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Abstract

In recent years several new inverse scattering techniques have been developed that
determine the boundary of an unknown obstacle by reconstructing the surrounding
scattered field. In the case of perfectly reflecting obstacles, the boundary is usually
found as the minimum contour of the total field. In this note we derive a different
approach for imaging the boundary from the reconstructed fields based on a general-
ization of the eigenfunction expansion theorem. The aim of this alternative approach is
the construction of higher contrast images than is currently obtained with the minimum
contour approach.

1 Introduction

In the past decade a number of new algorithms have appeared for inverse scattering appli-
cations in the resonance region. The strategy common to many modern techniques is that
of splitting the original ill-posed nonlinear inverse problem into an ill-posed linear inverse
problem, and a well-posed nonlinear problem. Surveys and reviews of these techniques can
be found in [2, 10]. For our purposes, we are primarily interested in techniques that actu-
ally reconstruct the field surrounding the unknown scatterer. The two principle algorithms
that accomplish this are the method of Kirsch and Kress [6], and the point source method
proposed by Potthast [11, 12]. Once the field has been reconstructed at different frequencies
and incident field directions, once should in principle have all the information necessary to

∗Department of Mathematics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
(drluke@pims.math.ca). This work was supported by a postdoctoral fellowship from the Pacific Institute for
the Mathematical Sciences.

1



determine the shape of the scatterer. This begs the question, however, of what one should
image. The most natural quantities to image are the zeros of the reconstructed total fields
since, in the case of sound-soft or perfectly reflecting scatterers, the total field is zero at
the boundary of the obstacle for all frequencies and incident field directions. This is the
conventional approach.

In this work we present an alternative approach for synthesizing the reconstructed fields
at several frequencies and incident field directions based on a generalization of the eigen-
function expansion theorem first presented by Rose and Cheney [16]. We show that, where
multifrequency and multidirecitonal data is to be had, the synthesis process suggested by
the eigenfunction expansion theorem produces higher contrast images than the minimum
contour approach.

We begin with a brief review of the scattering problem in Section 2. The Generalized
Eigenfunction Expansion Theorem for Dirichlet obstacles in two or three dimensions is pre-
sented in Section 3. These results are then used in Section 4 to synthesize images of a
scatterer, which we compare to conventional minimum contour images.

2 Setting and Problem Statement

This discussion concerns scattering of small-amplitude, monochromatic, acoustic waves from
an impenetrable obstacle embedded in an isotropic homogeneous medium. The obstacle is
identified by its support D ⊂ Rm, (m = 2, or 3) which has a connected, piecewise C2

boundary ∂D. The governing equation for this setting is the Helmholtz equation:

(1) [4+ κ2]v(x) = 0, x ∈ Ω ⊂ Rm,

where 4 denotes the Laplacian, κ ≥ 0 is the wavenumber, and Ω is an arbitrary simply
connected open set. Solutions to Eq.(1) are complex-valued scalar waves parameterized by
κ, v : Ω × R+ → C . The surface of the obstacle, ∂D (D = Rm \ Ω), can be sound-soft
(perfectly absorbing), sound-hard (perfectly reflecting) or some mixture of these. Since the
theory cited in this work can be applied equally to each of these types of obstacles, this
discussion focuses on the first of these. Specifically, the field v satisfies

(2) v|∂D = f, on ∂D

with f = 0.

Denote the incident field satisfying Eq.(1) on Ω = Rm by vi : Rm × R+ → C . The
scattering problem is to find the field v : Dc × R+ → C that satisfies Eq.(1) on Dc with
boundary values f := 0 in Eq.(2) and

(3) v = vi + vs,
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where vs : Dc × R+ → C satisfies Eq.(1) on Dc and the Sommerfeld Radiation Condition:

(4) r
m−1

2

( ∂

∂r
− iκ

)
vs(x; κ) → 0, r = |x| → ∞,

uniformly in all directions.

