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Abstract

In this paper we study the dynamical contact angle at three phase (fluid-fluid-solid) contact
points for the 2 dimensional steady-state moving liquid drop. We present a result giving
the speeds at the contact points as a function of the dynamical contact angle, in the form
of a simple algebraic expression. The only physical constants involved are the viscosities
of the fluids and the surface tension.
Our approach is based only on the hypotheses that the fluids obey Navier-Stokes equation
and that on the fluid-fluid interface the free stress equation holds. So, here the dynamical
contact angle is defined as the angle in the region where the Navier-Stokes model is valid.
Under these hypotheses it follows that at the contact points the local speeds are related
through simple equations and the stress is singular, but well-defined in the Cauchy sense.
The leading order singularity at the contact point is identified using a blow-up technique
which leads to a reduced problem that contains the most singular behavior. This problem
is a Stokes one in a sector plane which has a simple solution.
The result we obtain is based on a dynamical force balance equation which leads to a
simple contact point speed versus contact angle relation. The originality of this work is
that it is based on simple hypotheses and it deals with the singularity, without additional
assumption on the stress.

1 Introduction

This work is a contribution on the analysis of the relationship steady-state drop speed versus
dynamical contact angle. Typically, a liquid drop at steady state motion in a flat horizontal
surface is considered. It is assumed that the dynamical contact angles at three phase contact
points (from now on we will refer to them simply as contact points) depend on the steady-
state drop motion speed. This problem has been the subject of research for many years and
as a result there exist many different experimental studies and theoretical models.
Several generally accepted fact have been derived from the experimental observations. It is
observed that in general the receding contact angle tends to 0, and advancing one tends to π,
when the steady state drop speed tends to ∞. However, there are cases not obeying to this
rule.
Also, it is observed that the drop fluid rolls, but close to the contact points there is a small
region where the drop fluid rolls in the inverse sense to the overall rolling, [4]. The other fluid
has simpler dynamics, it simply rolls.
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Experimentally it has been found that at the solid interface, receding contact point side, there
exists a thin layer of drop fluid. This shows that not all the drop fluid is moving - a very
small amount of it is stuck to the solid interface, possibly being responsible for modification
of the fluid-solid interaction, and consequently fluid-solid surface tension.
Another interesting phenomena observed by experiments is the so-called hysteresis: the drop
must pass a certain threshold before it will begin to move, or stated differently, the dynamical
contact angle does not tend to the statical contact angle when the drop speed tends to zero.
It has been argued from physical point of view the presence of singularity is more attractable
by considering the speed as a multi-valued function at contact points, see [4]. This is the
approach we consider.
From theoretical point of view (a very good bibliography of existing models is given in [12]),
basically, the dynamical contact angle is found by postulating a law for dynamical contact
angle, [3], [8] (the law is motivated by experimental observations and of course this approach
often involves empirical constants); by computing the dynamical contact angle using the force
balance equation. When only hydrodynamics is used to explain the phenomena, this approach
leads to a stress singularity and up to our knowledge, the analysis does not go further. In
other works, when the phenomena is modeled using hydrodynamics and diffusion theory, like
in [11], [12], there is no stress singularity on fluid-solid interfaces. In general these last models
involve several physical constants that require additional measurements. An important fact
pointed in [12] is the change of density close to the contact points, which implies a change of
the surface tension.
Using the non-slip condition approach and only hydrodynamics, the moving drop problem
will lead to non-integrable stresses (in the classical sense). To avoid such a situation several
authors, [2], [7], propose that the area enclosing contact points should be divided into three
regions. In the inner region the so-called slip condition is given, which consists of imposing
tangential stress proportional to the tangential speed at the boundary. In this case, the non-
integrable stress singularity is removed. In the outer region the no-slip condition is imposed
(the fluids stick to the solid). In order to match these two regions, an intermediate region is
required. The regions are matched asymptotically. The slip condition is introduced not from
physical considerations but simply in order to eliminate the singularity.
The most important issue arising when modeling the drop motion is the boundary conditions
on fluid-solid interfaces. While it is accepted that the fluids stick on this interface when
sufficiently far from the contact points, the boundary conditions on a fluid-solid interface
close to the contact point is a major subject of discussion. This will be discussed is this work
as well as the computation of the stress singularity arising close to the contact points.

