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Abstract

We report on progress in algorithms for iterative phase retrieval. The theory of convex optimization
is used to develop and to gain insight into counterparts for the nonconvex problem of phase retrieval.
We propose a relaxation of averaged successive reflectors and determine the fixed point set of the related
operator in the convex case. A numerical study supports our theoretical observations and demonstrates
the effectiveness of the algorithm compared to the current state of the art.

1 Introduction

The phase retrieval problem is a classical inverse problem in optics that has received renewed interest in
applications to nonperiodic scatterers and macromolecules. While scattering from some structures allows
one explicitly to compute the phase from magnitude measurements [12], more general classes of scatterers
require the use of less direct methods. So called iterative transform methods pioneered by Gerchberg and
Saxton [11], and Fienup [10] are well established generic techniques for iteratively recovering the phase in
a variety of settings. Recent developments in imaging [9, 14, 18, 19, 21, 13, 20], have placed a premium on
improving the efficiency and stability of phase retrieval algorithms.

In this work we derive a stable and fast new strategy for phase retrieval, what we call Relaxed Aver-
aged Successive Reflectors (RASR), that falls under the category of iterative transform methods [15]. The
motivation for the RASR algorithm comes from recent work in which another new algorithm, the Hybrid
Projection Reflection algorithm (HPR), was presented [5]. The HPR algorithm was originally concieved as
a single parameter relaxation of the well known Douglas-Rachford algorithm applied to phase retrieval. The
HPR algorithm can also be viewed a special case of the three parameter difference map recently proposed
by Elser [7].

There are two fundamental and distinct issues that accompany these algorithms. The first is the incor-
poration of a priori information into the constraint structure of the algorithms. The second is the choice
of algorithm parameter values. Regarding the first issue, it is difficult to overestimate the effect of the
constraints on the mathematical properties and performance of the algorithms. There have been several
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studies on the choice of constraints in applications to crystallography [17, 16, 8]. We use a simple example
to illustrate how seemingly minor changes in the physical domain constraints can lead to algorithms that
appear very different. This has caused some confusion in the literature which we hope to clarify through
an examination of the abstract algorithmic structures behind the leading techniques. The choice of param-
eters also has a dramatic impact on the mathematical properties of the algorithms and hence performance.
Physical insight often provides the best (and only) basis for chosing values for the algorithm parameters, but
this is not always available or reliable. In the case of the HPR algorithm, our numerical experiments have
not provided an empirical basis upon which to make recommendations. A more mathematically rigorous
approach also appears to be difficult and has been found in only a few very special cases. For instance, in the
convex setting the convergence properties of the HPR algorithm are known for the unrelaxed case [4]. For
the relaxed HPR algorithm and the more general difference map a complete and mathematically rigorous
analysis has yet to be found. To circumvent the analytical barriers facing the difference map and the HPR
algorithm, we introduce the RASR algorithm, which is conceptually simple, analytically tractable and easy
to implement; moreoever, it outperforms the current state of the art. While the RASR algorithm coincides
with the HPR algorithm in a limiting case, it does not fall in the class of algorithms covered by Elser’s
difference map framework.

A precise statement of the leading algorithms is given in Section 2 In this same section we provide a
terse outline of the mathematical justification for the RASR algorithm. In Section 3 we demonstrate the
effectiveness of the algorithm and make practical recommendations for implementation.

2 Phase Retrieval and Iterative Transform Algorithms

2.1 Phase retrieval

We are interested in recovering the scattering amplitude u∗ of a medium that has been illuminated by an
electromagnetic wave from measurements of its spatial coherence function and other a priori information.
For the sake of concreteness, we assume that u∗ is a real-valued, nonnegative function supported on some
prescribed bounded set D, that is L 3 u∗ : ZN → R+ with supp(u∗) ⊂ D ⊂ ZN . Here L is a Hilbert
space of square integrable functions, ZN is the domain – in this case the physical domain – corresponding
to discrete (i.e. sampled) waves, R+ is the positive reals and supp(u∗) is the support of u∗. Writing this in
terms of constraints, we have u∗ ∈ S+ ⊂ L, where S+ is the set of nonnegative functions in L with support
on D. If we require only that the functions be supported on D, we denote the corresponding constraint
set by S. The sets S and S+ are refered to as the physical domain constraints. The other constraint we
consider comes from the the data, m, which we presume consists of noisy magnitude measurements in the
far field, thus m is proportional to the modulus of the Fourier transform of u∗. We therefor refer to the
domain of the image data m as the Fourier domain. In terms of constraint sets, we write that u∗ ∈ M where
M =