We call the solution v to the scattering problem the total field. The field vs is a radiating
solution to the Helmholtz equation Eq.(1) and is called the scattered field. The scattered
field vs satisfies the boundary conditions Eq.(2) with f = −vi on ∂D. Any such solution
to Eq.(1), with boundary conditions Eq.(2) and Eq.(4) is a solution to the more general
exterior Dirichlet problem. Existence and uniqueness of the exterior Dirichlet problem, and
hence that of the scattering problem, is a classical result (see [3] and references therein).

Let D ⊂ Rm be a closed set with connected C2 boundary, and let vs(·; κ) ∈ C2(Dc)∩C(Dc)
satisfy Eq.(1) and Eq.(4). Then Green’s formula states that

(5) vs(x; κ) =

∫
∂D

{
vs(y; κ)

∂Φ(y, x; κ)

∂ν(y)
− ∂vs(y; κ)

∂ν(y)
Φ(y, x; κ)

}
ds(y), x ∈ Dc,

where the normal derivative on ∂D is the Gâteaux derivative in the direction of the unit
outward normal to the boundary, ν, and Φ : Rm×Rm×R+ → C is the free-space fundamental
solution to Eq.(1):

(6) Φ(x, z; κ) :=

{
i
4
H

(1)
0 (κ|x− z|), x 6= z, and m = 2

1
4π

eik|x−z|

|x−z| , x 6= z, and m = 3
.

Here H
(1)
0 denotes the zero-th order Hankel function of the first kind. Let v be a solution to

the scattering problem at a fixed κ for a sound-soft scatterer with incident wave vi that is
an entire solution to Eq.(1), then v = vi + vs where

(7) vs(x; κ) = −
∫

∂D

∂v(y; κ)

∂ν(y)
Φ(x, y; κ)ds(y), x ∈ Dc.

At large distances from the scatterer, the scattered field vs is described by the asymptotic
behavior

(8) vs(x; κ) =
eiκ|x|

|x|
(m−1)

2

{
v∞(x̂; κ) + O

( 1

|x|

)}
, |x| → ∞,

where S is the unit sphere in Rm:

S := {x ∈ Rm | |x| = 1} and x̂ :=
x

|x|
.
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The function v∞ : S × R+ → C denotes the scattering amplitude, or the far-field pattern.
The far-field pattern has the following explicit representation as a mapping of the total field:
[3, Thm. 3.12]

(9) v∞(x̂; κ) = −β(κ)

∫
∂D

∂v(y; κ)

∂ν(y)
e−iκx̂·yds(y), x̂ ∈ S.

The constant β is a function of the frequency κ depending on the setting Rm and is given
by [3, Eq.(2.13) and Eq.(3.64)]

(10) β(κ) =

{
ei

π
4√

8πκ
, m = 2

1
4π

m = 3
, κ > 0.

Our discussion relies on two fundamental incident waves: plane waves and point sources.
Plane waves are given by

(11) ui(x, ŷ, κ) := eiκx·ŷ, x ∈ Rm, ŷ ∈ S, κ ∈ R+.

Here ŷ ∈ S, denotes the direction of incidence. The corresponding total and scattered fields
are denoted by u(·, ŷ, κ) : Rm → C and us(·, ŷ, κ) : Rm → C respectively. The second of
the fundamental incident fields, point sources, are denoted

(12) wi(x, z; κ) := Φ(x, z; κ), x, z ∈ Rm, κ ∈ R+, x 6= z.

The corresponding total and scattered fields are denoted by w(·, z, κ) : Rm \ {z} → C and
ws(·, z, κ) : Rm\{z} → C respectively. The total field is the resolvent kernel for the Dirichlet
Laplacian on Dc, that is it satisfies the boundary-value problem

[4+ κ2]w(x, z; κ) = −δ(x− z), x, z ∈ Dc, m = 2 or 3 ;(13)

w(x, z; κ) = 0, x ∈ ∂D.

