal and non-causal Hankel operators H. and H, coincide with the non-zero
eigenvalues of the matrices ®; and ¥, respectively. In this case we get

Noo

ny
IGIsm = D> Ai(®a) + > Aj(®a) = tr(Dg + Ty). (2.32)
Jj=1 Jj=1
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2.7.4 Hankel norm

Assume that the pencil A\E — A is d-stable. The Hankel norm of the transfer function G(z)
is defined via
1Gllz = max([|Hellz, [Hnll2) = max(s1, 01). (2.33)

From the definition of the causal and non-causal Hankel singular values we find that

IGllg = v/ Amax(®a + Tyg)-

To compute the HSH-norm and the Hankel norm of the transfer function G(z) we need
the Hankel singular values. Using the generalized Schur-Hammarling method [29] we can
solve the projected generalized Lyapunov equations (2.17) — (2.20) for the full rank factors
R., L., R, and L, as in (2.23). By Lemma 2.14 the non-zero causal and non-causal Hankel
singular values of (2.1) are the non-zero singular values of the matrices L.ER, and L, AR,
respectively, and, hence,

LRI =G+, |TnARW% =6+ + 62,
|LcERc||2 = s1, |LnARpy||2 = 61.

Then ”GH%ISH = HLCERCH%‘ + HLnARnH%‘ and ||G||g = max(||L.ER.||2, ||LnARy||2). Thus,
we have the following algorithm for computing the HSH-norm and the Hankel norm of the
transfer function G(z).

Algorithm 2.20. Computing the HSH-norm or the Hankel norm of G(z).

Input: A realization G = [E, A, B, C|, where the pencil \E — A is d-stable.

Output: The HSH-norm or the Hankel norm of G(2)=C(zE — A)~'B.

1. Use the generalized Schur-Hammarling method [29] to compute the full rank factors R,
and L. of the causal Gramians Gyee = R.RL and Gy, = LI L. that satisfy equations (2.17)
and (2.18), respectively.

2. Use the generalized Schur-Hammarling method [29] to compute the full rank factors R,
and L, of the non-causal Gramians Ggpe = RRRZ and Ggpo = LZ;LH that satisfy equations
(2.19) and (2.20), respectively.

3. Compute |G|lgsg = \/||LCERC||% + ||LnARn||% or ||Gllg = max(||L.ERc||2, | LnARy]2).

We summarize the considered norms for the asymptotically stable discrete-time descriptor
system (2.1) in Table 1.

In the remainder of this section we establish a connection among different system norms.
It follows from (2.26) and (2.31) that

|Gz @) < 1Gllasa-
Furthermore, from (2.32) and (2.33) we have
1Gllz < IGllasa < V|Gl

Taking into account the matrix representations of the convolution operator and the causal
and non-causal Hankel operators, we get

1Gllr < Gz @) < [1Gspline + [Pz
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G(z)=C(zE-A)~'B
zE — A is d-stable ||G||]L§’m(][‘) ||G||L1;;,’“(1r)
iw 1 i iwy||2 i iw
G(e™) o | IG(E™)lFdw sup [|G(e*)2
™ w€eR
o0 3
G < > ||le|%>
k=—oc0
Gic = RRT /tr(CGa.CT) = ||CR||F
Gio =L"L tr(BTGqaoB) = || LB||r
Ka IKall2
G(z)=C(zE-A)'B
zE — A is d-stable IGllzsz Gl
G (Z k(G + IIG—k+1II%))
k=1
Hes Ha VI + [Hall7 max(||Hellz, [[Hnll2)
Gace = Rl Gaeo = Lele | /T BRI +TEAARE | max(ILeE Rl | LaAR 1)
gdnc = RnRZa gdno = Lan ¢ ciE " e ¢ e " "
(I)da \I;d tr(@d + ‘Pd) )\maz‘ (@d + ‘Pd)
> ... > .
;112227; \/gf+...+g3f+0f+...+0,%w max(s1, 61)
Table 1: Generalized norms for asymptotically stable discrete-time descriptor systems.
where Ggp(z) and P(z) are the strictly proper and polynomial parts of G(z). As in the

standard state space case [11], we have an estimate ||Gsplln,, < 2(s1 + ...+ Gny)-
Consider now a transfer function Go(z) = —1P(1) that is strictly proper and has only
zero poles. Clearly, Go(z) and P(z) have the same Hankel singular values that are just the

improper Hankel singular values 6; of system (2.1). In this case we have

sup [[P(e®)llz = sup [e”™P(e™™)]
w€[0,27] w€[0,27]
= [|Gollhy <201+ ...+6n).