{
v ∈ L | |Fv| = m

}
and Fv denotes the discrete Fourier transform of v. We shall refer to the set M

as the Fourier, or image domain constraint. Note that S+ is a convex set, while M is nonconvex. It is the
nonconvexity of the magnitude constraint that does not allow us to transfer classical convergence results for
the most common algorithms to the case of phase retrieval. For further discussion see [3].
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2.2 Iterative Transform Algorithms

We formulate the problem of phase retrieval as a feasibility problem:

find u ∈ S+ ∩M.

Iterative transform techniques are built upon combining projections onto the sets S+ and M in some fashion.
While they are seldom written as fixed-point algorithms, iterative transform algorithms can usually be put
into the form un+1 = T un where T is a generic operator in which the projections and averaging operations are
embedded (see [5,3]). For added control and flexibility, one often includes a relaxation strategy parameterized
by β. We write the relaxed operator with generic, single parameter relaxation strategy V (there can be
infinitely many such strategies) as V(T , β). In order effectively to exploit relaxations for improved algorithm
performance it is necessary to understand the mathematical properties of the operator V(T , β) – first and
foremost of these is the characterization of the set of fixed points, Fix V(T , β). We return to this issue at
the end of this section.

The operators we study are built upon projectors and reflectors. Denote by PC an arbitrary but fixed
selection, or projector, from the possibly multi-valued projection onto a subset C of L. Closely related is the
corresponding reflector with respect to C

RC = 2PC − I,

where I is the identity operator. By definition, for every u ∈ L, PC(u) is the midpoint between u and RC(u).
Specializing to our application, the projector, PMu, of a signal u ∈ L onto the Fourier magnitude constraint
set M is given by

PM(u) = F−1(v̂0), where v̂0(ξ) =

m(ξ)
Fu(ξ)
|Fu(ξ)|

, if Fu(ξ) 6= 0;

m(ξ), otherwise .
(1)

Here, F−1 is the discrete inverse Fourier transform and v̂0 a selection from the multi-valued Fourier domain
projection. For further discussion of this projector see Luke et al [15, Corollary 4.3] and [6]. We return to
the issue of multivaluedness of the magnitude projection in Section 3. The projection of a signal u ∈ L onto
S+ is single-valued (since S+ is convex), and is given by

(∀x ∈ ZN )
(
PS+

(u)
)
(x) =

{
max{0, u(x)}, if x ∈ D;
0, otherwise.

(2)

One of the best known iterative transform algorithms is Fienup’s Hybrid Input-Output algorithm (HIO)
[10]. We use this as our benchmark for performance. In the present setting, HIO is given as

(∀x ∈ ZN ) un+1(x) =

{(
PM(un)

)
(x), if x ∈ D and

(
PM(un)

)
(x) ≥ 0;

un(x)− βn

(
PM(un)

)
(x), otherwise.

(3)

There have been several attempts to identify the HIO algorithm with a broader class of relaxation strategies
that can be written as fixed point iterations, that is, in the form un+1 = V(T , βn)un.. Bauschke, Combettes
and Luke [3] proved that, when only a support constraint as opposed to support and nonegativity is applied
in the physical domain, then the HIO algorithm with β = 1 corresponds to the classical Douglas-Rachford
algorithm for which convergence results in the convex setting are well known. In a subsequent article
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Bauschke Combettes and Luke [5] proved that, for physical domain support constraints only, the HIO
algorithm corresponds to a particular relaxation of the Douglas-Rachford algorithm, that is

(∀x ∈ ZN ) un+1(x) =

{(
PM(un)

)
(x), if x ∈ D

un(x)− βn

(
PM(un)