Problem Eq.(13) is uniquely solvable [3] with w = wi + ws for the radiating field ws given
by

(14) ws(x, z; κ) = −
∫
∂D

∂w(y, z; κ)

∂ν(y)
Φ(x, y; κ) ds(y), x, z ∈ Dc,

(see Eq.(7)). The scattered field ws satisfies Eq.(4). The incident field wi is spatially sym-
metric,

(15) wi(x, z, κ) = wi(z, x, κ),

thus ws and w also have this property.

The fields due to scattering from incident plane waves, or incident point sources, form a
complete basis of functions. This is the content of the Eigenfunction Expansion Theorem
discussed in the next section. We use the duality between point sources and plane waves to
derive an inversion operator for determining D from measured far field patterns.
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3 Duality and Generalized Eigenfunction Expansions

The plane waves and point sources introduced above are dual to each other in the sense
that the scattered field at a point z ∈ Dc due to an incident plane wave with direction −x̂,
us(z,−x̂, κ), is proportional to the far field at the point x̂ due to an incident point source
located at z, w∞(x̂, z, κ). The next lemma formally characterizes this relationship.

Lemma 3.1 [Duality and Mixed Reciprocity] Let w satisfy Eq.(13) in Dc (m = 2, 3) and
w = wi + ws with the incident point source wi(x, z; κ) = Φ(x, z; κ), where Φ is given by
Eq.(6). Let u(z,−x̂; κ) solve the scattering problem (Eq.(1)-(4) with f := 0 in Eq.(2)) with
the incident plane wave ui(z,−x̂; κ) = e−iκx̂·z, where x̂ = x

|x| . Then, for β(κ) given by

Eq.(10), the following relation holds as |x| → ∞:

(16) w(x, z; κ) =
eiκ|x|

|x|(m−1)/2

{
β(κ)u(z,−x̂; κ) + O

(
|x|−1

)}
.

Moreover, the fields satisfy the mixed reciprocity relation:

(17) w∞(x̂, z; κ) = β(κ)us(z,−x̂; κ), x̂ ∈ S, z ∈ Dc.

Proof. By [1, 9.2.3] and the binomial expansion of |x − z| for |x| � |z|, the fundamental
solution for m = 2 or 3 has the asymptotic behavior

Φ(x, z; κ) =
eiκ|x|

|x|(m−1)/2

{
β(κ)e−iκz·x̂ + O

(
|x|−1

)}
, |x| → ∞, x̂ =

x

|x|
,

where β(κ) is given by Eq.(10). This together with Eq.(14) yields

w(x, z; κ) =(18)

eiκ|x|

|x|(m−1)/2

{
β(k)e−iκx̂·z −

∫
∂D

β(k)e−iκx̂·y ∂w(y, z; κ)

∂ν(y)
ds(y) + O

(
|x|−1

)}
,

as |x| → ∞ for x, z ∈ Dc. Since u = ui + us solves the scattering problem, Green’s formula
for the scattered field us yields

us(z,−x̂, κ) = −
∫
∂D

(
w

∂us

∂ν
− us ∂w

∂ν

)
ds + lim

R→∞

∫
RS

(
w

∂us

∂νS
− us ∂w

∂νS

)
ds

=

∫
∂D

us ∂w

∂ν
ds

= −
∫
∂D

ui(y,−x̂; κ)
∂w(y, z; κ)

∂ν(y)
ds(y),(19)

where RS is the sphere of radius R, νS is the unit outward normal to this sphere, and
ui(y,−x̂; κ) = e−iκx̂·y. Together Eq.(18) and Eq.(19) yield Eq.(16).
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The second statement of the lemma follows from the asymptotic behavior of w. From
Eq.(8) this is

w(x, z; κ) =
eiκ|x|

|x|(m−1)/2

{
β(κ)e−iκx̂·z + w∞(x̂, z; κ) + O

(
1

|x|

)}
,

as |x| → ∞, x̂ = x
|x| . Comparing this expansion with Eq.(16) yields Eq.(17). 2

Remark 3.2 For the case m = 3, Lemma 3.1 can also be found in [14, Lemma 1.3.1]. The
mixed reciprocity relation is a standard identity. See, for example, [7] and [13, Theorems
2.1.4 and 2.2.4] for more detail.