[Pz @y =

Hence, |G|z @y < 2(s1+- ..+, +01+...+0n,) < 2n|G||g. Thus, the 5" (T)-norm, the
HSH-norm and the Hankel norm of the asymptotically stable discrete-time descriptor system
(2.1) are equivalent.
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3 Continuous-time descriptor systems

In this section we consider the continuous-time descriptor system

Ei(t) = Az(t)+ Bu(t), z(0) =z,
y(t) = Cz(1).

Although there are differences between the continuous-time and discrete-time descriptor sys-
tems, some linear system concepts are similar. Therefore, to avoid repetition, results for
system (3.1) are only listed without proof unless necessary.

It is well known [6, 8] that system (3.1) has a unique continuously differentiable solution
z(t) if the pencil AE — A is regular, the input u(¢) is v times continuously differentiable and
the initial value 20 is consistent, that is, it satisfies

(3.1)

v—1

(I - P)a® =" F_4_1Bu®(0),
k=0

where the matrices Fj, are as in (2.5). This solution is given by

t v—1
z(t) = F(t)Ex® + / F(t—7)Bu(r)dr + Y F_y 1BuP(t), t>0,
0 k=0

where the matrix function F(t) is the fundamental solution matriz of (3.1) defined by

e’ 0

Ft)=T" [ 0 0

] w, (3.2)
see [8, 29] for details.

If the initial condition z° is inconsistent or the input u(¢) is not sufficiently smooth (for
example, in most control problems u(t) is only piecewise continuous), then the solution of
system (3.1) may have impulsive modes [6, 8]. Such a solution exists in the distributional
sense and has the form

0

z(t) = F(t)Ex® + /t F(t —7)Bu(r)dr
0

v—1 v—1 (33)
+ > EVWF B2’ + > F 1 BuP(t),
k=1 k=0

where §(t) denote the Dirac delta function, §*)(t) and u(*)(t) are distributional derivatives
8, 9]. Tt follows from (3.3) that if 2° € Ker E and F_;_1B = 0 for k > 0, then system (3.1)
has no impulsive solutions for every piecewise continuous input u(t). Moreover, impulsive
solutions in (3.1) do not arise if the pencil AE — A is of index at most one.

Similarly to the standard state space case [15], we define a state transition matrix of the
descriptor system (3.1) as follows.

Definition 3.1. A matrix-valued function 7 (¢,7) defined for all ¢, 7 € R is called a state
transition matriz of the continuous-time descriptor system (3.1) if it satisfies the matrix
differential equation

E%T(tﬂ') = AT (t,7), T(r,7) = P,

where P, is the spectral projection as in (2.3).
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Using the Weierstrass canonical form (2.2) and representation (3.2), we can show that
there exists a unique state transition matrix 7 (¢,7) given by

T(t,7) = F(t—1)E. (3.4)

In this case a general solution of the homogeneous system Ei(t) = Az(t) has the form
z(t) = T (t,7)z(7).

It immediately follows from (2.2), (3.2) and (3.4) that the state transition matrix 7 (¢,7)
satisfies the semigroup property 7 (¢,t9) = T (¢t,7)T (1,t9) for t > 7 > tg. Note that if the
matrix F is singular, then the state transition matrix 7 (¢,7) is also singular and the zero
eigenvalue of T (¢,7) is simple for all ¢ and 7. In this case there exists a group pseudoinverse
T#(t,7) of T(t,T), see [7]. It is unique [7] and can be computed as T#(t,7) = T(r,t).

3.1 The transfer function

Consider the Laplace transform of a function f(t), ¢t € R, given by

£(s) = S[f ()] = /0 T et dr, (3.5)

where s is a complex variable called frequency in the continuous-time case. A discussion of the
convergence region of the integral (3.5) in the complex plane and properties of the Laplace
transform may be found in [9, 18]. If we apply the Laplace transform to (3.1), then we obtain
that

y(s) = C(sE — A)"'Bu(s) + C(sE — A)"'Ez(0), (3.6)

where u(s) and y(s) are the Laplace transforms of u(t) and y(t), respectively. The rational
matrix-valued function G(s) = C(sE—A)~!B is called the transfer function of the continuous-
time descriptor system (3.1). Equation (3.6) shows that if Fz(0) =0, then G(s) gives the
relation between the Laplace transforms of the input u(¢) and the output y(¢). In other words,
G (s) describes the input-output behaviour of system (3.1) in the frequency domain.

