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Abstract

Individuals in streams are constantly subject to predominantly uni-

directional flow. The question of how these populations can persist in

upper stream reaches is known as the “drift paradox”. We employ a gen-

eral mechanistic movement-model framework and derive dispersal kernels

for this situation. We derive thin- as well as fat-tailed kernels. We then

introduce population dynamics and analyze the resulting integrodifferen-

tial equation. In particular, we study how the critical domain size and the

invasion speed depend on the velocity of the stream flow. We give exact

conditions under which a population can persist in a finite domain in the

presence of stream flow, as well as conditions under which a population

can spread against the direction of the flow. We find a critical stream

velocity above which a population cannot persist in an arbitratily large

domain. At exactly the same stream velocity, the invasion speed against

the flow becomes zero; for larger velocities, the population retreats with

the flow.

1 Introduction

Many organisms, ranging from river-dwelling flora and fauna to gut-dwelling
bacteria, live in environments with predominantly unidirectional flow. As with
simple chemostat residents [35], organisms that persist in the presence of such
unidirectional flow must resist being ‘washed out’ by their moving surround-
ings. The success of many organisms in maintaining a foothold, even at high
flow rates, has given rise to the so-called ‘drift paradox’ of persistence in unidi-
rectional flow [27, 28].
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While possible solutions of the drift paradox have been discussed in the
ecological literature [27, 28, 41, 22], until recently the discussion has lacked
quantitative scrutiny in the form of models that can be used to predict the
effect of environmental variables on maintaining the population. Two recent
papers have begun to remedy this lack and have analysed conditions for species
persistence and population spread into upstream environments, both analyti-
cally and numerically. The models used there are partial differential equation
systems, such as a single compartment model with growth, advection, and dif-
fusion [36], or a two compartment model with separate mobile and stationary
states corresponding to aquatic and benthic populations [32].

Flows in river systems are very complex, and include, for example, up- and
down-river currents as well as turbulent long-distance movement of biota [1].
Although systems of partial differential equations are the work horse for spatial
ecology models in continuous space [15], their application is limited as they
depict the complex asymmetrical spatial flow in a river through simple advection
and diffusion.

Integrodifferential equations [16] are related to partial differential equations
but encompass more general movement patterns than diffusion and advection.
In particular, the modeling formalism can allow for a detailed description of
the complicated dispersal that arises through river flow. The added realism of
integrodifferential models comes at a price: much of the theory for PDEs on
problems such as critical domain size for species persistence [34] or population
spread [18] has not yet been formulated for their integrodifferential cousins, but
see [26] for invasion speeds. We develop some of the theory needed for analysis
in this paper.

In this paper we revisit the drift paradox, employing integrodifferential mod-
els that allow us to include long-distance dispersal. We show how the long-
distance dispersal changes previous washout predictions [32, 36]: populations
can always persist under high flow rates providing rare, long-distance dispersal
events are sufficient to allow maintentance of a foothold in the river. Our re-
sults contrast with those of Lockwood et al.[24] where long-distance dispersal is
discounted as playing a role in determining population persistence. While our
model and application is new, many of the theoretical ideas we draw on in this
paper have a distinguished history in the theory of spatial ecology.

The critical domain size is a fundamental ecological quantity that gives the
minimal size of a habitable area required for species survival. In turn, it provides
an important tool in reserve design and conservation [6, 8]. The first models for
the critical domain size using diffusion equations date back to the 1950s [34, 17].
The analysis has since been extended to cover more complex spatial domains
[9], the influence of advection [29, 32], and different modeling frameworks such
as integrodifference equations [20, 40, 25].

Another relevant ecological metric is the speed of spread, which is important
in a wide range of ecological applications. While some invasions are intended,
such as the introduction of biological control agents [4], others can be devastat-
ing for native species being outcompeted by invaders and for species diversity.
The spread of diseases is a worldwide problem and can be treated in the same
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modeling framework [26].
While the idea of having stationary and mobile compartments has recently

been used by numerous authors, for example, to model protein movement in a
cell nucleus [10], population dynamics with diffusive movement [23, 13] or wave-
like movement [14], the idea of coupling such models to asymmetric spatial flow
dynamics via advection and diffusion, as in [32] is a recent one (but see [5]).

We start our investigation by presenting a general framework to derive dis-
persal kernels from mechanistic movement models, and we apply this framework
to derive a thin-tailed and a fat-tailed kernel. In Section 3 we present the general
integrodifferential model and develop the theoretical results on critical domain
size and invasion speeds. The following three sections contain the application of
the general theory to persistence and spread in streams. Three cases for disper-
sal kernels are considered: thin-tailed (Section 4), a weighted sum of thin-tailed
kernels, accounting for short- and long distance dispersal (Section 5), and, fi-
nally, fat-tailed (Section 6).

2 Modeling Dispersal

In this section, we use a mechanistic approach for individual movement to derive
theoretical forms of dispersal kernels. A dispersal kernel describes the proba-
bility that an individual moves from one location to another in a certain time
interval. Such dispersal kernels, also referred to as redistribution kernels or seed
shadows, have been measured for many organisms [30]. The mechanistic ap-
proach taken here allows for explicit description of the movement process and
behavior. We assume that population dynamics happen on a much slower time
scale than individual movement and hence can be neglected while deriving the
kernel. This separation of time scales occurs frequently, and it is certainly true
for stream insects, where dispersal can occur over daily time scales, while sig-
nificant growth typically requires monthly or yearly time scales. The general
theory presented here follows, but significantly extends, the results in [30], and
is applied to derive a thin-tailed and a fat-tailed dispersal kernel as specific
examples for analysis and further development later in the paper.

We denote ω(t, x; y) as the probability density of the location of a mobile
individual with initial location x = y. We assume that the individual moves for
a random length of time, T, after which it settles, and that the random variable
T has a given probability density p(t). The dispersal kernel is now defined as
the probability density of stopping points from given initial location, i.e.,

κ(x, y) =

∫ ∞

0

p(t)ω(t, x; y)dt. (1)

If ω(t, x; y) depends only on the signed distance from the starting point ξ =
x − y rather than the exact location, we simply write w(t, ξ) = ω(t, x; y) and
k(ξ) = κ(x, y). Most dispersal kernels in this paper are of this form. For an
exception, see Appendix 8.5. When the individual moves by Brownian motion
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with diffusion coefficient D, the function w(t, x) is the fundamental solution of
the heat equation on the real line,

w(t, x) =
exp

(

−x2

4Dt

)

√
4πDt

. (2)

When drift at rate v is included with the Brownian motion, the function w(x, t)
is given by (2) with x replaced by x− vt.