The assumptions we make are: the fluids obey to Navier-Stokes equations and the viscosities
are constants; the fluid-fluid interface is a C2 curve having a surface tension σ; the stress free
equation holds on the fluid-fluid interface.
The dynamical contact angle we consider is the one between the fluid-fluid interface and
the fluid-solid interface in the region where Navier-Stokes equations are valid. With the
assumption that the fluid-fluid interface is a C 2 curve, for the speed versus dynamical contact
angle relation it is sufficient to consider only a local analysis close to contact points.
Based on these assumptions it follows that at the contact points the stress is non-integrable in
L1 sense, but perfectly defined in the Cauchy sense (which we will consider). From the stress
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free equation on the fluid-fluid interface it follows that the speed has opposite directions on
the two sides of the fluid-solid interface defined at the contact points, meaning that at least
one of the fluids must slip. In the same spirit of the well-known Young’s equation, a local
force balance yields an equation satisfied by the dynamical contact angle and the contact
point speeds. Speed versus dynamical contact angle relation involves the surface tension force
f acting on the contact point. If the surface tensions are constant and the same as in the
statical case, we obtain simple formulas, which explain the behavior of fluids close to the
contact point, in qualitatively agreement with the experiments.
But, several facts suggest the existence of a surface tension variation, which is not included
in this work. Indeed, the behavior of the dynamics close to fluid-solid interface at contact
points (fluid dissociate or meet each other), the presence of a thin layer of drop fluid between
the other fluid and the solid is responsible for the existence of a gradient surface tension, as
stated in [12]. The force f then may be found by analysis at molecular level or by stating a
constitutive relation in the thin layer between the fluid and the solid, like in [13]. We plan to
address these questions in the upcoming work.

In the next section, the basic mathematical problem will be posed. In Section 3, the reduced
problem near contact points will be derived followed by the main result stating speed versus
contact angle relationship. In Section 5, comparison to experimental results are made followed
by a short summary.

2 Mathematical description of the problem

Let D ⊂
� 2 be an infinite band domain defined by two parallel lines of distance L. Let

also Ω ⊂ D (the drop fluid drop) be an open connected set, Ω̃ = D\Ω (the air), such that
∂(∂D ∩ ∂Ω) = {O,O′} (the contact points) as shown in Figure 1. In the rest of the paper we
will focus the analysis on the contact points. It is assumed that Γ = ∂Ω\∂D is a C 2 boundary.
The origin is placed on O and x1 axis is chosen tangent to ∂Ω at O. Let ξ be a C2 function
such that Γ = {(x1, ξ(x1)} and let ω < 0, resp. ω̃ > 0, be the angle at O that ∂D makes with
∂Ω inside of Ω, resp. Ω̃.
Let assume that the droplet is moving with steady-state speed U . With respect to a coordinate
system moving with the steady-state speed U , the fluid obeys the following standard equations
for viscous immiscible incompressible flow

−µ∆u + ρ(u · ∇)u + ∇p = g, in D\Γ, (1)

∇ · u = 0, in D\Γ, (2)

[u] = 0, on Γ, (3)
[

µ
∂u

∂n
− pn

]

= σHn, on Γ, (4)

u · n = 0, on Γ, (5)

where u is the speed, p the pressure, g ∈ � 2(
� 2;

� 2) a given function, µ = µ � Ω + µ̃ � Ω̃ is the
viscosity (µ, µ̃ > 0), ρ = ρ � Ω+ρ̃ � Ω̃ is the density (ρ, ρ̃ > 0), σ is the surface tension coefficient,
n the outward unit normal vector to Γ, H is the mean curvature of Γ and [·] = ·|Ω − ·|D\Ω

denotes the jump across Γ.
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We assume the following boundary conditions

u = α on ∂D ∩ ∂Ω, (6)

u = α̃ on ∂D\∂Ω, (7)

u = O(1), at ∞, (8)

p(x1, ·) = ±p0, at x1 = ±∞, (9)

where p0 ∈
�

and α ∈ C0(D ∩ ∂Ω), α̃ ∈ C0(D ∩ ∂Ω̃) are two continuous functions such
that lim

r→0
α(ω, r) = α (cosω, sinω), lim

r→0
α̃(ω̃, r) = α̃ (cos ω̃, sin ω̃), α, α̃ ∈

�
and α = α̃ =

−U(cosω, sinω) out of an arbitrary small neighborhood of contact points. Our main con-
cern in this paper is the relation between U and the angle ω at the point O.

Remark 2.1 If we assume that fluids stick to the solid boundary then α = −α̃ is the speed of
the drop U . As it will be clear in the Proposition 4.1, for consistent mathematical reasons we
cannot assume that both fluids stick to the solid boundary, at least close to the fluid-fluid-solid
contact points.
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D\Ω

O’O

ω

n

n
x

n

h

0
1

ω

x 2

α

β

α

air
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Figure 1:

Up to our knowledge there are no results giving the existence and regularity of u and p
formulated here-above. The main difficulty is that u 6∈ H 1(Ω∪Ω̃) (see Remark 4.3). However,
there are reasons to assume (see again Remark 4.3) that

1. u ∈ L∞(Ω), u ∈ H1(Ωh), p ∈ L2(Ωh) where Ωh = Ω\B(O, h) for
any h > 0 and (1)-(9) are satisfied in the distribution sense, where
B(O, h) = {|x−O‖ < h}.