)
(x), otherwise,

(4)

is equivalent to
un+1 = 1

2

(
RS(RM + (βn − 1)PM) + I + (1− βn)PM

)
(un). (5)

Independent of these results, Elser [7] showed the correspondence between the HIO algorithm with only
support constraints in the physical domain and the difference map,

un+1 = (I + β (PS ((1− γ2)PM − γ2I) + PM ((1− γ1)PS − γ1I))) (un), (6)

for the case where γ1 = −1 and γ2 = 1/β. The correspondence between the difference map and the HIO
algorithm does not carry over to the case of support and nonnegativity constraints. The correct formulation
of the corresponding algorithm was given in [5, Proposition 2], where it is shown that

un+1 = 1
2

(
RS+

(RM + (βn − 1)PM) + I + (1− βn)PM

)
(un). (7)

is equivalent to

(∀x ∈ ZN ) un+1(x) =


(
PM(un)

)
(x), if x ∈ D and(

RM(un)
)
(x) ≥ (1− βn)

(
PM(un)

)
(x);

un(x)− βn

(
PM(un)

)
(x), otherwise.

(8)

In [5] the fixed point iteration (7) is called the Hybrid Projection Reflection (HPR) algorithm, which is
equivalent to the difference map (with γ1 = −1 and γ2 = 1/β) applied to support and nonnegativity
constraints:

un+1 =
(
I + β

(
PS+

((1− γ2)PM − γ2I) + PM

(
(1− γ1)PS+

− γ1I
)))

(un). (9)

It is important to note that, while the form of prescriptions of projection algorithms in terms of fixed
point iterations un+1 = V(T , βn)un does not depend on the underlying constraints, this is not the case for
prescriptions of the form (3), (4) and (8). As we have seen, slight changes in the constraint sets can result in
dramatic changes in the form of algorithms when written in this way. When written as fixed point iterations,
the effect of changing the constraint structure is seen in the mathematical properties of the operator rather
than the form of the algorithm.

Preliminary numerical results indicate that the HPR algorithm is a promising alternative to HIO – HPR
is more stable and, at least with simulated data, produces higher quality images. Detailed convergence
results have been obtained in [4] for the unrelaxed HPR algorithm (β = 1) in a convex setting. At this time,
however, there are no mathematically rigorous results proving convergence or suggesting how to choose the
relaxation parameter βn to improve performance. Another drawback to the HPR algorithm is that, while it
consistently delivers higher quality solutions than HIO, it can take longer to achieve this. The algorithm we
propose next addresses both the analytical drawbacks as well as the performance issues regarding the HPR
algorithm and the more general difference map.

The new algorithm we propose is given by the following: given any u0 ∈ L , generate the sequence
u0, u1, u2, . . . by

un+1 = V (T∗, βn)un (10)
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where
V (T∗, β) = βT∗ + (1− β)PM and T∗ = 1

2 (RS+
RM + I). (11)

To underscore the connection of this algorithm with the ASR algorithm studied in [4], we refer to (10) as
the relaxed averaged successive reflector (RASR) algorithm. For β = 1 the RASR, HPR, ASR, and the
difference map (γ1 = −1 and γ2 = 1/β) algorithms are equivalent. For β 6= 1 the RASR algorithm is
fundamentally different than HPR; moreover, it cannot be derived as a special case of the difference map
(9). The recursion (10) can be written analogously to (3) and (8). To see this, we proceed as in Proposition
2 of [5]. Given an arbitrary signal v ∈ L, let v+ = max{v, 0} and v− = min{v, 0} be its positive and negative
parts, respectively. Then (10) can be rewritten as

un+1 =
(
−XDc · βn(2PM − I)− [XD · βn(2PM − I)]− + PM

)
(un). (12)

There are 3 cases to consider: (i) If x ∈ D and (RMun)(x) ≥ 0, then (12) yields un+1 = PM ; (ii) if x ∈ D and
(RMun)(x) < 0, then (12) becomes un+1(x) =

(
((1− 2βn)PM + βnI) (un)

)
(x); (iii) if t /∈ D, then (12) can

also be written as un+1(x) =
(
((1− 2βn)PM + βnI) (un)

)
(x). Altogether this yields the following algorithm

(∀x ∈ ZN ) un+1(x) =


(
PM(un)

)
(x), if x ∈ D and

(
RM(un)

)
(x) ≥ 0;

βnun(x)− (1− 2βn)
(
PM(un)

)
(x), otherwise.