3.2 Stability

In this subsection we collect some results on the asymptotic stability for the continuous-time
descriptor system (3.1).

Definition 3.2. The continuous-time descriptor system (3.1) is called asymptotically stable
if tlim z(t) = 0 for all solutions z(t) of the homogeneous system Fi(t) = Az(t).
—00

The following theorem gives equivalent conditions for system (3.1) to be asymptotically
stable.

Theorem 3.3. [8, 31] Consider the continuous-time descriptor system (3.1) with a regular
pencil \EE — A. The following statements are equivalent.

1. System (3.1) is asymptotically stable.

2. All finite eigenvalues of the pencil AE — A lie in the open left half-plane.
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3. The projected generalized continuous-time Lyapunov equation
ETXA+ ATXE = -PTQP,, X =XP, (3.7)

has a unique Hermitian, positive semidefinite solution X for every Hermitian, positive
definite matriz Q.

4. For all matrices C such that the triplet (E, A, C) is R-observable, the projected genera-
lized continuous-time Lyapunov equation (3.7) with Q@ = CTC has a unique solution X
which is Hermitian and positive definite on the subspace Im P;.

In the sequel, the pencil A\E — A will be called c-stable if A\E — A is regular and all finite
eigenvalues of A\F — A have negative real part.

3.3 Impulse and frequency responses
An impulse response of the continuous-time descriptor system (3.1) is defined via

v—1
G(t) == £7'[G(s)] = CF(t)Bho(t) + > _ CF__1B5") (), (3.8)
k=0

where
1 for ¢ >0,

o(t) ::{ 0 for t<0

is the Heaviside function. We will show that the impulse response G(t) is the output matrix
Y (t) of the matrix system

EX(t) = AX(t)+BU(t), EX(0)=0,

Y1) = CX(t) (39)

with the distribution matrix input U(t) = 6(¢) . Indeed, the solution of (3.9) has the form

v—1

t
X(t) = / Ft—n)Bi(r)dr + 3 F 1 BSP@),  t>0,
0 k=0
and, hence,
v—1
Y(t) = CF(t)Bho(t) + Y  CF_;_1BiM(t) = G(t),  t>0.
k=0

A frequency response of the continuous-time descriptor system (3.1) is given by G (iw),
i.e., the values of the transfer function on the imaginary axis. From (3.5) and (3.8) we obtain
that

w .
Gliw) = £[G(t)] = / G (#) dt.
—0oQ
Therefore, the frequency response G(iw) is just the Fourier transform [9] of the impulse
response G(t).
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If we take an input function u(t) = ¢**uy with w € R and ug € R™, then we get
o0 , o , .
y(t) = / Gt —1)e"“ugdr = (/ GWTG(T)dT) (e"*’tuo) = G(iw) (e“"tuo) .
—00 —o0

Thus, the frequency response gives a transfer relation from the input u(t) = e*“'ug into the
output y(t).

Note that the impulse response G(t) and the frequency response G(iw) are input-output
invariants of system (3.1). If E = I, then G(t) and G(iw) are the classical impulse and
frequency responses for standard continuous-time state space systems [1, 17].

3.4 Controllability and observability Gramians

Assume that the pencil A\E — A is c-stable. Then the proper controllability Gramian of the
continuous-time descriptor system (3.1) is defined via

o0
Gepe = / F)BBTFT(t)dt
0
and the proper observability Gramian G.p, of (3.1) is given by
o
gcpo = / FT(t)CTC]:(t) dt,
0

where F(t) is the fundamental solution matrix of (3.1), see [3, 29]. The matrix

-1
Geic = »_, FxBB"F}

k=—v

is the improper controllability Gramian of system (3.1) and the matrix

-1
Geio= Y, Ff CTCF
k=—v
is the improper observability Gramian of (3.1). Note that the improper controllability and
observability Gramians can be also written as G.;. = C_CL and G, = OTO_, where C_
and O_ are as in (2.16). In summary, the controllability Gramian of the continuous-time
descriptor system (3.1) is defined by G.. = Gepe + Geic and the observability Gramian of the
continuous-time descriptor system (3.1) is defined by Gco = Gepo + Geio-

Theorem 3.4. Consider the continuous-time descriptor system (3.1), where the pencil \E—A
is c-stable.