2. ∃η > 0 such that for any 0 < h < 1, if Ωh = Ω ∩B(O, h) then

‖|x|η(|∇u(x)| + |p(x)|)‖L2(Ωh) < Chη,

3. u is continuous at O in any of the directions θ = 0, resp. ω, ω̃, and the
limit is α(cosω, sinω), resp. β(1, 0), α̃(cos ω̃, sin ω̃),

4. Similar hypothesis for u, p are considered in Ω̃, Ω̃h = Ω̃ ∩ B(O, h) and
Ω̃h = Ω̃\B(O, h).

(10)

With these assumptions, we can obtain the following equation for local force balance at contact
points

f + lim
h→0

∫

∂Dh

T (u) · nh = 0. (11)
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Indeed, a net force f at the contact point O arises if the angle ω is not equal to the equilibrium
contact angle ω0, a material parameter. The measure force equal to σHn acts on Γ. In
Dh := D∩B(O, h) act the inertia forces

∫

Dh

ρu·∇u, the gravitational forces
∫

Dh

ρg,the tension

forces −
∫

Γ∩Dh
σHnh, and in ∂Dh act the stress forces equal to

∫

∂Dh
T (u) ·nh where nh is the

outward unit normal vector to ∂Dh, ρ is the density function of fluids and T = {Tij(u)} is
the stress tensor given by

Tij(u) = −pδij + µ
∂ui

∂xj
, i, j = 1, 2, (δij is Kronecker

′s symbol). (12)

Writing the Cauchy constitutive equation in Dh we have
∫

Dh

ρu · ∇u = f +

∫

∂Dh

T (u) · nh +

∫

Dh

ρg −

∫

Γ∩Dh

σHn.

Letting h tend to 0 we obtain

lim
h→0

∫

Dh

ρu · ∇u = f + lim
h→0

∫

∂Dh

T (u) · nh. (13)

Note that under the regularity assumptions (10) we have
∣

∣

∣

∣

∫

Dh

u · ∇u

∣

∣

∣

∣

≤ ‖u‖∞

∫

Dh

|∇u| = ‖u‖∞

∫

Dh

|x|−η|x|η |∇u|

≤ ‖u‖∞‖|x|−η‖L2(Dh)‖|x|
η∇u‖L2(Dh) ≤ Ch‖u‖∞, (14)

which with (13) proves (11).

Remark 2.2 In general u 6∈ H2(Ω), p 6∈ H1(Ω). This means that the integral in (11) on
∂Dh needs particular attention. In fact, the integral on D ∩ ∂B(O, h) is well defined and we
need only to deal with integral on ∂D ∩B(O, h). As we will see later it is well defined in the
Cauchy sense.

Remark 2.3 In the case when u and p are sufficiently regular functions then the limit inte-
grals in (11) are zero. For example, if u, resp. p, is in H 2(Ω ∪ Ω̃), resp. H1(Ω ∪ Ω̃), then
these limits vanish and we obtain the usual statical angle condition f = 0. But in general we
have to consider these limit integrals because, a priori, u and p are not sufficiently regular.
The singularity of stresses near point O has been pointed out by several authors, see for example
[4]. Up to our knowledge, none of the authors has dealt with the singularity - they impose
conditions on the stress in the close neighborhood of contact point in order to eliminate the
singularity.

Equation (11) defines a balance between the singular stresses and the point forces arising
from a contact angle different from the equilibrium value. The balance is made in both
the tangential and normal directions. The next section of the paper will deal with a Stokes
problem obtained from (1)-(9) using an asymptotic technique near the contact point. The
resulting equation is simple and can be resolved by hand. This allows easy computation of
the relationship (11) as h tends to 0. This will give the relationship between the speed and
the dynamical angle at contact points.

5



3 Reduced asymptotic problem at contact points

Let be 0 < h < 1. Under the transformation y = h−1x the domain Ωh, resp. Ω̃h, is transformed
in some curved domain which, when h → 0 tends to the sector domains, S ∩ B(O, 1), resp.
S̃ ∩ B(O, 1), where S = {(r, θ), r > 0, ω < θ < 0} and S̃ = {(r, θ), r > 0, 0 < θ < ω̃}. Let us

O

X

X2

1

S S
~

Figure 2:

define the following functions

uh(y) = u(x), ph(y) = hp(x).

If A ⊂ S ∪ S̃ is an arbitrary bounded open set, it is clear that uh and ph are well defined in
A for a sufficiently small h. Moreover, according to hypothesis (10) we have

‖uh‖
2
L2(A) =

∫

A

|uh(y)|2dy = h−2

∫

hA

|u(x)|2dx ≤ |A|‖u‖2
L∞(D),

‖|y|η∇uh(y)‖2
L2(A) =

∫

A

(|y|η∇uh(y))2dy = h−2η

∫

hA

(|x|η∇u(x))2dx ≤ C(A),

‖|y|ηph‖
2
L2(A) =

∫

A

(|y|ηph(y))2dy = Ch−2η

∫

hA

(|x|ηp(x))2dx ≤ C(A).