However, if dispersing individuals can jump long distances in short time
intervals, the Brownian motion model may not be valid. For example, the Lévy
flight model [11] assumes that arbitrarily large jumps can occur over short time
scales. The result is a distribution of jump distances which has no variance. In
this ‘anomalous diffusion’ case, a typical form for w is the Cauchy distribution

w(t, x) =
t

ρπ

[

(

x

ρ

)2

+ t2

]−1

. (3)

The parameter ρ has dimension [space/time] and stands for an effective speed.
Details of how (3) can be derived from a random walk model for individuals are
given in Appendix 8.1. As above, we introduce drift at rate v by replacing x
with x− vt.

We now turn to modeling the stopping time T . The simplest possible as-
sumption is that all individuals disperse for the same, fixed, length of time t0.
In this case

p(t) = δ(t− t0), (4)

so that equation (1) yields k(x) = w(x, t0). Thus, for a fixed dispersal time t0,
the dispersal kernel (1) is simply the Gaussian (2), possbily shifted if v 6= 0, or
the Cauchy distribution (3), again possibly shifted if v 6= 0, evaluated at time
t0. In Figure 1, we plot the shapes of these kernels.

A more general form of stopping times comes from defining α(t) as the
settling or failure rate [37], i.e., α(t) dt as the probability that the individual
ends its movement during [t, t + dt). The probability density for the stopping
times of the individual, also called the lifetime probability density, is then

p(t) = α(t) exp

(

−
∫ t

0

α(s) ds

)

. (5)

The argument of the exponential function is known as the hazard function [37].
For constant settling rate α, the dispersal kernel (1) is the Laplace transform

of the probability density ω with respect to time. In the case of Brownian motion
(2), the kernel (1) becomes the Laplace distribution [7],

k(ξ) =

√

α

4D
exp

(

−
√

α

D
|ξ|

)

. (6)
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Figure 1: The plot on the left shows the thin-tailed Gaussian (dashed) and
fat-tailed Cauchy (solid) distribution as given in (2) and (3) for t0 = 1 with
parameters D = 1 and ρ = 1, respectively. The plot on the right shows the
Laplace distribution (6) (dashed) and the fat-tailed distribution (7) (solid). Pa-
rameters are as above and the settling rate is α = 1. Note that the fat-tailed
distribution has a singularity at the origin.

For constant settling rate α and the Cauchy redistribution function (3), the
kernel (1) becomes the fat-tailed kernel

k(ξ) = θ<{E1(iθξ) exp(iθξ)} /π
= −θ (cos(θξ) ci(θξ) + sin(θξ) si(θξ)) /π, (7)

where θ = α/ρ. The functions E1, ci and si are the exponential, cosine and sine
integrals, respectively,

E1(x) =

∫ ∞

1

exp(xz)

z
dz, ci(x) = −

∫ ∞

1

cos(xz)

z
dz, si(x) = −

∫ ∞

1

sin(xz)

z
dz.

(8)
The kernels given by (6) and (7) are plotted in Figure 1.

Adding drift into the last two scenarios does not simply shift the kernels
(6) and (7) as it did above, but instead causes a different kind of asymmetry
in dispersal, as we show later. In Section 4.1, we employ a somewhat simpler
method to derive the kernel for Brownian motion with drift. The case of Lévy
flight with drift is done in Section 6.

In Appendix 8.2 we generalize the simple model of Brownian motion to the
case of two (and potentially more) dispersal modes. Individuals switch between
these modes. We show that corresponding dispersal kernels can be derived
explicitly for constant settling rate.

3 The model equation, critical domain size, and

spread speed

In this section, we present the general model for a population subject to popu-
lation dynamics and spatial movement. It has the form of an integrodifferential
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equation, for which we give alternative derivations. We then state the main as-
sumptions and prove formulas for the critical domain size and the spread speed
of the population.

We consider a single population, which is described by its density u(t, x).
Population dynamics such as birth and death of individuals are summarized
in the function f(u). Then the dispersal time scale is small compared to the
population dynamics time scale, dispersal can be modeled by a position-jump
process with jumping rate µ [31]. If an individual jumps, the dispersal kernel
κ(x, y), as discussed in Section 2, describes the probability that the individual
moves from some point y to x. Then the evolution of the population density is
governed by the following integrodifferential equation

ut(t, x) = f(u(t, x)) − µu(t, x) + µ

∫

Ω

κ(x, y)u(t, y)dy. (9)

The domain of integration Ω will depend on the question we study. In case of
the critical domain size, it will be a bounded interval, in the case of invasion
speeds, it will be the real line. Although the model formulation is valid in spatial
domains of any dimension, we will restrict ourselves to the one-dimensional case
since the applications below will be to systems with unidirectional flow. We
assume that the function f is a “single-hump function”, i.e., f(0) = f(ū) =
0, and f > 0 on (0, ū). In order to prove Theorem 3.2, we will need more
assumptions on f and k, which we state then.

There are several ways to derive equation (9). We present a novel approach
emphasizing the separation of time scales. Then we present the necessary the-
oretical results about the critical domain size and invasion speeds.

3.1 Model derivations

Besides the derivation in [31], equation (9) is derived in the ecological literature
from a random walk process with variable move length [39]. Reaction and
movement are assumed to be on the same time scale [12]. Recently, a very
careful derivation of (9) has been presented where some scaling issues have been
avoided [16].

Here, we present an alternative derivation that respects and even relies on the
fact that movement often happens on a much faster time scale than population
dynamics. We start by dividing the population into mobile and stationary
classes, u and v, respectively, and assume that birth and death processes affect
only stationary individuals. Stationary individuals start moving with rate µ,
and mobile individuals settle with rate σ. Then we obtain the system

ut = f(u) − µu+ σv, vt = G[v] + µu− σv, (10)

whereG is a differential operator describing movement, e.g., G = D∆ (diffusion)
or G = D∆−V∇ (advection and diffusion). Recently, there has been increasing
interest is this or similar systems [5, 10, 13, 23, 32]. In order to apply the “quasi
steady-state” assumption that movement happens on a much faster time scale
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than population dynamics, we introduce the scaling parameter ε = µ/σ and
rescale v and G in (10) to obtain

ut = f(u) − µu+ µṽ, εṽt = G̃[ṽ] + µu− µṽ, (11)

where˜denotes the rescaled quantities. Under the “quasi steady-state” assump-
tion ε→ 0, the equation for ṽ gives the linear differential operator

µu =
(

G̃− µ
)

ṽ. (12)

Denoting κ(x, y) as the Greens function of this operator, i.e.,

ṽ(x) =

∫

Ω

κ(x, y)u(y)dy, (13)

system (10) becomes (9).