1. The proper controllability and observability Gramians of (3.1) are the unique symmetric,
positive semidefinite solutions of the projected generalized continuous-time Lyapunov

equations
EGepe A" + AGepe E" = ~PBB' Y, (3.10)
gcpc = P'rgcpc .
and
ETgcpoA + ATgcpoE = _P,,’.TCTCPT, (3 11)

gcpo = gcpoljla

respectively.
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2. The improper controllability and observability Gramians of (3.1) are the unique symmet-
ric, positive semidefinite solutions of the projected gemeralized discrete-time Lyapunov

equations
AgcicAT - EgcicET = (I - PZ)BBT(I - Pl)Ta
T (3.12)
PrgcicPr =0
and
ATgcioA - ETgcioE = (I - Pr)TCTC(I - Pr);
T (3.13)
F)l GeioP) = 0,
respectively.
Proof. See [29, 31] for details. O

Unfortunately, it is not clear whether the controllability and observability Gramians G,
and G, can be expressed as solutions of equations of Lyapunov type.
As in the discrete-time case, one can show that the matrices

o, = gcchTgcpoE and U, = gcicATgcioA
are diagonalizable and have non-negative eigenvalues, see also [29].

Definition 3.5. Let the pencil A\F — A be c-stable and let ny and n be the dimensions
of the deflating subspaces of A — A corresponding to the finite and infinite eigenvalues,
respectively. The square roots of the n; largest eigenvalues of the matrix ®., denoted by ¢j,
are called the proper Hankel singular values of the c-stable continuous-time descriptor system
(3.1). The square roots of the ny, largest eigenvalues of the matrix ¥,, denoted by 6;, are
called the improper Hankel singular values of system (3.1).

The proper and improper Hankel singular values are input-output invariants of sys-
tem (3.1). For E = I, the proper Hankel singular values are the classical Hankel singular
values of standard continuous-time state space systems [11].

The continuous-time counterparts to Lemma 2.14 and Corollary 2.15 can also be stated
for system (3.1).

Lemma 3.6. Consider the continuous-time descriptor system (3.1), where the pencil \E — A
s c-stable. Let
gcpc = RpRg 5 gcpu = L;J;Lpa
gcic = RZR;Ta gcio = L’ZI‘Lz
be full rank factorizations of the proper and improper controllability and obsevability Gramians
of (3.1). Then the non-zero proper and improper Hankel singular values of (3.1) are the non-
zero singular values of the matrices L,ER, and L;AR;, respectively.

(3.14)

Corollary 3.7. Consider the continuous-time descriptor system (3.1), where the pencil \E—A
s c-stable.

1. All proper Hankel singular values of (3.1) are non-zero if and only if the triplet (E, A, B)
is R-controllable and the triplet (E, A, C) is R-observable.

2. All improper Hankel singular values of (3.1) are non-zero if and only if relations (2.24)
hold.

3. All proper and imprioper Hankel singular values of (3.1) are non-zero if and only if the
triplet (E, A, B) is C-controllable and the triplet (E, A,C) is C-observable.
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3.5 System norms

In this subsection we present convolution and Hankel operators for the continuous-time de-
scriptor system (3.1). Moreover, we introduce system norms for (3.1) and establish their
connection with the frequency response G(t), the controllability and observability Gramians,
the matrices ®. and V., the convolution and Hankel operators as well as the Hankel singular
values of (3.1).

3.5.1 L[D™(iR)-norm, Hy-norm and HL;-norm

Let I2™ (iR) be the Hilbert space of matrix-valued functions F : iR — C”™ that have
bounded L™ (iR)-norm

1 [ » ' 1/2
1F Lz iry = (% /oo tr(F (lw)F(zw)) dw) .

By definition, the subspace Hy of 15™ (iR) consists of all strictly proper rational transfer
functions that are analytic in the closed right half-plane. The Hy-norm of a transfer finction
G(s) € Hy is defined by

161 = (5 [ a6 wG(w) dw)m ~ (5 [ 1t iav) "

If the pencil A\E — A is c-stable and the transfer function G(s) of (3.1) is strictly proper, then
G(s) € Hy. However, the condition G(s) € Hy does not imply that AE' — A is c-stable.

Example 3.8. Let
0

100 1 00
E=|010|, A=]|0 -10]|, B=|1]|, <C=]11,0].
000 0 01 1

Then G(s) = C(sE — A)™'B = (s + 1)~! € Hy, but the pencil A\E — A is not c-stable.