These inequalities are easily proven using hypothesis (10). It follows that there exists a
subsequence (uh, ph) and a (v, q) such that

uh ⇀ v in L2
loc(S ∪ S̃),

|y|η∇uh ⇀ |y|η∇v in L2
loc(S ∪ S̃),

|y|ηph ⇀ |y|ηq in L2
loc(S ∪ S̃),

(15)

where L2
loc(S ∪ S̃) =

⋂

r>0 L
2((S ∪ S̃) ∩B(O, r)).

Proposition 3.1 The functions v, q satisfy in the sense of distributions the following equa-
tions

−µ∆v + ∇q = 0 in S ∪ S̃, (16)

∇ · v = 0 in S ∪ S̃, (17)
[

µ
∂v

∂n0
− qn0

]

= 0 on {θ = 0}, (18)

v = β(cos θ, sin θ) on {θ = 0}, (19)

v = α(cos θ, sin θ) on {θ = ω}, (20)

v = α̃(cos θ, sin θ) on {θ = ω̃}, (21)
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v = O(1) at ∞. (22)

where n0 is the unit normal vector to {θ = 0} directed to S̃ and α, resp. α̃, β, is the limit of
u in the direction θ = ω, resp. θ = ω̃, 0.

Proof. The proof of these equations is simple and can be worked out using (15) and (1)-
(9). The relation (18) requires some special attention and we present its proof. Let ϕ ∈
D(S ∪ S̃ ∪ {θ = 0};

� 2). Then, from the fact that v and q satisfy (16) and (17) in the sense of
distributions, the left hand-side of (18) is also well defined in the sense of distributions. Let
set x = hy and ϕh(x) = ϕ(y). Then we have
∫

{θ=0}
[T (v) · n0)] · ϕ =

∫

{ω<θ<ω̃}
µ∇v(y) · ∇ϕ(y) − q(y)∇ · ϕ(y)dy

= lim
h→0

∫

h−1(Ω∪Ω̃)
µ∇uh(y) · ∇ϕ(y) − ph(y)∇ · ϕ(y)dy

= lim
h→0

(
∫

Ω
µ∇u(x) · ∇ϕh(x) − p(x)∇ · ϕh(x)dx +

∫

Ω̃
µ̃∇u(x) · ∇ϕh(x) − p(x)∇ · ϕh(x)dx

)

= lim
h→0

∫

Γ

[

µ
∂u

∂n
− pn

]

· ϕh(x)dx

=− lim
h→0

∫

Γ
σH(x)n · ϕh(x)dΓ(x) = 0,

which proves (18). Now we will deal with the solution of (16)-(22). We have

Proposition 3.2 The problem (16)-(22) may have at most one solution.

Proof. Let assume that (v1, q1), (v2, q2) are two solutions of (16)-(22). Then v0 = v1 − v2,
q0 = q1 − q2 satisfy (16)-(22) with α = α̃ = β = 0. According to (18) it is easy to prove that
v0, q0 satisfy in distribution sense

−µ∆v0 + ∇q0 = 0, ∇ · v0 = 0, in {r > 0} × {ω < θ < ω̃}. (23)

Then, from classical regularity results (see for example [10]) , (v0, q0) satisfy (16)-(22) in
classical sense in {r > 0, ω < θ < ω̃}. Now we can extend v0, q0 in

� 2\{0} by formulas

(ve(r, θ), qe(r, θ)) =

{

(v0(r, θ), q0(r, θ)) ω ≤ θ ≤ ω̃
(v0(r, θ − π), q0(r, θ − π)) ω̃ ≤ θ ≤ ω̃ + π

.

Due to equations (16)-(22), ve ∈ H1(A), qe ∈ L2(A) for any A open, bounded set A 63 O.
Moreover −∆ve +∇ qe

µ
= 0 in

� 2\{0}. To prove this we have to multiply −∆ve +∇ qe

µ
= 0 in

{ω < θ < ω̃} by ϕ ∈ D(
� 2\O) with ϕ(r, ω) = ϕ(r, ω̃). Using Fourier transform and the fact

that ve = 0 on θ = 0 it turns out that ve = qe = 0. 2

It is well-known that the speed v of 2D incompressible flow may be given by the stream
function ψ whose properties are well known. It satisfies
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Proposition 3.3 The solution of (16)-(17), (19)-(22) is given by v = (D2ψ,−D1ψ) satisfy-
ing the following equations in polar coordinates

−∆2ψ = 0, in {ω < θ < 0} ∪ {0 < θ < ω̃},

∂ψ

∂r
= 0,

1

r

∂ψ

∂θ
= α on {θ = ω},

∂ψ

∂r
= 0,

1

r

∂ψ

∂θ
= β on {θ = 0+, 0−}.