3.2 Critical Domain Size

As a first step in the analysis of (9), we now study the critical domain size
problem. We find that parameter space can be divided into two parts, one that
allows persistence independently of domain size and dispersal kernel, and one
in which persistence depends on these two factors. We assume that there is no
immigration into the domain. A population will persist if it grows at low density,
therefore, we study conditions such that the zero steady state is unstable. The
linearization of (9) on the interval [0, L] is given by

ut(t, x) = (r − 1)u(t, x) +

∫ L

0

κ(x, y)u(t, y)dy, (14)

where we have rescaled time by the rate of movement µ and abbreviated r =
f ′(0)/µ as the rescaled growth rate at low density. From (14), we immediately
see that if r > 1, then the zero steady state is unstable independently of the
domain size and the kind of movement individuals perform. On the other hand,
if r < 1, then the stability of the zero solution depends on the integral expression
in (14). We assume that the integral operator

I [φ](x) =

∫ L

0

κ(x, y)φ(y)dy, (15)

has a unique simple dominant eigenvalue ν for an appropriate choice of function
space. In Appendix 8.3, we discuss possible choices and show the following
result.

Theorem 3.1 The unique simple dominant eigenvalue ν, of (15) is a strictly
increasing function of the domain length L. Next, assume f(0) = 0 and f ′(0) >
0. Then the zero steady state solution of (9) is unstable provided ν(L) > 1 − r.
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According to the Theorem, the critical domain size is given by ν(L) = 1− r.
In the original non-scaled parameters, the population can persist if

f ′(0) > µ(1 − ν). (16)

Condition (16) is a refinement of the unconditional persistence in case r > 1,
which we found above. Its interpretation gives a possible explanation of the
drift paradox as follows. If the population growth rate at low density, f ′(0),
exceeds the rate at which individuals move, µ, then the population will always
persist, independently of the length of the domain and the kind of movement.
In particular, the population can persist in an environment with unidirectional
flow. This conclusion was also reached as one possible explanation of the drift
paradox in [32]. If f ′(0) is smaller than µ, then persistence depends on the term
(1−ν). As the leading eigenvalue, ν asymptotically gives the fraction of individ-
uals that remains in the domain during dispersal, and consequently, (1 − ν) is
the fraction of individuals leaving the domain due to dispersal. Therefore, if the
rate at which individuals move times the probability that they leave the domain
during dispersal exceeds the population growth rate, then the population will
go extinct. A similar switch from conditional to unconditional persistence in a
PDE-system was found in [13] (without advection) and [32] (with advection).

3.3 Spread Speed

In the previous section, we analyzed population persistence on a bounded do-
main. Here, we look at population spread into an unbounded, previously unin-
habited domain. We first derive the minimal speed of a traveling wave of the
linearized system (14). We follow the usual line of argument, emphasizing the
direction in which the wave is moving [26]. In systems with unidirectional flow,
the spread in the direction of the drift will be faster than against the drift.
This asymmetry requires some modification in the definition of the asymptotic
spreading speed [3] for the nonlinear model. After we give the modified defini-
tion, we show in Theorem 3.2 that the minimal traveling wavespeed and the
asymptotic spreading speed coincide.

To determine the wave speed of the linear system, we assume that the kernel
is of the form κ(x, y) = k(x − y), and change to traveling wave coordinates,
z = x − ct, where c is the speed of a traveling wave. Then (14) gives the
following equation for the profile ψ of a traveling wave:

−cψ′(z) = (r − 1)ψ(z) +

∫

k(z − w)ψ(w)dw. (17)

In this linear equation, we make the exponential ansatz ψ(z) = e−sz , with s > 0
(s < 0), such that asymptotically, ψ → 0 as z → ∞ (z → −∞). After canceling
equal terms on both sides, we get the characteristic equation

sc+ 1 − r =

∫ ∞

−∞

k(w)eswdw =: M(s), (18)
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for s 6= 0, where M stands for the moment generating function of k. We will
always assume that advection points to the right. Therefore, waves with positive
c travel in the direction of advection, waves with negative c travel against the
advection. From equation (18), which will be of use later, the minimal wave
speeds are derived as in [26] and given by

c+ = inf
s>0

r − 1 +M(s)

s
, c− = sup

s<0

r − 1 +M(s)

s
, (19)

for waves with decreasing (c+) and increasing (c−) profile. Here, we assume
that the moment generating function exists at least for some interval containing
zero. In Section 6, we discuss the case of a kernel whose moment generating
function does not exist except at s = 0.

The representation (1) of the dispersal kernel for arbitrary settling rate (see
(5) is particularly useful in connection with formula (19) because the moment
generating function of the Gaussian distribution is known. Since the moments
of k involve integration in the spatial variable only and since the stopping times
are independent of the spatial location, the moment generating function of k is
given by

M(s) =

∫ ∞

0

p(t) exp(Dts2)dt. (20)

The concept of the asymptotic spreading speed (henceforth simply referred
to as spread speed) for the nonlinear equation was introduced by Aronson and
Weinberger [3] and has since been explored in many publications, see [38]. In
order to accomodate for asymmetric spread, we define spread speeds c∗± by the
condition

lim
t→∞

u(t, x+ ct) =

{

ū, c∗− < c < c∗+
0, c < c∗− or c > c∗+

(21)

where ū > 0 is the positive zero of f, i.e., f(ū) = 0.

Theorem 3.2 Assume that f satisfies f(0) = 0 = f(ū) for some ū > 0,
f ′(0) > 0, and the subtangential condition f(u) ≤ f ′(0)u. Assume that the
kernel satisfies the technical conditions stated in Appendix 8.4. Then the spread
speeds of the nonlinear equation (9) are given by (19), i.e., c∗± = c±.

The proof of this theorem in Appendix 8.4 uses the upper bound for the
spread speed from [26]. To show that the upper bound equals the lower bound,
we construct subsolutions of (19) adapting the proof in [2] for a simple epidemic
model.

4 A model with unidirectional flow

We now apply the general model (9) to study systems with unidirectional flow
and the influence of the flow on the critical domain size and the spread speed.
The biological system motivating our study is a population of aquatic insects
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in streams, and our results give possible explanations of the drift paradox. At
first, we derive an appropriate dispersal kernel. Then we compute the critical
domain size as well as the spread speeds with and against the flow direction. We
show that these two important ecological characteristics are related as follows.
The spread speed against the flow decreases as the advection increases, until,
at some critical advection speed, there is no spread against the flow direction.
On the other hand, the critical domain size increases with the advection speed
until, at some critical advection speed, it becomes infinite, i.e., the population
cannot persist in a domain of any size. We show that the two critical advection
speeds, indeed, coincide.

4.1 A dispersal kernel with advection

We derive a dispersal kernel that represents the movement of aquatic insects in
streams. The larvae of these insects reside on the bottom of the stream, from
where they periodically jump into the water column, where they are subject
to the flow. Our submodel for individual movement consists of diffusion and
advective flow, and we assume constant settling rate. We think of advection
as representing the drift velocity experienced by the larvae, and of diffusion as
a first approximation to the variability in flow speed and direction. Denoting
z(t, x) as the density of moving individuals, we obtain the equation

zt = Dzxx − vzx − αz, (22)

whereD is the diffusion constant, v is the advection velocity and α is the settling
rate.