Remark 3.3 Eq.(19) is the dual to Huygens’ principle Eq.(7). In particular,∫
∂D

e−iκy·x̂ ∂w(y, x; κ)

∂ν(y)
ds(y) =

∫
∂D

∂u(y,−x̂; κ)

∂ν(y)
Φ(x, y; κ)ds(y),

for x, y ∈ Dc, x 6= y.

Proposition 3.4 The resolvent kernel Eq.(13) of the Dirichlet Laplacian on Dc satisfies

(20) Im w(x, z, κ) = −κ|β(κ)|2
∫

S
u(x, ŷ, κ)u(z, ŷ, κ) ds(ŷ), ŷ ∈ S.

Proof. For R > 0 large enough, Eq.(13) and Green’s formula gives

Im w(x, z, κ) = Im

∫
B(R,x)\D

w(y, z, κ)δ(y − x) dy

= −Im

∫
B(R,x)\D

w(y, z, κ)(4+ κ2)w(y, x, κ) dy

= Im

∫
∂(B(R,x)\D)

w(y, x, κ)
∂

∂ν
w(y, z, κ)− w(y, z, κ)

∂

∂ν
w(y, x, κ) ds(y)

−Im

∫
B(R,x)\D

w(y, x, κ)(4+ κ2)w(y, z, κ) dy

= Im

∫
∂(B(R,x)\D)

w(y, x, κ)
∂

∂ν
w(y, z, κ)− w(y, z, κ)

∂

∂ν
w(y, x, κ) ds(y)

+Im w(x, z, κ)

where B(R, x) is the ball of radius R centered at x and ν is the unit outward normal.
Recalling that w = 0 on ∂D this yields

Im w(x, z, κ) =
1

2
Im

∫
RS

w(y, x, κ)
∂

∂ν
w(y, z, κ)− w(y, z, κ)

∂

∂ν
w(y, x, κ) ds(y).
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Inserting Eq.(16) for w above yields

Im w(x, z, κ) =
κ|β(κ)|2

2
lim

R→∞

∫
S

1

Rm−1
{u(x,−ŷ, κ)u(z,−ŷ, κ)

+u(x,−ŷ, κ)u(z,−ŷ, κ) + O(R−1)
}

Rm−1 ds(ŷ)

Now,
∫

S u(x,−ŷ, κ)u(z,−ŷ, κ) ds(ŷ) ∈ R, so in the limit R →∞ we have

Im w(x, z, κ) = κ|β(κ)|2
∫

S
u(x,−ŷ, κ)u(z,−ŷ, κ) ds(ŷ).

Finally, a change of variables from −ŷ to ŷ yields Eq.(20). 2

Remark 3.5 Proposition 3.1 of [16] establishes a corresponding relation to Eq.(20) for the
setting of scattering from inhomogeneous media in R3.

Corollary 3.6 (The Eigenfunction Expansion Theorem) Let u(x, ξ) = u(x, ŷ, κ)
solve the scattering problem, Eq.(1)-(4) with f := 0 in Eq.(2), for the incident plane wave
ui(z, ŷ, κ) = eiκŷ·z with direction ŷ ∈ S. Then, for x, z ∈ Dc,

δ(x− z) =
−1

(2π)m

∫ ∞

0

∫
S
u(x, ŷ, κ)u(z, ŷ, κ) ds(ŷ) κm−1dκ

=
−1

(2π)m

∫
Rm

u(x, ξ)u(z, ξ) dξ,(21)

where dξ = κm−1 dκ ds(ŷ).