(13)

We summarize the above discussion in the following proposition.

Proposition 2.1. Algorithm (13) is equivalent to the recursion (10).

The update rule in algorithm (13) depends on the pointwise sign of the reflector
(
RM(un)

)
(x) whereas

the update rule for Fienup’s HIO algorithm (3) depends on the pointwise sign of the projector
(
PM(un)

)
(x).

The difference between the RASR update rule and that for HPR (8) is much starker. Also note that the
“otherwise” action is simply a relaxation of the conditional action in the HIO algorithm; this is, again, very
different than the HPR algorithm.

2.3 The RASR algorithm: convex analysis

To gain some insight into the behavior of the algorithm above, we study the behavior of the convex analog to
V (T∗, β). Let A and B be two closed convex subsets of L. Replace S+ and M by A and B respectively. Let
E ⊂ A denote the set of points in A nearest to B, and let F ⊂ B denote the set of points in B nearest to A.
The gap vector between A and B, denoted by g ∈ L, is defined by g = Pcl(B−A)

(0). Loosely interpreted, this
is a vector pointing from E to F with ‖g‖ measuring the smallest distance between A and B. For instance,
if A∩B 6= Ø then g = 0. For a more precise treatment see [1,2]. The convex counterpart to (11), the central
operator in the RASR algorithm, is defined by

V (T∗, β) = βT∗ + (1− β)PB, 0 < β < 1 where T∗ = 1
2 (RARB + I). (14)

When discussing convergence of projection-type algorithms, one must take care to distinguish between
consistent and inconsistent feasibility problems. In the current convex setting, consistent problems satisfy
A ∩ B 6= Ø; when A ∩ B = Ø the problem is said to be inconsistent. Inconsistent problems are common in
applications where the a priori information represented by the constraint sets is highly idealized, particularly
in the presence of noise. Bauschke, Combettes and Luke [4] show that the properties of the ASR algorithm
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(that is, RASR with β = 1) for consistent problems are very different from inconsistent problems. The
reason for this is that the operator T∗ does not have a fixed point if A ∩ B = Ø. For 0 < β < 1 the convex
instance of the RASR algorithm avoids these complications by transferring questions of consistency of the
constraints to the existence of nearest points. In other words, the RASR operator enjoys the advantage that
Fix V (T∗, β) is independent of whether or not the associated feasibility problem is consistent. This is the
content of the following theorem.

Theorem 2.2. Let 0 < β < 1. Then

Fix V (T∗, β) = F − β

1− β
g (15)

where g is the gap vector between A and B and F ⊂ B is the set of points in B nearest to A. Moreover, for
every u ∈ Fix V (T∗, β), we have the following:

(i) u = PBu− β

1− β
g; (ii) PBu− PARBu = g; (iii) PBu ∈ F and PAPBu ∈ E. (16)

In words, regardless of whether or not A∩B is empty, as long as there are points in B that are nearest to A,
then the RASR operator V (T∗, β) has a set of fixed points, and these are precisely the points in B nearest
to A, translated by the scaled gap vector. This is the starting point for the convex heuristics behind the
RASR algorithm. Statements about convergence and more detailed behavior of the algorithm are beyond
the scope of this work.

We conclude the mathematical analysis with some observations that motivate the relaxation strategy we
implement in Section 3. We wish to use the parameter β to control the step size between successive iterates
and, as much as possible, to steer the iterates. Far away from the solution, it is easy to see the damping
effect of the parameter 0 < β < 1, which derives from the form of the relaxation (11) as simply a convex
combination of the operator T∗ and the projector onto the data PM – the smaller the relaxation parameter β,
the closer to the data we require the iterates to stay. It was noted in [5] that, regardless of the relaxation, the
HPR algorithm (8) takes significantly longer than the HIO algorithm (3) to reach a suitable neighborhood of
the solution, although, once near a solution, HPR delivers consistently better images with greater stability
and reliability than HIO. We show in the next section that the dampening effect of the relaxation in the
RASR algorithm is just what is needed to control the initial behavior of the HPR algorithm.