Integrating (22) over 0 ≤ t ≤ ∞ and applying the initial condition z(0, x) =
δ(x) as well as equation (44), we observe that the dispersal kernel k satisfies

D

α
kxx − v

α
kx − k = −δ, (23)

i.e., k is the Greens function from (10). The characteristic equation of (23) is
Da2 − va− α = 0 with solutions a1 > 0 and a2 < 0, given by

a1,2 =
v

2D
±

√

v2

4D2
+
α

D
. (24)

Using the asymptotic boundary conditions for x→ ±∞ and the matching con-
dition at x = 0, we find that k is of the form

k(x) = A exp(a1x), x ≤ 0 and k(x) = A exp(a2x), x ≥ 0. (25)

The value of the constant A is determined by the condition
∫ ∞

−∞
k(x)dx = 1,

which leads to
A =

a1a2

a2 − a1
=

α
√

D(v + 4α)
. (26)

Alternatively, this kernel can be expressed bu substituting x → x − vt in (2),
α =const. in (5) and inserting the result in (1). In the special case v = 0,
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Figure 2: The picture on the left shows the dispersal kernel (25) with D = 1, α =
1 and v = 1, 2, 3 in decreasing height of the peak, solid lines. For comparison,
the symmetric kernel for v = 0 is plotted as the dashed line. The plot on the
right gives the critical domain size as a function of the advection as in (27).
The parameters are D = 1, α = 1 and r = 0.5. The solid line is the analytical
expression (27), stars are numerical results computing the eigenvalue of the
integral operator (47), using Simpson’s rule on 1401 data points in the interval
[0, 1].

the Laplace kernel (6) results. We plot the shape of k in Figure 2 for different
values of v while keeping D,α constant. In Appendix 8.5, we contrast the kernel
derived here for an infinite domain with a kernel on a finite domain with mixed
boundary conditions of the same type as in [32, 36].

4.2 Critical domain size

From the previous section we know that the population persists unconditionally
if r > 1. For r < 1, we have to find L, such that ν(L) = 1−r, see (16). This can
be calculated analytically. In Appendix 8.6, we convert the integral equation
(47) into a differential equation, extending earlier work for symmetric kernels
[20, 40], and obtain the following expression for L in terms of the eigenvalue ν
and the dispersal related constants a1,2 from (24):

L =
4 arctan

(√

4a1|a2|
ν(a1−a2)2

− 1
)−1

(a1 − a2)
√

4a1|a2|
ν(a1−a2)2

− 1
. (27)

Setting ν = 1 − r, we can hence determine the critical domain size, which we
plot in Figure 2 as a function of the advection speed v. As expected, the critical
domain size is an increasing function of advection speed. From the plot, it
appears that v = 2 is the critical advection speed, above which the population
cannot persist in a domain of any length. In (27), L approaches infinity as the
square root in the denominator approaches zero. Hence, the critical advection
speed is defined by

ν = 1 − r =
4 α

D
v2

D2 + 4 α
D

. (28)
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Figure 3: The hyperbolas are the moment generating function M(s) (29) for
three different values of v with D = 1 and α = 1. The straight lines correspond
to the left hand side of (18). The slopes of these lines correspond to the spread
speeds c± according to (19). For a more thorough explanation, see correspond-
ing text. For v = 0, upstream and downstream spread speed are the same. For
v = 1 the speed is faster downstream than upstream. For v = 2 the upstream
spread stops.

For the set of parameters above, v = 2 is indeed the critical advection speed.

4.3 Spread speed

We use formulas (18, 19) and Theorem 3.2 to determine the speed of spread.
The moment generating function for the generalized Laplace kernel (25) is given
by

M(s) =
a1a2

(a1 + s)(a2 + s)
− a1 < s < −a2. (29)

In Figure 3, we plot the hyperbola M(s) with y-intercept M(0) = 1 for three
different values of the advection speed v. According to (18), we also plot straight
lines with slope c, the propagation speed, and y-intercept 1− r < 1. As given in
(19), we plot these straight lines for minimal values of |c|, such that the straight
line and the hyperbola have a point in common, i.e., we plot the case that the
line is tangent to the hyperbola. The resulting slopes give the minimal wave
speed.

We find exactly two tangent lines. One of them (dash-dot line) has always
positive slope, independently of the advection speed v ≥ 0. This slope is the
spread speed c+ in the direction of advection. It increases with advection. For
the other tangent line, we distinguish two cases. First note that the hyperbola
is always positive since we assume to be k nonnegative. If now r > 1, then the
y-intercept of the straight line is negative, and hence the (dashed) tangent line
will always have negative slope. This slope corresponds to c−, the spread speed
against the advection. That means if r > 1, then the population can always
invade against the advection. If, on the other hand, r < 1, then the tangent
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line has zero slope if the minimum of M(s) equals 1 − r. If the minimum is
smaller than 1 − r, then also the dashed tangent line has positive slope. Since
the slope corresponds to c−, and since the minimum of M(s) is decreasing
with increasing advection, we find a switch in the population’s ability to invade
against the advection. For small values of v > 0, the population can invade
against the advection, for large values of v > 0, the population retreats with the
advection.

To compute the critical advection velcity at which the switch happens, we
compute the minimum of M(s) as

M

(

−a1 + a2

2

)

= − 4a1a2

(a1 − a2)2
> 0. (30)

Therefore, the critical advection speed is given by

1 − r = − 4a1a2

(a1 − a2)2
, or v2 = 4

r

1− r
αD. (31)

After some rearranging, we find that (31) is exactly the same as (28). Hence,
the advection velocity above which a population cannot persist in a domain
of arbitrary length is exactly the same as the advection velocity at which the
population stops spreading upstream and starts retreating downstream. This
connection between the two ecologically important quantities critical domain
size and invasion speed in systems with advection was first hinted at in [36] and
then demonstrated in the context of the PDE-system (10) in [32].

4.4 Upstream settling probability

The probabilities that, after a dispersal event, an individual settles down- or
upstream from its initial location are given by

Pdown =

∫ ∞

0

k(x)dx =
a1

a1 + |a2|
Pup = 1 − Pdown. (32)

For r < 1, we compute a critical upstream-settling probability, below which the
population cannot persist or spread against the advection. We insert the critical
advection velocity (31) into (24) and find

P ∗
down =

1 +
√
r

2
, P ∗

up =
1 −√

r

2
, (33)

as the critical downstream and upstream probabilities, respectively. This result
is surprising since the two quantities depend only on the population dynamics
parameter and not on the movement related parameters α and D. Here lies a
chance to test the predictions of the model without having to estimate α and D,
provided we can estimate Pup. Later in the paper (Figure 6), we plot the critical
domain size as a function of the downstream settling probability and compare
it to the case of a fat-tailed kernel.
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5 Two modes of dispersal

In the case without advection, it is known, that the shape of the tail of the
dispersal kernel has virtually no influence on the critical domain size [24]. On the
other hand, the invasion speed for systems without advection crucially depends
on the shape of the tail of the dispersal kernel [19]. Even a tiny fraction of
long distance dispersers can have a huge effect on the invasion speed. In the
dispersal model of diffusion and settling, longer dispersal distances result from
higher diffusion rate or lower settling rate. In the previous section, we showed
that in systems with advection, there is a close relationship between critical
patch size, critical advection velocity and invasion speed. In this section, we
explore how this relationship depends on the shape of the tail of the kernel.