Proof. Since w satisfying Eq.(13) is self-adjoint, by the spectral theorem for self-adjoint
operators (see for example [17, Theorem XI.6.1] and [14, Theorem 1.3.1]), we can write

(22)
1

π

∫ ∞

0

lim
ε→0

Im w(x, z,
√

λ + iε)dλ =
2

π

∫ ∞

0

Im w(x, z, κ)κdκ = δ(x− z),

where λ = κ2. Also, by Eq.(10) we have κ
π
|β(κ)|2 = κm−2

2(2π)m for κ > 0, m = 2 or 3, thus

Eq.(22) and Eq.(20) with dξ = κm−1 dκ ds(ŷ) yield Eq.(21). For more details and a review
see [8, Example 4.49], [14, Theorem 1.3.1], or [15]. 2

The next theorem summarizes these results and is a generalization of Eq.(21). The theorem
relies on additional physical assumptions, namely conjugate symmetry with respect to the
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frequency κ and causality. Before stating the theorem, these additional assumptions are
briefly discussed.

Until now the focus of this discussion has been on implicitly time-harmonic, monochro-
matic (single frequency, κ > 0) waves, that is the waves take the form V (x, t) = v(x; κ)eiκt.
In this case only the real part of V is physically relevant. If time-harmonicity is not as-
sumed, then the wave v satisfying Eq.(1) is the Fourier transform of the real-valued function
V : Rm × R → R , thus it is a Hermitian function of the frequency κ ∈ R:

v(x, k) = v(x,−k).

To accommodate negative frequencies in the time-harmonic case, we require that the function
v be a Hermitian function with respect to κ. With this extension, the integral with respect
to κ in Eq.(21) can be written

δ(x− z) =
−1

2(2π)m

∫
R

∫
S
u(x, ŷ, κ)u(z, ŷ, κ) ds(ŷ) κm−1dκ

=
−1

(2π)m

∫
Rm

u(x, ξ)u(z, ξ) dξ,(23)

where, again, ξ = (ŷ, κ) and dξ = κm−1 dκ ds(ŷ). Here we have used the fact that
u(x, ŷ, κ)u(z, ŷ, κ) = u(x, ŷ,−κ)u(z, ŷ,−κ), which follows from the symmetry of the delta
function and the conjugate symmetry of u. The constant β defined in Eq.(10) must also
be modified for negative frequencies. In three dimensions nothing changes, but in two-
dimensions the constant is defined as

(24) β(κ) =
ei π

4√
8π|κ|

, m = 2, κ 6= 0.

The second physical assumption we must introduce, causality, is formulated as follows:

(25) W (x, z, t) = 0 for t < |x− z|,

where, using the distributional definition of the Fourier transform, W is given by

(26) W (x, z, t) =
1√
2π

∫
R

eiκtw(x, z, k) dt,

and satisfies the Fourier dual of Eq.(13), namely[
4+

∂2

∂t2

]
W (x, z; t) = −δ(x− z)δ(t), x, z ∈ Dc, m = 2 or 3 ;(27)

W (x, z; t) = 0, x ∈ ∂D.

The statement and proof of the following theorem are modeled after [16, Theorem 3.2].

8



Theorem 3.7 (Generalized Eigenfunction expansion) Let w satisfy
Eq.(13) in Dc (m = 2, 3) and w = wi + ws with the incident point source wi(x, z; κ) =
Φ(x, z; κ), where Φ is given by Eq.(6). Let u(z, ŷ; κ) solve the Scattering Problem (Eq.(1)-
(4) with f := 0 in Eq.(2)) for the incident plane wave ui(z, ŷ; κ) = eiκŷ·z with direction ŷ ∈ S.
Define w and u for κ < 0 by the Hermitian extensions

w(x, z, κ) = w(x, z,−κ), u(x, ŷ, κ) = u(x, ŷ,−κ),

and assume further that the fields are causal as defined by Eq.(25). Then, for any τ satisfying
|τ | ≤ |x− z| (x, z ∈ Dc, x 6= z),

(28) w(x, z, 0) = −(2π)−m

2

∫
R

κm−3eiκτ

∫
S
u(x, ŷ, κ)u(z, ŷ, κ) ds(ŷ) dκ,

where the integral is in the sense of distributions with respect to z:∫
Dc

w(x, z, 0)ϕ(z) dz =

−(2π)−m

2

∫
R

κm−3

∫
S
u(x, ŷ, κ)

∫
Dc

u(z, ŷ, κ)eiκτϕ(z) dz ds(ŷ) dκ,

for ϕ(z) ∈ C∞
0 (Rm).