For the behavior of the algorithm near the solution, we rely on the convex analysis. By (15), the relaxation
parameter β effects the fixed points of the operator through the gap vector. If the feasibility problem is
consistent, that is, A ∩ B 6= Ø, then the gap vector g = 0. In this case, is it not clear what effect, if any, β
will have on convergence. On the other hand, if the problem is inconsistent, that is, A ∩B = Ø, and g 6= 0,
then, by (15), the set of nearest points F can be translated arbitrarily far away in the direction g by letting
β approach 1 from below. We use this to gain some control on the step size between successive iterates and
the directions of the steps.

Proposition 2.3. Let un ∈ L satisfy ‖un − uβn
‖ < δ where uβn

∈ Fix V (T∗, βn) and 0 < βn < 1. Define
un+1 = V (T∗, βn+1)un for any 0 < βn+1 < 1. Then∥∥∥∥un+1 −

(
fβn −

βn+1

1− βn
g

)∥∥∥∥ < δ, where fβn = PBuβn ∈ F. (17)
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Proof. For any u ∈ L, by (26), we have V (T∗, βn+1)u − V (T∗, βn)u = (βn+1 − βn) (PA − I) RBu, which,
together with (16)(i), yields

uβn
− V (T∗, βn+1)uβn

=
βn+1 − βn

1− βn
g, or V (T∗, βn+1)uβn

= fβn
− βn+1

1− βn
g. (18)

Since V (T∗, βn+1) is nonexpansive, the result follows from (18). �

While the HPR algorithm gives quite stable solutions eventually, the above theory suggests that this stability
can be improved in a controlled fashion. Consider the fixed point iteration as a descent algorithm minimizing
some error metric (in fact, minimizing the gap distance) where −g is the direction of descent. By (17) and
the first equation in (18),

un+1 ≈ V (T∗, βn+1)uβn = uβn −
βn+1 − βn

1− βn
g,

thus one can use βn+1 to affect steps in the direction −g ranging, in the limit, from length −βn/(1− βn) to
1 as βn+1 varies from 0 to 1 respectively. The difference un+1 − un for the unrelaxed algorithm (β = 1) was
shown in [4] to converge to the negative gap vector −g in the inconsistent case. The effect of the relaxation
is primarily to dampen the iteration in the neighborhood of a solution in the case of inconsistent problems.
To see the advantage of this, consider the nonconvex case and suppose that the problem is inconsistent (that
is, the gap vector g 6= 0). The only case of the HPR algorithm for which we can say anything is the case
β = 1, which is the same as the unrelaxed RASR (or ASR) algorithm, so we restrict the discussion to the
RASR and ASR algorithms. The convex analysis of the ASR algorithm shows that, even though the gap is
attained, the iterates un continue to move in the direction −g without end. In the nonconvex setting, even
if the true gap is attained, the continued progress of the iterates in the direction −g could push the iterates
away from the domain of attraction of the local solution and into a different domain of attraction. Thus the
projections of the iterates, or the shadows might never converge. This “wandering” of the iterates near an
apparent local solution has been observed both with the HIO and HPR algorithms, though it is much less
severe and destabilizing with HPR than it is with HIO. The relaxations in the RASR algorithm can be used
to either dampen the iterates near a local solution to slow drifting out of a domain of attraction, or to halt
the wandering of the iterates altogether by holding the relaxation parameter at a fixed value less than 1.