It should be noted that the improper transfer function G(s) does not belong to the space
5™ (iR) even if the pencil \E — A is c-stable.
Consider an additive decomposition of the transfer function G(s) = Gg,(s) +P(s), where

00 0
G;p(s) = ZMks*k and P(s) = Z Mysk (3.15)
k=1 k=—v+1

are, respectively, the strictly proper part and the polynomial part of G(s), and My = CFy,_1B
are the coefficients of the Laurent expansion at infinity for G(s). The matrices My are called
the Markov parameters of the descriptor system (3.1). We denote by HILy the space of transfer
functions G(s) such that Ggp(s) € Hy. The HlLg-norm of the transfer function G(s) € HlL,
is defined via

IG s = /G, + IPIZym g,

where || - [[pz.m py is as in (2.25).
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Let I denote either R = (—o0,00), R~ = (—00,0) or Rf = [0,00). Consider the Hilbert
space 12 (I) of matrix-valued functions F' : T — RP"™ that have bounded 15" (I)-norm

Pl = ( [u(#@F©) o) " ([1rwis a) "

Note that the space L™ (Ry ) is isomorphic to Hy under the Fourier transform [35]. Setting
Gsp(t) = £7Ggp(s)] = CF(t)Bhy(t), we have from Parseval’s identity [26] that

0 1/2
||G5p||IHI2 = ||G8p||]Lp’m(]R+) = ||G5p(t)||%'dt .
2 0 0

14
Furthermore, taking into account the fact that ||P||12L]27,m(]r) = Z |M_ji1]|%, we get
k=1

00 1%
IG |2, = /0 1Gap @I dt+ 3 Mg |
k=1

The following relations can be used to compute the HlLo-norm of the transfer function
G(s) = C(sE — A) "' B with the c-stable pencil \E — A. We have

G2, = /0 T (B™F7 ()0 OF(1)B) dt = /0 h w(CFWBBTFT()CT) dt
= tr (BYGpoB) = tr (CGepcCT) -

=tr (BTgcioB) =tr (CQCiCCT) and,

As in the discrete-time case, we obtain that ||P||ip,m(m
2

hence,

IG|3, = tr (BTGeoB) = tr (CG..CT) = ||LB||3 = ||CR||%,
where R and L are the full rank factors of the controllability and observability Gramians
Gee = RRT and G, = LT L. These factors can be computed from the QR-factorizations

RT RT L, L
5)-alf] = [2]-al2]
where Qg and @ are orthogonal, R” and L have full row rank [12], and R,, R;, L, and L;
are the full rank factors as in (3.14).

Thus, we have the following algorithm for computing the HlLs-norm of G(s) using, for
example, the proper and improper observability Gramians.

Algorithm 3.9. Computing the HlLy-norm of the transfer function G(s).

Input: A realization G = [E, A, B, C|, where the pencil \E — A is c-stable.

Output: The HlLy-norm of the transfer function G(s) = C(sE — A)™'B.

1. Use the generalized Schur-Hammarling method [29, 30] to compute the full rank factors
L, and L; of the proper and improper observability Gramians Gepo = LpTLp and Geio = LZTL,-
that satisfy the projected generalized Lyapunov equations (3.11) and (3.13), respectively.

2. Compute the QR-factorization [ %’ ] = QL [ f)/ ]
(]
3. Compute ||G|lmL, = ||LB||F-



INPUT-OUTPUT INVARIANTS FOR DESCRIPTOR SYSTEMS 25

3.5.2 I1&"(iR)-norm, H,-norm and HL.,-norm

Let 12" (iR) be the Banach space of matrix-valued functions F' : iR — CP™ that are
(essentially) bounded on iR. The subspace of I2)" (iR) denoted by Hy, comsists of all proper
rational transfer functions that are analytic and bounded in the closed right half-plane. The
Hoo-norm of G(s) € Hy is defined via

||Gu||]L’2’(z‘R) . .
|Gl = sup ————— = sup Tmax(G(iw)) = sup |G (iw)||2.
u#0 ||u||Lgn(zR) weR w€eR

We denote by HL, the space of all rational transfer functions G(s) with the proper
part Gp(s) = Ggp(s) + My € Hy. Let LI (iR) be the space of all vector-valued functions
f:iR — C™ that have bounded L7}, ({R)-norm

L oo [ 1/2
||f||1ngl(z'R):<g / ( |w|2k> ||f<z'w)||2dw> .
~ \k=0

The HLy-norm of the transfer function G(s) € HL, is defined via
Gul|;2;
Gl = sup | T A
u#0 ||11||L57,,_1(1‘R)
The following lemma gives an upper bound on the HlL,-norm of G(s).