We assume that individuals have two different dispersal modes and choose
between those with probabilities p and 1 − p, respectively. We assume that
both dispersal modes can be described by the simple advection-diffusion-settling
model (22), but with possibly different parameters. Hence, the movement model
is given by

z1,t = D1z1,xx − v1z1,x − α1z1,

z2,t = D2z2,xx − v2z2,x − α2z2,
(34)

with initial conditions z1(0, x) = (1 − p)δ(x), z2(0, x) = pδ(x). Since there is
no interaction between the two different dispersal modes, the resulting kernel is
simply the weighted sum of the kernels associated with each mode, i.e.,

k = (1 − p)k1 + pk2, (35)

where k1,2 are given in (25) with the appropriate parameters. We are thinking
of the z2-compartment as the long-distance dispersers, i.e., we want k2 to have
fatter tails than k1, and we assume that p is small. All other parameters being
equal, k2 will have fatter tails than k1 if eitherD2 > D1 or α2 < α1. The effect of
varying v1,2 depends on whether we are looking at the upstream or downstream
direction. For simplicity and in order to compare the results of this section with
the ones from the previous section, we restrict ourselves to the case v1 = v2.

We first explore the case of varying D2 at equal settling rates α1 = α2.
In Figure 4 we plot the critical domain size as a function of the advection
speed for three different values of D2 and for fixed p = 0.1 We also plot the
critical advection speed at which the upstream spread is zero as a vertical line.
We observe the following. At low advection speeds, the critical domain size is
indeed insensitive to changes in D2, i.e., it does not depend strongly on the tail
of the dispersal kernel. The critical domain size increases with increasing D2,
reflecting higher loss at higher diffusion rates. At higher advection speeds, the
picture is different. The critical domain size does depend crucially on D2 and
it decreases with increasing D2. Whereas increasing D2 increases the loss from
the domain downstream, it also increases the probability that a few individuals
move upstream. Summarizing in biological terms, at small advection speeds it
is important to keep many individuals in the domain, at large advection speeds
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Figure 4: Left: The critical domain size as a function of the advection speed
with dispersal kernel (35). The parameters are D1 = 1, α1 = α2 = 1, r =
0.5, p = 0.1. The varying parameter is D2 = 1 (solid), D2 = 5 (dash-dot) and
D2 = 10 (dashed). The vertical lines give the critical advection speed for up-
stream invasion from formula (18). The values are v = 2, v = 2.7948, v = 3.7114
for D2 = 1, D2 = 5, D2 = 10, respectively. Right: The critical domain size as
a function of the advection speed with dispersal kernel (35). The parameters
are D1 = D2 = 1, α1 = 1, r = 0.5, p = 0.1. The varying parameter is α2 = 0.1
(solid), α2 = 1 (dash-dot) and α2 = 10 (dashed). The vertical lines give the
critical advection speed for upstream invasion from formula (18). The values
are v = 1.8321, v = 2, v = 2.1833 for α2 = 0.1, α2 = 1, α2 = 10, respectively.

it is more important to have a few individuals dispersing against the advection.
The critical advection speed increases with increasing D2, which was to be
expected since the tails of k get fatter. The curves for the critical domain size
approach the straight lines for the critical advection speed for upstream spread,
and hence, the critical advection speed for persistence and invasion agree, as in
the previous section.

Next, we vary the settling rate α2 at equal diffusion coefficients D1 = D2.
The results are plotted in Figure 4, which includes the critical domain size and
the critical advection speed for upstream spread just as in the previous plot.
The two most important observations are that the curves for different α2 do
not intersect and that the curve with the higher α2 is always the lower one.
Hence, independently of the strength of advection, higher settling rate always
promotes species persistence and ability to spread upstream. In view of our
earlier considerations, this is a surprising result, since decreasing α2 gives fatter
tails of k, yet it reduces the critical advection velocity instead of increasing it
as above when we varied D2.

There are several ways to explain why increasing D2 and decreasing α2,
which both produce fatter tails of kw, have opposite effects on the domain
length and the invasion speed. Whereas settling rate and diffusion coefficient
appear as a quotient in formulas (6),(24), which determine the tail of the kernel,
they appear as a product in formula (31) for the critical velocity of upstream
propagation. Increasing D2 in (24) decreases both a1, |a2| to zero, whereas de-
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creasing α decreases |a2| to zero and a1 to v/D. Therefore, increasing D2 makes
the kernel “more symmetric”, whereas decreasing α2 makes is “less symmetric”.
This can also beseen by computing the skewness of k from (25) as

−2
v(v2 + αD)

(v2 + 2αD)
√
v2 + 2αD

, (36)

which is a decreasing function in the product αD. In more biological terms: in
systems with advection, the probability of moving downstream is higher than
the probability of moving upstream. Increasing the diffusion rate increases the
probability of moving upstream, increasing the settling rate decreases it. Lastly,
dimensional analysis gives the same result. Characteristic length scales are
√

D/α for a system without advection and v/α for a system without diffusion.
The balance between up- and downstream movement is hence give as

√

D/α ∼ v/α, or αD ∼ v2. (37)

6 Dispersal by extremes

In this last section, we explore the ideas from the previous paragraphs in the
context of a dispersal kernel whose tails are not exponentially bounded. Such
kernels are also known as “fat-tailed” kernels and describe a situation where long
distance dispersal events are not rare. Different phenomena, such as accelerating
invasions have been shown to occur in that case [19]. We follow the ideas from
Section 2 to incorporate unidirectional flow in such kernels. Then we numerically
investigate how the critical domain size depends on the strength of the flow.

As described in Section 2, we compute the appropriate fat-tailed kernel by
integrating the Cauchy distribution (3) with x replaced by x − vt, multiplied
with the probability of stopping times (5) according to (1). This integration
yields the asymmetric fat-tailed dispersal kernel

k(x) =
α

(µ2 + v2)π
<

(

(µ+ vi)E1

(

−α(v − µi)x

µ2 + v2

)

exp

(

−α(v − µi)x

µ2 + v2

))

.