3 Numerical Implementation

Our goal with the RASR algorithm is to use dynamic relaxations to shorten the initial “warm-up” phase of
the HPR algorithm and to stabilize the algorithm near a local solution. The algorithm we consider is

un+1 ≈ V (T∗, βn)un. (19)

Before outlining our specific implementation, some remarks are in order about the calculation of T given
by (11). As discussed in [15, Section 5.2] the projection onto the magnitude constraint PM is a numerically
unstable operation due to the multivaluedness of the projection operator. We therefore recommend the
following approximation to PM (see [15, Eq.74]):

PMu ≈ ∇Jεu = I −F−1

((
|Fu|2

(|Fu|2 + ε2)1/2
−m

)
|Fu|2 + 2ε2

(|Fu|2 + ε2)3/2
Fu

)
(20)
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for 0 < ε � 1 , where

Jε(u) =
1
2

(
‖u‖2 −

∥∥F−1v̂ −m
∥∥2
)

, where v̂ =
|Fu|2(

|Fu|2 + ε2
)1/2

. (21)

Define
V (T̃∗, β) =

1
2
(
RS+

(2∇Jε − I) + I
)
. (22)

Under reasonable assumptions, by the continuity of RS+
and [15, Corollary 5.3] it can be shown that

∇Jε(u) → PM(u) and V (T̃∗, β)u → V (T∗, β)u as ε → 0.

Using the stable approximation V (T̃∗, β) given by (22), from the initial guess u0 we generate the sequence
u0, u1, u2, . . . by

un+1 = V (T̃∗, βn)un where βn+1 = β0 + (1− β0)
(
1− exp

(
−(n/7)3

))
. (23)

The rule for updating βn is a smooth approximation to a step function from the value β0 to the value 1
centered at iteration n = 7. We compare this algorithm to the HIO (3) and HPR (8) algorithms using the
same stable projection approximation. We study algorithm performance with noisy data. The initial points
u0 are chosen to be the normalized characteristic function of the support constraint shown in Figure 1(c).

The data consists of the support/nonnegativity constraint, shown in Figure 1(c), and Fourier magnitude
data m, shown in Figure 1(b), with additive noise η – a symmetric, randomly generated array with a zero
mean Gaussian distribution. The signal-to-noise ratio (SNR) is 20 log10 ‖m‖/‖u‖ = 34 dB. As motivated
in [5], the error metric we use to monitor the algorithms, ES+

, is given by

ES+
(xn) =

∥∥PS+

(
PM(un)

)
− PM(un)

∥∥2∥∥PM(un)
∥∥2 . (24)

We compute the mean value of the error measure ES+ over 100 trials with different realizations of the noise
and the same initial guess.

First, we compare the mean behavior over 100 iterations of two sets of realizations of the algorithms, each
corresponding to different relaxation strategies, β = 0.75, β = 0.87, β = 0.99 and variable βn governed by
(23) with β0 = 0.75. The average value of the error metric at iteration n, ES+

(xn), is shown in Figure 2.
These are all given in decibels (recall that the decibel value of α > 0 is 10 log10(α)). In Figure 3 we show
typical estimates generated by the respective algorithms at iteration 35, all from the same realization of noise
and the same initial guess. While the RASR algorithm with β = 0.75 appears to perform well as measured
by ES+

(see Figure 2(a)), it is clear from Figure 3 that the quality of solutions found by the RASR algorithm
degrades rapidly as the relaxation parameter β becomes small. For values of β near 1.0 the quality of the
iterates generated by the RASR algorithm does eventually improve, however, as with the HPR algorithm,
it takes many more iterations to achieve this imporvement. For static values of β the best performance for
the RASR algorithm appears to be achieved with a value of β = 0.87. The variable βn trials for the RASR
algorithm yielded the best overall results, measured both by the error metric, as well as observed picture
quality. In contrast to this, the relaxation parameter does not appear to have any identifiable effect on the
performance of the HIO or HPR algorithms.
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4 Concluding Remarks