∂ψ

∂r
= 0,

1

r

∂ψ

∂θ
= α̃ on {θ = ω̃}.

Proof. To find the solution of this problem, consider first the case ω < θ < 0.We look for ψ
in the form ψ(r, θ) = rz(θ). The boundary conditions for ψ are just the conditions (19)-(21).
By simple computations we fine ∆2ψ = r−3(z + 2z′′ + z(iv)). Then







z + 2z′′ + z(iv) = 0, ω < θ < 0,
z(ω) = 0, z′(ω) = α,
z(0) = 0, z′(0) = β.

(24)

There exist constants A,B,C,D such that

z(θ) = A sin θ +B cos θ + Cθ sin θ +Dθ cos θ.

It turns out that

A =
−αω sinω − βω2

d(ω)
, C =

α(sinω − ω cosω) + β(ω − sinω cosω)

d(ω)
,

B = 0, D =
αω sinω + β sin2 ω

d(ω)
,

(25)

where d(ω) = sin2 ω − ω2.
Let now consider ψ in {0 < θ < ω̃}. If ψ = rz̃(θ) then z̃(θ) = Ã sin θ + B̃ cos θ + C̃θ sin θ +
D̃θ cos θ and

Ã =
−α̃ω̃ sin ω̃ − βω̃2

d(ω̃)
, C̃ =

α̃(sin ω̃ − ω̃ cos ω̃) + β(ω̃ − sin ω̃ cos ω̃)

d(ω̃)
,

B̃ = 0, D̃ =
α̃ω̃ sin ω̃ + β sin2 ω̃

d(ω̃)
,

(26)

where d(ω̃) = sin2 ω̃ − ω̃2.
It is easy to find that v = (D2ψ,−D1ψ) is given by

v =

{

(z(θ) sin θ + z′(θ) cos θ,−z(θ) cos θ + z ′(θ) sin θ), ω < θ < 0,

(z̃(θ) sin θ + z̃′(θ) cos θ,−z̃(θ) cos θ + z̃ ′(θ) sin θ), 0 < θ < ω̃.
(27)

In the same way we can compute the gradient of v by (∇v)ij = ∂jvi

∇v =
z(θ) + z′′(θ)

r

(

− sin θ cos θ, cos2 θ
− sin2 θ, sin θ cos θ

)

, ω < θ < 0, (28)
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∇v =
z̃(θ) + z̃′′(θ)

r

(

− sin θ cos θ, cos2 θ
− sin2 θ, sin θ cos θ

)

, 0 < θ < ω̃. (29)

Finally, we can compute the pressure q, basically using the equation (16) multiplied by
(cos θ, sin θ). This will give ∂q/∂r which after integration gives q as follows

q(r, θ) =











−
µ

r
[z′(θ) + z′′′(θ)] + cq, ω < θ < 0,

−
µ̃

r
[z̃′(θ) + z̃′′′(θ)] + cq̃, 0 < θ < ω̃,

(30)

where cq and cq̃ are two constants.
In the next section, further relationships between α, α̃, β and ω are derived. This leads to
the dynamical contact angle relationship.

4 Main Results

Proposition 4.1 The speed v given by (27) and the pressure q given by (30) satisfy (16)-(22)
if and only if α, α̃ and β satisfy

α =
β

π sinω

(

−
µ̃

µ
d(ω) + sin2 ω − ωω̃

)

:=
kα

π sinω
β,

α̃ =
β

π sinω

(

−
µ

µ̃
d(ω̃) + sin2 ω − ωω̃

)

:=
kα̃

π sinω
β.

(31)

Proof. It is clear that v and q satisfy (16)-(20) except (18). But

∂v

∂n0
=

1

r























(

z + z′′

0

)

(

z̃ + z̃′′

0

) =
1

r



















(

2C
0

)

on θ = 0−,

(

2C̃
0

)

on θ = 0+,

We have also these relations for the pressure

qn0 =



















(

0
−µ

r
(z′ + z′′′) + cq

)

(

0

− µ̃
r
(z̃′ + z̃′′′) + cq̃

)
=















(

0
2µ

r
D + cq

)

on θ = 0−,
(

0

2 µ̃
r
D̃ + cq̃

)

on θ = 0−,

Then the condition (18) is equivalent to

{

µC = µ̃C̃,

2
µ

r
D + cq = 2

µ̃

r
D̃ + cq̃.