(38)
In Figure 5 we plot this kernel for various values of v. The critical domain
length for the fat-tailed kernel (38) is plotted as a function of advection speed
in Figure 6. As expected, it increases with advection speed but it seems to
remain finite even for large v. In order to compare the results for the fat-tailed
kernel here with the results from the asymmetric exponential kernel from Sec-
tion 4, we plot the critical domain length in both cases as a function of the
probability of settling upstream from the point of release, see Section 4.4. If the
advection speed is zero, then the probability of settling upstream from the point
of release is 0.5. As the advection speed increases, the probability of settling
upstream decreases. In the limit as the advection speed approaches infinity,
the upstream probability goes to zero. From the plot in Figure 6 we make two
observations. The fat-tailed kernel (38) produces finite critical domain lengths
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Figure 5: The fat-tailed kernel from (38) with parameters µ = 1, α = 0.5 for
different values of advection velocity v.
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Figure 6: On the left, the critical domain length for the fat-tailed kernel (38) is
plotted as a function of the advection velocity. The parameters are ρ = 1, r =
1, α = 1. On the right, the critical domain length is given as a function of the
upstream settling probability. The solid line represents the fat-tailed kernel (38)
with parameters ρ = 1, r = 1, α = 1. The dashed and dash-dot line are for the
exponential kernel (25) with parameters are α = 1, r = 0.5. The dashed line
corresponds to D = 1, the dash-dot line to D = 4.
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for smaller upstream probabilities than the exponential kernel, i.e., the popu-
lation can persist for larger advection speeds. Secondly, the critical upstream
probability for the exponential kernel as computed in (33) is independent of the
dispersal parameters D and α and only depends on the population growth rate
r.

7 Discussion

In this work, we consider integrodifferential models that incorporate population
dynamics and individual movement described by dispersal kernels. Extending
previous work [30, 32], we consider not only kernels arising from simple random
walks, but also including 1) unidirectional flow, producing asymmetric kernels;
and 2) long distance jumps (Lévy flight motion), producing fat tailed kernels.
These derivations contribute to the effort to incorporate mechanistic descrip-
tions of individual movement into population models in order to understand
the impact of details of individual movement on population dynamics under
different conditions.

We obtain general criteria for persistence of a population by deriving the
critical domain size for integrodifferential equations. We also extend existing
work on the rate of spread [26] and prove that the linear conjecture holds for
these systems. Further, we show that in systems with advection there exists
a critical advection speed that links population persistence and spread as fol-
lows. At a critical advection speed, the population can no longer persist on any
finite domain (i.e., the critical domain size is infinite). This critical advection
speed is the same as the one that causes upstream propagation to stall (i.e.,
the upstream propagation speed is 0). We show this result analytically for the
modified Laplace kernel and numerically for other kernels, for related results in
a PDE model, see [32].

It has been shown that in systems without advection the shape of tails of
the dispersal kernel have little effect on persistence [24], but may be a major
determinant of the spread rate of a population [19]. Our results show that in
systems with advection, the shape of the tails of kernels influences both. With
fat-tailed kernels, a population is able to both persist and spread upstream in
conditions with higher flow speed.

Whereas the current model gave us valuable insight in dispersal in stream
populations and possible explanations for the drift paradox, we plan to continue
these investigations using more realistic biological models. The techniques in
this paper will be extended to cover, e.g., resource dynamics and predator-prey
interaction. Most importantly, we plan to model a population of larvae and
adult stage where adults emerge from the stream and fly upstream to deposit
eggs. This mechanism is the most commonly quoted biological hypothesis to
solve the drift paradox. Finally, as we are dealing with low population numbers,
we intend to compare the results of these deterministic models here to stochastic
simulations.
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8 Appendix

8.1 Derivation of the Cauchy distribution for individuals

undergoing a random walk

The derivation we use follows [11]. Let Y be a random variable assuming its
values on the integer lattice and describing the number of space steps that an
individual jumps each time step. The probability that the individual jumps k
steps to the right (Pr(Y = k) = pk) is defined as to be:

pk =

{

1 − 2m
π

if k = 0
m

π|k|(|k|+1) if k > 0.
(39)

The parameter m, restricted to 0 < m < π/2, describes the likelihood of dis-
persing. It is straightforward to show that the pks sum to one. We produce a
random walk on the grid of spacing h with h > 0 by letting the walker start
at point 0 at instant 0, and defining the location of the individual after n time
steps to be

Xn = hY1 + hY2 + . . .+ hYn, (40)

where Yn are independent, identically distributed random variables, all having
the same distribution as Y . We relate space steps h and time steps τ by the
speed s, so h = sτ . At time t = nτ = nh/s we have h = ts/n, so that the
spreading time associated with distance Xn is to

Xn

ρ
=

t

mn
(Y1 + Y2 + . . .+ Yn) , (41)

where ρ = ms is a speed of spreading. The distribution of the right hand side
of (41) converges to the distribution of normalized Cauchy distribution

1

π

t

x2 + t2
(42)

in the limit as n approaches infinity [11]. Thus Xn approaches (3) in the same
limit. For any given fixed time t and speed s the limit n approaches infinity is
equivalent to the space step h approaching zero.
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8.2 Dispersal kernels for multiple dispersal modes

In extending the simple diffusion model for individual movement, we assume
that individuals have two different modes of dispersal and that they can switch
between these modes. We show how the dispersal kernel can be conputed ex-
plicitly for constant rates and that the kernel is exponentially bounded. The
description for individual movement is given by

z1,t = D1z1,xx − v1z1,x − µz1 + σz2 − α1z1,

z2,t = D2z2,xx − v2z2,x − µz2 + σz1 − α2z2.
(43)

The parameters Dj , vj and αj are the diffusion rates, the advection speeds and
the settling rates for the different stages. The parameters µ and σ are switching
rates between the stages. Initially, there is a certain fraction of the population
in each stage, i.e., z1(0, x) = pδ(x), and z2(0, x) = (1 − p)δ(x). The density of
stoping points from the respective stages is given by

kj(x) =

∫ ∞

0

αjzj(t, x), (44)

for j = 1, 2 and hence the kernel is given by k(x) = k1(x) + k2(x).
The case α1 = σ = 0 can be interpreted as two succesive modes of dispersal.

In the case without advection, this has been treated by [30]. If we only consider
movement, not settling (α1,2 = 0), then we can study the shape of the spatial
distribution of z and w as it evolves in time. For systems like (43) but without
advection, [33] have constructed an explicit solution and computed asymptotic
speeds of spread for a linear model.

From (43) we deduce that kz, kw satisfy the following system

−pα1δ = D1k
(2)
1 − v1k

(1)
1 − (µ+ α1)k1 + σ

α1

α2
k2,

−(1 − p)α2δ = D2k
(2)
2 − v2k

(1)
2 − (σ + α2)k2 + µ

α2

α1
k1,

(45)

where k
(l)
j denotes the l-th derivative of kj . Restriction to the interval (0,∞), and

repeated differentiation and substitution of (45) yields a fourth order equation
for k1 as follows

D1k
(4)
1 −

(

v1 + v2
D1

D2

)

k
(3)
1 −

(

µ+ α1 −
v1v2D1(σ + α2)

D2

)

k
(2)
1

+
v1(σ + α2) + v2(σ + α1)

D2
k

(1)
1 +

(σ + α2)(µ+ α2) − µσ

D2
k1 = 0.