There are infinitely many relaxation strategies one could implement for iterative transform methods, but
very few of them admit a meaningful mathematical analysis. The standard for phase retrieval algorithms,
Fienup’s HIO algorithm, has been identified in a special case with the promising HPR algorithm, which in
turn, has been identified as a special case of Elser’s difference map. For each of these algorithmic frameworks,
the mathematical properties of the algorithms vary drammatically with the parameter values in a manner
analogous to bifucations of dynamical systems. A complete mathematical analysis must treat all relevant
intervals of parameter values on a case by case basis. No such analysis is available for the HIO, HPR or
difference map algorithms. To circumvent these difficulties and to improve upon the HPR algorithm, we
propose a simple relaxation, the RASR algorithm, of a well understood Averaged Successive Reflector (ASR)
algorithm. The relaxation is a convex combination of the ASR fixed point operator, and the projection onto
the data. This intuitive framework is mathematically tractable and provides an easy strategy for the choice
of relaxation parameter that, moreover, improves algorithm performance. In contrast, it appears that similar
relaxation strategies have little effect on either the HIO or the HPR algorithm. We cannot suggest a rule
by which to select a static value of β – this depends on the data. Nevertheless, based on the results for
the variable βn trials, we can recommend the fairly generic dynamic relaxation strategy of (23) for getting
the best performance from the RASR algorithm. Here the algorithm is significantly relaxed in the early
iterations, helping the algorithm quickly to find a neighborhood of the solution while maintaining fidelity
to the data, and then decreasing the relaxation (i.e. increasing βn) in the neighborhood of the solution to
avoid stagnation at a poor local minimum. To stabilize iterates in the domain of attraction of a solution, a
final fixed value of β close to, but less than, 1, say β = .99999 should be chosen. In a technical point, we
also proposed a smooth perturbation of the magnitude projector (20) to improve the numerical stability of
computing the projection onto magnitude constraints.

A Proof of Theorem 2.2

To prove the result we must show that (a) F − βg/(1 − β) ⊂ Fix V (T∗, β) and, conversely, that (b)
Fix V (T∗, β) ⊂ F − βg/(1 − β). The first statement (a) is proved analogously to the proof of equation
(18) of [4]. In the interest of brevity, we leave this as an exercise.

We show that Fix (βT∗ + (1 − β)PB) ⊂ F − β
1−β g. To see this, pick any u ∈ Fix (βT∗ + (1 − β)PB). Let

f = PBu and y = u − f . For any b ∈ B, since B is a nonempty closed convex set and f = PBu, we have
〈b− PBu, u− f〉 ≤ 0. which yields

〈b− f, y〉 = 〈b− f, u− f〉 ≤ 0. (25)

Recall that PA(2f − u) = PA(2PBu− u) = PARBu. Together with the identity [4, Proposition 3.3(i)]

(∀u ∈ L) u− T∗u = PBu− PARBu (26)

equation (25) yields
PA(2f − u) = f + T∗u− u. (27)

Now βT∗u + (1− β)PBu = u yields

T∗u− u =
1− β

β
(u− PBu). (28)
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Then (27) and (28) give PA(2f − u) = f + 1−β
β (u − f) = f + 1−β

β y. As above, for any a ∈ A, since A is
nonempty, closed and convex, we have 〈a− PA(2f − u), (2f − u)− PA(2f − u)〉 ≤ 0, and hence

0 ≥
〈

a−
(

f +
1− β

β
y

)
, (2f − u)−

(
f +

1− β

β
y

)〉
=

〈
a−

(
f +

1− β

β
y

)
, − y − 1− β

β
y

〉
=

1
β
〈−a + f, y〉+

(1− β)
(β)2

‖y‖2. (29)

Now (25) and (29) yield 〈b− a, y〉 ≤ − 1−β
β ‖y‖2 ≤ 0. Now take a sequence a0, a1, a2, . . . in A and a sequence

b0, b1, b2, . . . in B such that gn = bn − an → g. Then

(∀n ∈ N) 〈gn, y〉 ≤ −1− β

β
‖y‖2 ≤ 0. (30)

Taking the limit and using the Cauchy-Schwarz inequality yields

‖y‖ ≤ β

1− β
‖g‖. (31)

Conversely, u− (βT∗u + (1− β)PBu) = β (f − PA(2f − u)) + (1− β)y = 0 gives

‖y‖ =
β

1− β

∥∥∥f − PA(2f − u)
∥∥∥ ≥ β

1− β
‖g‖. (32)

Hence ‖y‖ = β
1−β ‖v‖ and, taking the limit in (30), y = − β

1−β g, which confirms (i). It follows immediately
that f − PARBu = g which proves (ii) and, by definition, implies that PBu = f ∈ F and PAPBu ∈ E. This
yields (iii) and proves (15). �
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