Lemma 3.10. Consider the transfer function G(s) = Gsp(s) +P(s), where Gyp(s) and P(s)
are as in (3.15). Assume that Gp(s) = Ggp(s) + My € Hy, then

v—1 1/2
|G, < (IIGpII%LX, +ZIIM—kII§) - (3.16)
k=1

Proof. For any u € L, _, (iR), we have

o0
1 . . N :
IGllf.. = 5 | (Gspliw) + Mo + M_qiw + ... + My41(iw)” ) u(iw)|*dw
—00
1 oo v—1 v—1
< 2 / <||Gsp(iw) + Mol3+) ||Mk||§) D u(iw)|*dw
e k=1 k=0
v—1
2 2 2
< <||Gp||Hw Y ||M_k||2> luliZg, ey
k=1
Thus, estimate (3.16) hols. O

Note that if the transfer function G(s) = Gy(s) is proper, then we have the equality in
(3.16).

For the continuous-time descriptor system (3.1), we consider a convolution operator K.
that maps the input u(t) into the output y(¢) and is defined by

y(t) = (Keu)(t) = (G xu)(t) := /:: G(t — 1)u(r) dr. (3.17)
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The convolution operator K. describes the input-output behavior of the descriptor system
(3.1) in the time domain. Substituting (3.8) in (3.17) and taking into account that

/oo St — ryu(r)dr = u®(t),  k=0,1,...,
—00
where u(¥)(t) are the distributional derivatives, we find that
(Keu)(t) = /t CF(t — 7)Bu(r)dr + UZ_l CF_;_Bu®(t).
e k=0
Let Ly, (R) be the Sobolev space consisting of vector-valued functions f : R — R™ such that
f®)(t) € LB (R) for k=0,1,...,l. The L7 (R)-norm is defined via

. 1/2
£l ) = (Z ||f<k>||ig@<m> -
k=0

If the pencil AE — A is c-stable, then K. is the bounded operator mapping Hgfy_l(R) into
L2(R). In this case the spectral norm of the convolution operator K. is given by

||’Cc||2 = sup M.
u#0 ||u||]Lng_1(]R)

Using the Fourier transform [18] the time domain relation y(t) = (K.u)(t) is expressed in the
frequency domain via y(iw) = G(iw)u(iw). Since the Fourier transform gives an isometric
isomorphism between the Sobolev space L3, ; (R) and the space L3, _; (iR), we obtain by
Parseval’s identity [26] that

Gx*xu Gu .
1Kol = sup | Iz |GullLz ir)

ST TR—— = ||G|AL -
w0 [ullip, (®)  wzo llullip, | w) >

The H,-norm of the proper transfer function G(s) can be computed by using the midpoint
rule [4] or the cubic interpolation method [10] that are based on the fact that |G|jm,, < <y for
some v > 0 if and only if a matrix pencil

E 0 1] A v 'BBT
0o ET -y 'cTCc AT
has no eigenvalues on the imaginary axis. These quadraticaly convergent iterative methods
provide lower and upper bounds on the Hy,-norm of proper G(s), see [4, 10] for details.

Computing the HL,-norm of the improper transfer function G(s) is still an open problem.

)\EW—AW:)\[

3.5.3 Hilbert-Schmidt-Hankel norm

Assume that the pencil AF — A is c-stable. The Hilbert-Schmidt-Hankel norm or HSH-norm
of the transfer function G(s) is given by

/ tr(GZ;,(t—FT)Gsp(t—i-T))dth—i—ZZtr(MT]-_kM,j,k)

2 0 §=0 k=0

7 o0 % oo 12

0

1Gap(t+ )T dtdr + D D IM_illf |
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where G, (t) = CF(t)Bho(t) and M_; = CF_;_1B. Note that

oo o0 v—1lv—-1
S UM k=DM kHF—ZkHM kr1ll%-
=0 k=0 =0 k=j

Furthermore, taking into account that F (¢t + 7) = F(t)EF (1), we have

[celye el

[ [ 16t + Dl dtdr = t(Gepe BTG ) = tr(a0).

0 0

Using the Weierstrass canonical form (2.2) and representations (2.5), we get
Fjy1=-F j 1AF 41, 4 k>0. (3.18)
In this case we have
o0 o
Z Z ”M—j—kH%‘ =1tr (gcicATgcioA) = tr(‘IJC)'
j=0 k=0

Hence,

G|l sa = V(@ + T,) = \/gg o2 O 02 (3.19)

where ¢; and 6; are the proper and improper Hankel singular values of (3.1).