(46)

This is a linear equation with constant coefficients, therefore the solution is read-
ily determined and is exponentially bounded. The coefficients are determined
by the usual conditions, i.e., the kernel has to integrate to unity, it has to be
continuous at zero and the jump conditions at zero have to be satisfied.
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8.3 Proof of Theorem 3.1

The exponential ansatz u(t, x) = exp(λt)φ(x) in the linearization (14) leads to
the eigenvalue problem

νφ(x) = I [φ](x) =

∫ L

0

k(x, y)φ(y)dy, (47)

with ν = λ+1− r. The solution u of (14) will grow if λ > 0, and decay if λ < 0.
Hence, the critical value is given by λ = 0 or ν = 1 − r.

We now show that the dominant eigenvalue ν∗ is a monotone increasing
function of domain length. For two domain lengths L2 > L1, we denote Ij as
the linear operator given by (47) with L replaced by Lj , j = 1, 2. We denote ν1,2

as the corresponding dominant eigenvalues and φ1,2 as corresponding (positive)
eigenfunctions. Then I2 ≥ I1 and hence, ν2 ≥ ν1. We show that the inequality
is in fact strict. We write

I2φ2 = I1φ2 +

∫ L2

L1

k(x, y)φ2(y)dy.

Since φ2 > 0, the last term is positive and hence there is an ε > 0 such that

f : =

∫ L2

L1

k(x, y)φ2(y)dy > εφ1.

Then the equation ν2ψ = I1ψ + f has no solution for ν2 ≤ ν1 [21]. But φ2 is a
solution and hence, necessarily ν2 > ν1.

If the dispersal kernel is continuous, then the resulting integral operator on
L2[0, L] is completely continuous and, for positive kernel, has a unique simple
dominant eigenvalue [21]. Therefore, our assumptions are valid for all kernels in
Sections 4 and 5. In fact, the conditiond that the kernel be continuous can be
weakened by saying that the kernel to the power 1+q, q ≥ 1 has to be integrable
on [0, L]2 [21]. Numerically, the fat-tailed kernel (7) can be bounded by x−0.4,
which is square integrable, and hence, the assumption holds. This is an area of
future research.

8.4 Proof of Theorem 3.2

By scaling time, we may assume µ = 1 in equation (9). It was shown in [26]
that c− ≤ c∗− and c∗+ ≤ c+. In order to show the reversed inequalities, we follow
Aronson’s proof [2] and show that for all c ∈ (c−, c+) there is a subsolution of
(9) which expands at speed c. Due to a comparison principle, the true solution
has to expand at speed at least c.

We make the following technical requirements on the kernel k [2]. We assume
k ≥ 0 and supp(k) = R. We assume that the moment generating function M(s)
exists for s ∈ (ŝ−, ŝ+), with ŝ− < 0, ŝ+ > 0. We assume furthermore that the
function

Aλ(s) = [(M(s) + λ)/s], s 6= 0 (48)
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has a exactly one minimum at s̄+ ∈ (0, ŝ+) and one maximum at s̄− ∈ (ŝ−, 0).
In addition, Aλ(s) is increasing on (ŝ−, s̄−)∪(s̄+, ŝ+) and decreasing on (s̄−, 0)∪
(0, s̄+). Finally, we assume that the function x 7→ exp(sx)k(x) is decreasing for
large enough x. Note that with this notation, c± = Aλ(s̄±), with λ = f ′(0)− 1.

We first switch to a moving coordinate frame and show a comparison prin-
ciple for the resulting integrodifferential operator. The function W (t, ξ) =
u(t, ξ + ct) satisfies

Wt = cWξ + f(W ) +

∫

k(ξ− η)W (t, η)dη =: Qc[W ], W (0, ξ) = u(0, ξ). (49)

Lemma 8.1 [Comparison] Let V,W be bounded and continuously differentiable
functions which satisfy on R × R

+

Vt −Qc[V ] ≥Wt −Qc[W ] (50)

and V (0, ξ) > W (0, ξ) on R. Then V > W on R × R
+.

For the proof, let Z = V −W and assume that Z > 0 in R × [0, t0) and
Z(t0, ξ0) = 0 with Zξ = 0. Then

Zt(t0, ξ0) =

∫

k(ξ0 − η)Z(t0, η)dη > 0, (51)

and hence, Z > 0. As a consequence, we note that if W (0, ξ) ≥ 0 and W (0, ξ) 6≡
0, then W > 0 on R × R

+.

Lemma 8.2 [Subsolution] Let c ∈ (c−, c+) be given. Then there exists a func-
tion V0(ξ), which is positive on (0, π/γ), such that Qc[V0] ≥ 0 and

Qc[εV0] > 0 on (0, π/γ) (52)

for all sufficiently small ε, γ > 0.

Before we prove Lemma 8.2, we demonstrate how the subsolution and re-
peated use of the comparison principle are employed to prove the theorem.
Suppose that W (0, ξ) and c ∈ (c−, c+) are given and W (t, ξ) satisfies (49). We
need to show that W (t, ξ) → ū as t → ∞ for all ξ ∈ R. At first, Lemma 8.2
ensures the existence of V0(ξ), which is positive on (0, π/γ) for small enough
γ > 0. We apply the comparison principle to εV0 and V, defined as the solution
to

Vt = Qc[V ], V (0, ξ) = εV0(ξ), (53)

in order to see that V (t, ξ) ≥ εV0(ξ) for all t > 0. Next, the comparison principle
is applied to V (t, ξ) and Ṽ (t, ξ) = V (t + h, ξ) for any fixed h > 0. As a result,
Ṽ ≥ V and therefore V (t, ξ) is a non-decreasing function in t for each fixed ξ.
Upon comparing V (t, ξ) with the constant ū, we get that V is bounded by ū,
and therefore V (t, ξ) → q(ξ) for each ξ. Following Aronson [2], one can actually
show that q(ξ) ≡ ū.
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Finally, for T sufficiently large, there is a bound m > 0 such that W (T, ξ) ≥
m > 0 on (0, π/γ). We choose ε > 0 such that εV0 < m. We now apply the
comparison principle to W (t, ξ) and the solution V (t − T, ξ) of Vt = Qc[V ],
V (T, ξ) = εV0(ξ), to obtain that W (t, ξ) ≥ V (t − T, ξ). This completes the
proof.

We now prove Lemma 8.2. We first look at the linear equation

Wt = Lc[W ] : = cWξ + λW + k ∗W, (54)

where ∗ denotes the convolution. For s ∈ (s̄−, s̄+)\{0}, we define

V̂0(ξ) = e−sξ sin γξ. (55)

After a little bit of algebra, we find that Lc[V̂0](ξ) is given by

[

−cs+ λ+

∫

esηk(η) cos(γη)dη

]

V̂0 +

[

cγ −
∫

esηk(η) sin(γη)dη

]

e−sξ cos γξ.