Proof. Consider the distribution in τ

q(x, z, τ) = −(2π)−m

2

∫
R

κm−3eiκτ

∫
S
u(x, ŷ, κ)u(z, ŷ, κ) ds(ŷ) dκ

where this integral is interpreted in the sense of distributions as∫
Rm

q(x, z, τ)ϕ(τ) dτ =

−(2π)−m

2

∫
R

ϕ(τ)

∫
R

κm−3eiκτ

∫
S
u(x, ŷ, κ)u(z, ŷ, κ) ds(ŷ) dκ dτ,

for ϕ(τ) ∈ C∞
0 (R). By Eq.(23) this can be rewritten as∫

Rm

q(x, z, τ)ϕ(τ) dτ

= −(2π)−m

2

∫
R

ϕ(τ)

∫
R

κm−3eiκτ 2(2π)mκ2−m

π
Im w(x, z, κ) dκ dτ

= − 1

π

∫
R

ϕ(τ)

∫
R

κ−1eiκτ Im w(x, z, κ) dκ dτ.

We now substitute the inverse of Eq.(26),

w(x, z, κ) =
1√
2π

∫
R

e−iκtW (x, z, t) dt,

9



and use the fact that W is real-valued, together with an interchange in the order of integra-
tion, to obtain

− 1

π

∫
R

ϕ(τ)

∫
R

κ−1eiκτ Im w(x, z, κ) dκ dτ

= − 1

π

∫
R

ϕ(τ)

∫
R

κ−1eiκτ Im
1√
2π

∫
R

W (x, z, t)e−iκt dt dκ dτ

= −
∫

R
ϕ(τ)

∫
R

κ−1eiκτ 1

2πi
√

2π

∫
R

W (x, z, t)
(
e−iκt − eiκt

)
dt dκ dτ

= −
∫

R
ϕ(τ)

1√
2π

∫
R

W (x, z, t)
1

2πi

∫
R
(κ)−1

(
eiκ(τ−t) − eiκ(τ+t)

)
dκ dt dτ.

The principal part of the integral with respect to κ is

1

2πi

∫
R
(κ)−1

(
eiκ(τ−t) − eiκ(τ+t)

)
dκ = sgn (τ − t)− sgn (τ + t).

Thus

− 1

π

∫
R

ϕ(τ)

∫
R

κ−1eiκτ Im w(x, z, κ) dκ dτ

= −
∫

R
ϕ(τ)

1√
2π

∫
R

W (x, z, t) (sgn (τ − t)− sgn (τ + t)) dt dτ

=

∫
R

ϕ(τ)
1√
2π

(
−

∫ −τ

−∞
W (x, z, t) dt +

∫ ∞

τ

W (x, z, t) dt

)
dτ

=

∫
R

ϕ(τ)
1√
2π

∫ ∞

|x−z|
W (x, z, t) dt dτ

=

∫
R

ϕ(τ)
1√
2π

∫ ∞

−∞
W (x, z, t) dt dτ.