It follows that cq = cq̃ and

µC = µ̃C̃, µD = µ̃D̃. (32)
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Replacing the values of C, C̃,D, D̃ we obtain that this system is equivalent to















µ
α(sinω − ω cosω) + β(ω − sinω cosω)

d(ω)
= µ̃

α̃(sin ω̃ − ω̃ cos ω̃) + β(ω̃ − sin ω̃ cos ω̃)

d(ω̃)
,

µ
αω sinω + β sin2 ω

d(ω)
= µ̃

α̃ω̃ sin ω̃ + β sin2 ω̃

d(ω̃)
,

which after some computations easily leads to values of α, α̃ and β claimed in the lemma.

Remark 4.2 Based on the model we have presented, if we assume that the fluids stick on the
solid surface, then we have to impose α = −α̃. In such a case ω is solution of kα = −kα̃.
This implies

µ

µ̃
d(ω) +

µ̃

µ
d(ω̃) = 2(sin2 ω − ωω̃).

As ωω̃ < 0 and d(ω), d(ω̃) < 0, for ω 6= 0 it follows that the equation kα = −kα̃ has no roots
different from zero. This shows that in general α 6= −α̃. Thus, one of the two fluids must slip
locally close to the contact point. In Section 5 we will discuss more about the local behavior
of the speeds close to the contact points.

Remark 4.3 As we have seen, the problem (16)-(22) has solution which is computed by hand.
Near O, ∇v and q are like |x|−1 which means that ∇v, q 6∈ L2(S). In the hypothesis (10)
for u and p we cannot assume, for example, ∇u, p ∈ L2(D) because this would imply that
∇v, q ∈ L2(S)! The same reasoning holds for u, p in S̃.

Remark 4.4 In the analysis of the drop motion many authors impose the following boundary
slip condition

γ
∂ut

∂ns
= ut, γ ∈

�
, γ 6= 0, (33)

where ns is the unit normal to the solid boundary and ut = u − (u · ns)ns is the tangential
part of u. The equalities (27), (28) show that (33) cannot be satisfied, unless γ = 0. Indeed,

if it were true then (assuming that u satisfies (10)) we end up that v should satisfy γ
∂vt

∂ns
= 0.

But if γ 6= 0 this is impossible because the normal derivative of v is like r−1.

We turn now to the force balance equation at O given by (11). Let us split the integral in
(11) into two terms

∫

∂D∩B(O,1)
T (uh) · n1 =

∫

D∩∂B(O,1)
T (uh) · n1 +

∫

∂D∩B(O,1)
T (uh) · n1.

Using (15) and the state equation of uh it is not difficult to see that

lim
h→0

∫

D∩∂B(0,1)
T (uh) · n1dy =

∫

D∩∂B(0,1)
T (v) · n1dy.

Thus we need to identify only
∫

∂D∩B(O,h) T (u) · nh.

10



The analysis of this integral is more delicate. It requires that the properties of uh and ph be
known more precisely, which is beyond the scope of this paper. We will assume that

The condition (11) is equivalent to

f +

∫

D∩∂B(0,1)
T (v) · n1dy +

∫

∂D∩B(0,1)
T (v) · n1dy = 0, (34)

where the integral on ∂D ∩B(O, 1) is understood in the sense of Cauchy

It is easy to compute the integral in (34). Let first set

F1 :=

∫

D∩B(O,h)
T (v) · n1, F2 :=

∫

∂D∩B(O,h)
T (v) · n1,

and F := F1 + F2.

Lemma 4.5 The total force F created from the singular fluid stresses at O is given by

F = −πµ

(

D
C

)

. (35)

Proof. Using (28) and (30) we have

I1 :=

∫

{r=1}∩{ω<θ<0}
T (v) · n1 = −

∫ 0

ω

[−µ(z′(θ) + z′′′(θ)) + cq]

(

cos θ
sin θ

)

dθ

= −

∫ 0

ω

[2µ(C sin θ +D cos θ) + cq]

(

cos θ
sin θ

)

dθ

=

[

µ

2

(

C cos(2θ) −D(2θ + sin(2θ))
−C(2θ − sin(2θ)) +D cos(2θ)

)

− cq

(

sin θ
− cos θ

)]0

ω

= µ

(

C sin2 ω +D(ω + sinω cosω)
C(ω − sinω cosω) +D sin2 ω

)

+ cq

(

+sinω
− cosω + 1

)

Similarly, we find that

Ĩ1 :=

∫

{r=1}∩{0<θ<ω̃}
T (v) · n1

= −µ̃

(

C̃ sin2 ω̃ + D̃(ω̃ + sin ω̃ cos ω̃)

C̃(ω̃ − sin ω̃ cos ω̃) + D̃ sin2 ω̃

)

− cq̃

(

+sin ω̃
− cos ω̃ + 1

)

Taking into account (32) we obtain

F1 := I1 + Ĩ1 = −πµ

(

D
C

)