Therefore, Lc[V̂0] > 0 on (0, π/γ) if the following two conditions are satisfied

c <
1

s

[

λ+

∫

esηk(η) cos(γη)dη

]

=: Aλ(s, γ), s > 0 (56)

c > Aλ(s, γ), s < 0 (57)

c =
1

γ

[
∫

esηk(η) sin(γη)dη

]

=: B(s, γ) (58)

We first establish some properties of the functions Aλ and B. As γ → 0, we
have uniform convergence on compact subsets of (s̄−, s̄+)\{0} of

Aλ(s, γ) → Aλ(s), B(s, γ) → B(s) : =

∫

ηesηk(η)dη.

The function B(s) is increasing. Differentiation givesA′
λ(s) = (B(s)−Aλ(s))/s.

Hence, due to the assumptions on Aλ, we furthermore see that B < Aλ on
(0, s̄+), B > Aλ on (s̄−, 0), and B(s̄±) = Aλ(s̄±). Note aside that B(0) is the
average dispersal distance, and since B is an increasing function c− < B(0) <
c+, i.e., the interval (c−, c+) is never empty.

We now return to the construction of V̂0, i.e., we show that conditions (56–
58) can be satisfied simultaneously. Without loss of generality, we may assume
c > B(0), and hence restrict ourselves to s > 0. First of all, we can choose
λ < f ′(0) − 1 such that c < Aλ(s̄+). Then we can choose s0, s1, δ, γ > 0 such
that

B(s0) + δ < c < B(s1) − δ, and |B(s, γ)−B(s)| < δ.

By continuity, there is a value s(γ) such that B(s(γ), γ) = c for all sufficiently
small γ. Obviously, we can choose γ small enough such that Aλ(s(γ), γ) > c.
Hence, the two conditions (56,58) can be satisfied simultaneously.
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By the same argument as [2], one can show that the modified function

V0(ξ) = V̂0(ξ), ξ ∈ [0, π/γ], V0(ξ) = 0, ξ > π/γ, (59)

also satisfies Lc[V0] > 0 on (0, π/γ).
As a last step, we have to show that for small enough ε > 0 we haveQc[εV0] >

0 on that same interval. Note that λ < f ′(0)− 1 implies that λε < f(ε) − ε for
small enough ε > 0. Hence, we have Qc[εV0] > Lc[εV0] > 0, on (0, π/γ), which
completes the proof.

8.5 The advection diffusion kernel for bounded domains

Movement is modeled by (22) on the interval [−L/2, L/2] with initial condition
z(0, x) = δ(x− y). The boundary conditions are

(zx − v

D
z)(t,−L/2) = 0, z(t, L/2) = 0. (60)

We interpret these conditions as a stream where individuals cannot enter or
leave at the upstream end and are washed out at the downstream end [36]. We
nondimensionalize equation (22) by setting X = x/L, T = αt, Z = Lz, which
gives

ZT =
1

L̃2
ZXX − ṽZ − Z, Z(T, 1/2) = 0 = (ZX − L̃2ṽZ)(T,−1/2) (61)

where L̃2 = αL/D and ṽ = v/(αL). For convenience, we write the variables t, x
in lower case letters again. We want to find the non-dimensional kernel given by
κ(x, y) =

∫ ∞

0
αZ(t, x)dt. The function W (t, x) = exp(−L2vx/2)Z(t, x) satisfies

Wt =
1

L2
Wxx − βW, (62)

where β = 1 + v2L2

4 . Separating variables W (t, x) = T (t)X(x), we get the two
independent equations T ′ = −(λ2 + β)T and X ′′ = −λ2L2X, for some λ2 > 0.
The boundary conditions applied to the equations for X result in the defining
condition

λ = −vL
2

tan(λL). (63)

We denote its infinitely many (symmetric) nonzero solutions by λn, n = 1, 2, ...
The corresponding family of orthogonal solutions is given by

φn(x) = − tan(λnL/2) cos(λnLx) + sin(λnLx) (64)

with norm

‖φn‖2
2 =

1

2
(1 + tan2(λnL/2)).
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Figure 7: The kernel with advection, no-flux boundary conditions at the left
end, zero boundary conditions at the right end, release point in the middle, for
v = 0.2 (top curve), v = 1 (middle) and v = 5 (bottom).

The solution of (62) can hence be written as an infinite sum where each term
is of the form cne

−(λn+β)tφn(x). To find expressions for the coefficients cn we
approximate the delta distribution by the top hat function,

δm(x − y) =

{

2m, |x− y| ≤ 1/m
0, else

Expanding the approximate initial condition

δm(x− y)e−
vL

2

2
x =

∑

cnφn(x)

and using the intermediate value theorem gives

cn =
e−

vL
2

2
yφn(y)

‖φn‖2
2

.

Hence, the nondimensionalized kernel is given by

k(x, y) = e−
vL

2

2
(y−x)

∑

n

1

λ2
n + 1 + v2L2

4

2

1 + tan2(λnL
2 )

S(x)S(y), (65)

where S(x) = (sin(λnLx) − tan(λnL/2) cos(λnLx)). In Figure 7 we plot this
kernel for three different advection speeds.

8.6 Exact derivation of the critical domain length

We determine the critical domain length for the kernel (25) by computing the
eigenvalue of the corresponding integral operator (47), extending earlier work
[20, 40]. Scaling the space variable by L gives

νφ(x) =

∫ 1

0

κ̃(x, y)φ(y)dy, (66)
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where κ̃ is defined as κ with aj , A replaced by bj = Laj , B = LA. Differentiating
(66) gives

νφ′(x) = b2νφ(x) + (b1 − b2)

∫ 1

x

Beb1(x−y)φ(y)dy. (67)

Differentiating again, we obtain

νφ′′(x) = (b2 − b1)Bφ(x) + b22νφ(x) + (b21 − b22)

∫ 1

x

Beb1(x−y)φ(y)dy. (68)

Substituting (67) into (68), we get the regular Sturm-Liouville problem

φ′′(x) = −b1|b2|
(

1

ν
− 1

)

φ(x)+(b1+b2)φ
′(x), φ′(0) = b1φ(0), φ′(1) = b2φ(1).

(69)
We apply the transformation ψ(x) = exp(− b1+b2

2 x)φ(x) to (69) and substitute
the original parameters back to obtain

ψ′′ = −L2 (a1 − a2)
2

4

(

4a1|a2|
ν(a1 − a2)2

− 1

)

ψ, (70)

together with the boundary conditions

ψ′(0) = L
a1 − a2

2
ψ(0), and ψ′(1) = −La1 − a2

2
ψ(1). (71)

Equations (70) and (71) constitute a Sturm-Liouville problem, which one can
solve for L as a function of ν [40], and the solution is given by formula (27).
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