In the last two equalities above we used causality and the assumption that |τ | < |x − z|.
Now by Eq.(26)

1√
2π

∫ ∞

−∞
W (x, z, t) dt = w(x, z, 0),

thus q(x, z, τ) = w(x, z, 0) since∫
R

q(x, z, τ)ϕ(τ) dτ =

∫
R

w(x, z, 0)ϕ(τ) dτ

which completes the proof. 2
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Corollary 3.8 Under the assumptions of Theorem 3.7, for any τ(x, z) satisfying
|τ(x, z)| ≤ |x− z| (x, z ∈ Dc, x 6= z) we have

(29) δ(x− z) = −(2π)1−m

2

∫
R

κm−3

∫
S
4

(
eiκτ(x,z)u(x, ŷ, κ)u(z, ŷ, κ)

)
ds(ŷ) dκ,

where the Laplacian 4 may be with respect to either variable, x or z. The integral is under-
stood in the sense of distributions:

ϕ(x) =

∫
Dc

δ(x− z)ϕ(z) dz =

−(2π)−m

2

∫
R

κm−3

∫
S
4u(x, ŷ, κ)

∫
Dc

u(z, ŷ, κ)eiκτ(x,z)ϕ(z) dz ds(ŷ) dκ,(30)

for ϕ(z) ∈ C∞
0 (Rm).

Proof. The proof follows from Eq.(13) and Eq.(28). The proof for the corresponding state-
ment for the setting of inhomogeneous media in R3 in [16, Corollary 3.3] carries over to the
present setting. 2

The parameter τ(x, z) is more general than we need. Let

τ(x, z) = η̂ · x− η̂ · z.

For this choice of τ , it is more suggestive to rewrite Eq.(30) as

(31) ϕ(x) = −(2π)−m

2
4

(∫
R

κm−3

∫
S
u(x, ŷ, κ)eiκη̂·xϕ̃(η̂, ŷ, κ)ds(ŷ) dκ

)
,

where

(32) ϕ̃(η̂, ŷ, κ) =

∫
Dc

u(z, ŷ, κ)e−iκη̂·zϕ(z) dz.

In the setting of inhomogeniuos media, the asymptotic expansion of the Lippmann-
Schwinger equation for the total field [3, Eq.(8.27)] yields

(33)

∫
R3

u(z, ŷ, κ)e−iκη̂·zm(z) dz = − 1

β(κ)κ2
u∞(−η̂, ŷ, κ)

for m(z) = 1− n(z), where n : R3 → C is the index of refraction. Thus, for ϕ(z) = m(z) in
Eq.(32) with Dc = R3, we have

(34) ϕ̃(η̂, ŷ, κ) = − 1

β(κ)κ2
u∞(−η̂, ŷ, κ).
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In the present setting of scattering from impenetrable obstacles, the connection between
the density ϕ and the far field pattern is not clear. Nevertheless, Eq.(31) offers an expression
for numerically calculating the density ϕ that satisfies the integral equation

(35) − 1

β(κ)κ2
u∞(−η̂, ŷ, κ) =

∫
Dc

u(z, ŷ, κ)e−iκη̂·zϕ(z) dz.

It is also unclear how Eq.(31) behaves at points on the interior of D. Inverse scattering
methods that calculate the field surrounding the obstacle also calculate a field inside the
scatterer. Such fields are purely numerical artifacts, but, without knowing the shape and lo-
cation of the obstacle, it is not possible to distinguish numerical artifacts from reconstructed
field values. Fortunately, however, the inconsistency between the behavior of the numerical
artifacts and that of proper scattered waves shows up quite dramatically in numerical com-
putations. In the next section we compute Eq.(31) for ϕ̃ satisfying Eq.(34) using the field
u in Eq.(31) estimated by an application of the point source method introduced by Potthast
[11, 12].

4 Numerical Results

In this section we apply Corollary 3.8 to the synthesis of the shape of a sound-soft acoustic
scatterer, shown in Figure 1, once the total field around the scatterer has been determined.
We use the point source method to reconstruct, from far field measurements, the total
field along rays centered on the obstacle. Since this implementation of the point source
method is novel, we give a brief sketch of the technique below. Once the total field for
various frequencies and incident field directions is known, the final image of the scatterer is
constructed by computing the integral Eq.(31) with ϕ̃ satisfying Eq.(34), shown in Figure
2(e)-(i). This method is compared to the minimum contour approach, shown in Figure 2(a)-
(d), which amounts to calculating the integral of the absolute value of the total field over all
directions and frequencies:

(36) ϕ(x) =

∫
R

∫
S
|u(x, ŷ, κ)| ds(ŷ)dκ.