+ 2cq

(

sinω
− cosω

)

. (36)

Now we turn to the computation of F2. It is easy to see that the stress on the fluid-solid
interface is singular (in L1 sense). However, it is well defined in the Cauchy sense. Let ε > 0.
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Taking into account that on {θ = ω}, n1 = (sinω,− cosω), from (28), (29), (30) we obtain

I2ε =

∫

{ε<r<1}∩{θ=ω}
T (v) · n1

=

∫ 1

ε

µ

r

(

−(z(ω) + z′′(ω)) cosω + (z′(ω) + z′′′(ω)) sinω
−(z(ω) + z′′(ω)) sinω − (z′(ω) + z′′′(ω)) cosω

)

− cq

(

sinω
− cosω

)

dr

=

∫ 1

ε

2
µ

r

(

−C
D

)

− cq

(

sinω
− cosω

)

dr,

and in similar way we find out that

Ĩ2ε :=

∫

{ε<r<1}∩{θ=ω̃}
T (v) · n1 = −

∫ 1

ε

2
µ̃

r

(

−C̃

D̃

)

− cq̃

(

sin ω̃
− cos ω̃

)

dr

Then it turns out that

F2 := lim
ε→0

(I2ε + Ĩ2ε) = −2cq

(

sinω
− cosω

)

, (37)

which proves the lemma. 2

The horizontal stress force exerted on the contact point is given by (using the condition (32))

(

D
C

)

·

(

cosω
sinω

)

=
1

d(ω)

(

α sin2 ω + βω sinω)
)

.

If f = (f1, f2) is the total surface tension force acting on the contact point, from the horizontal
force balance equation (f + F ) · (cosω, sinω) = 0, we obtain the following equation

πµ

d(ω)

(

α sin2 ω + βω sinω
)

= f1 cosω + f2 sinω. (38)

Theorem 4.6 Let assume that f = (f1, f2) is the total surface tension force acting on the
contact point. If u and p satisfy (1)-(9) and the hypothesis (10), (34) are fulfilled then the
speed α the angle ω are related by the following algebraic equation

α =
1

π

− µ̃
µ
(sin2 ω − ω2) + sin2 ω − ωω̃

(µ− µ̃) sin2 ω
(f1 cosω + f2 sinω0), (ω̃ = π + ω). (39)

Proof. The proof follows immediately from (38). Indeed, replacing β = π sin ω
kα

α we get

α =
σ

πµ

(cosω − cosω0)(sin
2 ω − ω2)kα

(kα + πω) sin2 ω
.

On the other hand we have

kα = −
µ̃

µ
(sin2 ω − ω2) + sin2 ω − ωω̃,

kα + πω = (1 −
µ̃

µ
)(sin2 ω − ω2),

which implies the formula (39) stated in the theorem.
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Corollary 4.7 With the same hypotheses as in Theorem 4.6 the speeds α̃, β are given by:

α̃ =
1

π

−µ
µ̃
(sin2 ω − ω̃2) + sin2 ω − ωω̃

(µ− µ̃) sin2 ω
(f1 cosω + f2 sinω), (40)

β =
1

µ− µ̃

f1 cosω + f2 sinω

sinω
. (41)

Proof. It is immediate using (39) and (31). 2

The local speeds given by (39), (40), (41) depend strongly of the surface tension force f . It
is commonly accepted that f = σn(0) + σµn(ω) + σµ̃n(ω̃) where n(θ) = (cos θ, sin θ) and σµ,
resp. σµ̃, is the surface tension at drop fluid-solid interface, resp. other fluid-solid interface.
Even in the statical case f is not known completely. It is easy to measure σ, but not σµ and
σµ̃. In dynamical case it is reported a gradient of σ close to contact points, [12], and so the
determination of f is difficult.

5 Analysis of local speeds

Here, we will give a form of f based on simple considerations. We know that for drop speed
tending to zero, the hydrodynamical force tends to zero. Because F + f = 0, f also must
tend to zero as well. If σ is considered constant, this means that the surface tension force due
to fluids-solid interaction is equal to −σ cosω0, where ω0 is the limit angle when drop speed
tends to zero. We will consider that for any other dynamical contact angle, the fluids-solid
surface tension is given by −σ cosω0, thus f = σn(0)−σ cosω0n(ω). We think that this form
of f is not exact, but it allows to predict fluid dynamics behavior at the contact points. The
formula (39) then becomes

α =
σ

π

− µ̃
µ
(sin2 ω − ω2) + sin2 ω − ωω̃

(µ− µ̃) sin2 ω
(cosω − cosω0). (42)

From (40), (41) we can write similar formulas for α̃, β.