For the continuous-time descriptor system (3.1), we define a proper Hankel operator H,
transforming the past inputs u_(t) (u—(¢) = 0 for ¢ > 0) into the present and future outputs
y+(t) (y4(t) = 0 for t < 0) through the state 2(0) € Im P, via

0
ve(8) = (Hyu_)(t) = /_ Gylt=rhu(n)dr, 20 (3.20)

If the pencil AE — A is c-stable, then H,, acts from LJ*(R ") into L5 (R]).
The following lemma gives a connection between the proper Hankel singular values and
the singular values of the proper Hankel operator.

Lemma 3.11. Consider the descriptor system (3.1), where the pencil AE — A is c-stable.
The non-zero proper Hankel singular values s; of (3.1) are the non-zero singular values of the
proper Hankel operator H,.

Proof. Compute the adjoint operator H; of the proper Hankel operator H, that satisfies
<%Pu’y>L’2’(R3') = (u, Hpy)Ly (r-) for any u(t) € L3*(R™) and y(t) € L5 (Rf ). We have

(Hp, )13y = / / ()BT FT(t — 7)CTy(t) dr dt

= / / BT]:T T)CTy(t) dtdr = (u, H;y)llén(ﬂgf),

where

(Hpy)(1) = /0 ” BTFT(t — 1)CTy(t) dt.
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Let o # 0 be a singular value of H,, and let u(t) € L7 (R™) be a non-zero right singular vector
corresponding to . Then

o?u(t) = HT?-[pu )(2)
= / / BT FT(r —t)CTCF(r — €)Bu(€) dé dr (3.21)
= / / BT FY(—t)ET FT (1) CT CF(7)EF (—€)Bu(€) dé dr.

It follows from (3.21) that
0

v= [ F(-&)Bu(¢)dt #0.

—oQ

Multiplying (3.21) from the left by F(—¢)B and integrating on R~ gives

0 [e'e)

o’ = / F(—t)BBTF'(—t)E* F1' (1)CT CF(7)Ev dr dt
—o0 J0
- o o (3.22)
= ( /0 ]—"(t)BBT]-"T(t)dt> ET ( /0 fT(T)CTC]:(T)dT> Ev

= gcchTgcpoE'U = Q.v,

i.e., v is an eigenvector of the matrix ®, corresponding to the eigenvalue o2.

On the other hand, consider an eigenvalue 0 # 0 and a corresponding eigenvector v # 0
of the matrix ®.. Then (3.22) holds. Set

u(r) = /0 ” BTFT(¢ — 1) CTCF(¢)Evd¢, T <0.

Clearly, u # 0 and u(7) € LJ*(R™). If we multiply (3.22) from the left by the matrix

/ T BUFT (¢ - 1) 0T OF(€) B,
0

then we obtain that
00 0
- / / BYF (¢ — 1)CTCF(€ — t)Bult) dt de = (HHpu)(7).
0 —00

Since the proper Hankel operator of the asymptotically stable system (3.1) is the Hilbert-
Schmidt operator [34], it is compact. In this case H, has a discrete set of non-zero singular
values and they coincide with the square roots of non-zero eigenvalues of the matrix ®. that
are, in fact, the non-zero proper Hankel singular values. O

The Frobenius norm and the spectral norm of the proper Hankel operator #, are given
by [|Hpllr = /? + ...+ 2 ; and |Hpll2 = <1, respectively, where the proper Hankel singular

values ¢; are ordered decreasingly.
The proper Hankel operator is closely related to a proper Hankel matrix given by

M, My M;j

My Mz M,
HP: M3 M4 M5
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Consider the Taylor series expansion of G, (t) at t = 0T given by

Z CFkB Z M,c+1 - (3.23)
If we substitute (3.23) in (3.20), then we obtain
(t—1)
=3 s [ S v = Maditulo, ¢>o0,
oo : k=0
where
[
-7
Sl 1) = / D (r)ir
t Tk+1 T2
= / / / (r1)dry ... drgdTi1, k=0,1,..
—00 —O0 —0o0

The j-th derivative of y(¢) is computed as

=) My Jelu-]()

k=0
and, hence,

y+(t) My, M; Ms - Jo[u-](t)

(1) My My My - | | Biu )

Z’i(t) = Mz Mz Mi J;[u_](t) = HpT[u ](?).

For some 7 > 0 there exists an interval (a,b) C [0, co) such that 7 € (a,b) and for all ¢ € (a,b)
we have

= > W) T e H o),
j=0

where T(t,7) =[1, t— 7, (t—7)?/(2!), ...] ® I, and ® denotes the Kronecker product.