The minimum contour approach determines the boundary of the scatterer as those points x
where ϕ(x) falls below a given tolerance.

As described in [11, 12, 13] and more recently in [9], the point source method uses a pre-
determined approximating domain, denoted by Da, in place of the true scatterer boundary
in order to reconstruct the scattered field around the obstacle. The accuracy of the recon-
struction at some point z ∈ Dc

a depends first on whether or not the obstacle lies on the
interior of Da, and then on how accurately one solves a simple ill-posed inverse problem of
approximating the field along ∂Da due to a point source located at the fixed point z. The

12



points z where an accurate reconstruction is achieved depends principally on the size and
shape of the approximating domain Da as well as the location of z relative to Da.

For our reconstructions we assume two a priori pieces of information, namely that the
center of the obstacle and it’s approximate size are known. In general one could estimate
these by further manipulations of the point source method, but for simplicity we take these
as given. We chose Da to be a circle twice as large as the obstacle D and fix the point
z just outside Da with orientation, or direction, η̂ from the center. For this geometry of
the approximating domain and reference point z it can be shown that the most accurate
reconstructions of the scattered field lie along rays with direction η̂ relative to the center of
the obstacle. A more detailed description of this behavior is beyond the scope of this work.
Our purpose is merely to motivate why we reconstruct the scattered field on a polar grid
along rays extending from the center of the obstacle.

We determine the scattered field at 20 frequencies, equally spaced on the interval [−8, 8],
and at 32 different incident field directions equally spaced on [−π, π]. Since the field is
reconstructed on a polar grid, we must use the polar Laplacian in Eq.(31),

4u(r, θ) =
∂2u

∂r2
+

1

r2

∂2u

∂θ2
+

1

r

∂u

∂r
.

We use a centered difference for calculating the second derivative. This leaves a wedge-like
”seam” that appears in the images Figure 2(e)-(i) where we have avoided the radial and
angular edges of the arrays. The modulus of the images calculated by the two methods are
compared for varying amounts of data, from single frequency and incident field direction,
to multiple frequency and incident field directions. In the first instance, the two methods
appear qualitatively the same for single frequency and incident field, as would be expected
since Figure 2(e) is essentially the Laplacian of Figure 2(a). In the case of multiple frequency
and incident field directions the image obtained by Eq.(31) and Eq.(34), Figure 2(i), are
sharper and have greater contrast than the minimum contour counterpart Figure 2(d).

5 Discussion and Further Research

The numerical demonstration above indicates that, where there is plenty of data available,
the Generalized Eigenfunction Expansion Theorem can be exploited to achieve high contrast
images for determining the shape of obstacles from far field data. In limited data situations it
is not clear that this technique is preferable to the conventional minimum contour approach.
Nevertheless, we observed that the dynamic range of the images constructed via Eq.(31)
and Eq.(34) is several orders of magnitude greater than that for the minimum contour
images. This is to be expected from the Laplacian in Eq.(31). Not shown in Figure 2 is
a sharp singularity that develops at the center of the image reconstruction. The location
and appearance of this singularity depends on our choice of center for the obstacle. For
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Figure 1: Obstacle used in experiments. The parametric description of this ”kite-shaped” object
is described in [3].

any center that is interior to the actual scatterer, the reconstructed image has a sharp
singularity at the chosen central point. If the central point is on the exterior of the scatterer,
then there is no singularity at the center point of the reconstructed image. This suggests a
type of ”response test” for determining the interior of the scatterer as those points where
the calculated numerical value is ”large”. This is analogous, though complementary, to the
no response test described in [10].
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