Let us consider the case µ > µ̃ and the receding contact point. It is easy to check that the
sign of α is positive. Indeed, let us first point out that the choice of our coordinate system
implies ω < 0, ω̃ > 0 and ω0 < 0. As µ > µ̃ and ω0 < ω < 0, it follows that

−
µ̃

µ
(sin2 ω − ω2) + sin2 ω − ωω̃ > 0, (43)

cosω − cosω0 > 0. (44)

This implies α > 0. From (31) it follows that β < 0, α̃ > 0.
A similar analysis may be done at the advancing point. We have still (43) and (44). As this
time µ and µ̃ must permute their places, at advancing contact point we have α > 0. From
(31) it follows that β < 0, α̃ > 0.
The direction of speeds at contact points and at solid interface is given in Figure 3 (left). It
follows that the distribution of speeds must look like in Figure 3 (right). From this figure
we can see that the drop fluid, essentially rolls, but very close to the receding and advancing
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Figure 3: Speeds at the contact points (left) and expected speed behavior (right) (µ > µ̃)

points there is a small region where it rolls in the inverse direction. The other fluid simply
rolls. This behavior is observed in experiments, [4]; close to the receding and advancing points
there are two stagnation points.
In the case µ < µ̃ a similar analysis shows that on the fluids-solid interface the fluids meet,
resp. dissociate, at the receding, resp. advancing contact point. So, this time the drop fluid
simply rolls and the other fluid basically rolls but close to contact points there is a small
region where it rolls in the opposite direction.

Now we will address the key question: “What is the connection between α, α̃ and the drop
speed?” Let focus our analysis at the receding point. Concerning α, it is clear that it has
no connection with the drop speed U because α > 0 (remember that v(r, ω) = αn(ω),
v(r, ω̃) = α̃n(ω̃), v(r, 0) = βn(0)). Thus, the drop fluid close to the receding point must slip.
Regarding α̃, which is the speed of the fluid on the other side of the drop, we proved that it
is positive, so v(r, ω̃) has the same direction as (−U, 0). This fluid may slip as well, and in
this case possibly the fluid-solid surface tension must change as well. Here, we will postulate
that this fluid sticks to the solid interface, i.e. α̃ = U .

At the advancing contact point, by a very similar analysis like at the receding point, we find
that the drop fluid must slip close to the contact point. We postulate that the other fluid
sticks to the solid interface, i.e. α = U .
In summary, for µ > µ̃, it follows that close to the contact points the drop fluid must slip.
We assume that the other fluid sticks on the wall. If µ < µ̃, close to the contact points the
other fluid (not the drop fluid) must slip. We assume that the drop fluid sticks on the wall.

5.1 Comparison with the experiments

We will consider two different examples for which we have found experimental data in the
literature. In this paper we take the hysteretic contact angle behavior as given. Thus we
consider an interval (ωr, ωa) including the static contact equilibrium angle such that the drop
does not move as long as the contact angle is in (ωr, ωa). We will take then ω0 = ωr for the
receding point and ω0 = ωa for the advancing point and f = σn(0) − cosω0n(ω) as discussed
at the beginning of this section.

1. We consider the steady state motion of a glycerol/water drop in a PET (polyethylene
terephthalate) horizontal surface. According to [6] we have these data: µ = 8.286 · 10−2

kg/m/s (glycerol/water at 20oC), µ̃ = 1.810 · 10−5 kg/m/s (air 20oC), σ = 67.9 · 10−3, kg/s/s
and ωa = 70o and ωr = 45o. In Figure 4 (left) is given the graph of the speeds α, α̃.
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2. We consider the steady state motion of a water drop in a PET (polyethylene terephthalate)
horizontal surface. The other fluid is air. According to [6] we have these data: µ = 1.002 ·10−3

kg/m/s (water 20oC), µ̃ = 1.810·10−5 kg/m/s (air 20oC), σ = 72.8·10−3, kg/s/s and ωa = 82o

and ωr = 35o. In Figure 4 (right) is given the graph of the speeds α and α̃.
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Figure 4: Results for glycerol-water/air (left) and water/air (right)

Although the speed versus contact angle relationship agrees quite good qualitatively with
experimental data, it does not agree quantitatively. We think that this is due to the variation
of the surface tension forces at contact points (due to many factors: a thin drop fluid layer
between the other fluid and the solid, fluids dissociate, fluids meet each other).

6 Summary

In this work we have presented an analytical result relating dynamical contact point speeds,
dynamical contact angle and the surface tension force acting on the contact point. We deal
with the singular stress and the only parameters involved in the analysis are the viscosities
and the surface tension. We have shown that it is possible to predict the qualitative behavior
of fluids close to the contact points based only on the hydrodynamics and we have found the
drop speed agreeing qualitatively with the experimental data.
We are considering how to describe the exact values of dynamical surface tensions at contact
points, which we think should improve our results in agreement with the experimental data
even quantitatively.
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