Remark 3.12. It should be noted that the proper Hankel singular values of the continuous-
time descriptor system (3.1) are not equal to the singular values of the proper Hankel matrix
H,. However, as the following lemma shows, the non-zero improper Hankel singular values
coincide with the classical non-zero singular values of the improper Hankel matrix

Ho— | M. My M,
=
M3 Mo M,
M_, M_, M,

associated with system (3.1).
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Lemma 3.13. The non-zero improper Hankel singular values of the continuous-time descrip-
tor system (3.1) are the non-zero singular values of the improper Hankel matriz H;.

Proof. Consider the improper controllability and observability matrices C_ and O_ as in
(2.16). Using (3.18) we obtain that O_AC_ = —H;. Then by the definition of the improper
Hankel singular values we have 65 = X;(C_CTATOZO _A) = 03(-0_AC_ ) =o7(H;). O

As a consequence of Lemmas 3.6, 3.11 and 3.13 we obtain from (3.19) that
IGIFsm = [Hpll7 + I1H:l[7 = || Ly ERy|[7 + || Li AR |7,
where Ry, Ly, R; and L; are as in (3.14).

3.5.4 Hankel norm

Let the pencil AE' — A be c-stable. The Hankel norm of the transfer function G(s) is defined
by |G|z = max(||Hpll2, |Hill2) = max(s1,6:1), where ¢; and 6; are the largest proper and
improper Hankel singular values of the descriptor system (3.1). From the definition of the
Hankel singular values and Lemma 3.6 we find that

Gl = v/ Amax(®c + ¥¢) = maX(HLPERpH?a | L; AR;||2)-

To compute the the HSH-norm and the Hankel norm of the transfer function G(s) we can
use the following algorithm.

Algorithm 3.14. Computing the HSH-norm or the Hankel norm of G(s).

Input: A realization G = [E, A, B, C|, where the pencil \E — A is c-stable.

Output: The HSH-norm or the Hankel norm of G(s)=C(sE — A)™'B.

1. Use the generalized Schur-Hammarling method [29, 30] to compute the full rank factors R,
and Ly, of the proper controllability and observability Gramians Gepe = RpRg and Gepo = LZLP
that satisfy the projected generalized continuous-time Lyapunov equations (3.10) and (3.11),
respectively.

2. Use the generalized Schur-Hammarling method [29] to compute the full rank factors
R; and L; of the improper controllability and observability Gramians Gee = RiRZT and
Geio = LZTLZ' that satisfy the projected generalized discrete-time Lyapunov equations (3.12)
and (3.13), respectively.

3. Compute |G|lgsy = \/||LpERp||% + ||LZ~ARZ~||% or |G|z = max(|| L, ERy||2, || LiAR;||2).

We summarize system norms for the asymptotically stable continuous-time descriptor
system (3.1) in Table 2.

4 Conclusion

In this paper we have discussed input-output invariants for linear continuous-time and discre-
te-time descriptor systems. We have generalized for both systems the impulse and frequency
responses, convolution and Hankel operators as well Hankel singular values. The latter are
useful in balanced truncation model reduction.

Various norms for descriptor systems have been introduced and their different representa-
tions in time domain and frequency domain have been given. System norms play an important
role in control design and system approximation. We have also discussed the computation of
norms for descriptor systems.
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G(s)=C(sE-A)~'B

sE — A is c-stable ”G”HJLz ||G||HL<>°
17 17 % IGul|
. . . . iw ULz (iR
G (i) = Gip12) + (i) || 5 [Gup(i) ot 5 [P () [ o A
271 2770 u#0 ”u“]Lg,‘u_l(zR)
Golt), My ( / 1Gap(®) 3t + 3 ||M_k+1||%)
0 k=1
G.c. = RRT tr(CGepcCT) = ||CR|| 7
Geo = LTL tr(BTGepoB) = ||LB|| ¢
K. el
G(s)=C(sE-A)~'B
sE — A is c-stable IGllzsa |G|z

[N

Golt), My (/ /||Gsp<t+7)||%dtdr+2k||M_k+l||%)
0

0 k=1
W B VI TET (o[ EL 1)
P S LEREFEART | max(LRy o | LR )
o, . tr(®. + U.) Amax(®c + ¥e)
;lliigen;c \/g12+___+ggf+0%+._.+0%w max(1, 01)

Table 2: Generalized norms for asymptotically stable continuous-time descriptor systems.
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