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Abstract

This work is a study of the extension of an inverse obstacle scattering algo-
rithm for fixed, single-frequency data to multi-frequency time-dependent set-
tings. The inversion algorithm is based on the point source method, which re-
constructs scattered fields pointwise with respect to frequency. We use Fourier
transforms to obtain the time-dependent scattered fields as superpositions of
single-frequency scattered fields. We establish criteria for the correspondence
between solutions to the inverse problem in the frequency domain and the
scattering problem in the time domain. Numerical examples illustrate the
method.
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1 Introduction

In recent years there has been great progress toward reconstructing obstacles and
inhomogeneities in a medium from measurements of the acoustic or electromagnetic
field around the medium due to an incident pulse. For a review of these techniques
see [1, 9]. While the methodologies are diverse, they all focus on single frequency,
time-harmonic waves. In this work we consider multi-frequency, nonharmonic waves
in time. Our principle aim is to establish the theoretical foundation for the extension
of powerful single-frequency techniques to a broader class of applications in the
time domain. The numerical technique we shall explore is the the point source
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2 Time-dependent Inverse Obstacle Scattering

method proposed by Potthast [12, 13], though other methods can also be fit into
this framework.

Scattering theory is a vast area of research with a long history in mathematical
physics. Modern mathematical surveys can be found in the works of Leis [6] and
Ramm [15], among others. Rather than appealing to these works, however, we
find it more convenient to tailor the theory to our purpose so that the analysis is
self-contained, and so that criteria for the applicability of the numerical method we
explore are simple and easy to verify.

In Section 2 of this work we outline the basic theory of scattering and introduce
the tools necessary for our analysis. Section 3 details inverse scattering and the
extension of the point source method to time-dependent problems. We conclude
with numerical illustrations of the method.

2 Forward Scattering

We begin with waves traveling through a homogeneous, isotropic medium with an
inclusion denoted by Ω ⊂ Rm, m = 2, 3. These are modeled with the homogeneous
wave equation

(2.1)

(
4− n2

c2

∂2

∂t2

)
V (x, t) = 0,

where x ∈ Rm is the spatial variable, t ∈ R denotes time, V : Rm × R → R
m ,

n = const > 0 and 4 denotes the spatial Laplacian

4V (x, t) =

(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
m

)
V (x, t), x = (x1, . . . , xm) ∈ Rm, t ∈ R.

If the waves are time-harmonic, then the wave V takes the form V (x, t, ω) =
Re{v(x, ω) exp[iωt]} where ω is the frequency of the wave. The spatial component
of the wave, v(·, ω), satisfies the Helmholtz equation

(2.2) (4+ k2n2)v(x, ω) = 0.

where k = ω/c = 2π/λ is the wave number, and λ is the wavelength. Without
loss of generality, we consider only a normalized (c = 1), nondimensionalized wave
equation in free-space (n = 1 on Ω

c
, the complement of Ω) and write the frequency

variable as κ rather than ω.
Very little changes when the time-harmonic assumption is dropped, however we

need some further assumptions on the behavior of the waves. If we assume that, for
x fixed, V (x, ·) ∈ L2(R) and that the wave and its first derivative with respect to
time decay sufficiently fast as time approaches infinity, V (x, t) and ∂

∂t
V (x, t) → 0
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as |t| → ∞, then taking the Fourier transform with respect to time of both sides of
Eq.(2.1) yields Eq.(2.2). Here v(x, κ) = (FtV )(x, κ) where

(FtV )(x, κ) :=
1√
2π

∫ ∞
−∞

e−iκtV (x, t)dt,

and

(Fκv)(x, t) :=
1√
2π

∫ ∞
−∞

eiκtv(x, κ)dk.

Note that FκFtV = V .

2.1 The frequency domain

The time-domain wave is a real-valued mapping V : Rm \ Ω × R → R . Thus, its
Fourier transform is a Hermitian function of the frequency κ ∈ R, that is it satisfies
the property v(x, k) = v(x,−k) where v denotes the complex conjugate of v. In this
case, the results surveyed below hold for all wave numbers κ 6= 0.

Hypothesis 2.1 The obstacle is described by the bounded domain Ω ⊂ Rm (m = 2,
or 3) with a connected, piecewise C2 (twice continuously differentiable) boundary ∂Ω
with outward unit normal ν where it is defined, and corners satisfying the exterior
cone condition [3].

For a fixed κ, given a continuous function f(·, κ) : ∂Ω → C , we seek the field
v(·, κ) ∈ C2(Ω

c
) ∩ C(Ωc) that satisfies the Helmholtz equation with one of the

following boundary conditions:

(2.3) (4+ κ2)v(x, κ) = 0, x ∈ Ω
c
,

v(x, κ) = f(x, κ), x ∈ ∂Ω (sound-soft obstacle),(2.4)

∂v(x, κ)

∂ν(x)
= f(x, κ), x ∈ ∂Ω (sound-hard obstacle),(2.5)

∂v(x, κ)

∂ν(x)
+ iλ(κ)v(x, κ) = f(x, κ), x ∈ ∂Ω(2.6)

(impedance obstacle with λ : R→ R+ ).

For a fixed κ, a solution v(·, κ) to Eq.(2.3) whose domain of definition contains
the exterior of some sphere is called radiating if it satisfies the Sommerfeld Radiation
Condition:

(2.7) |x|
m−1

2

(
∂

∂|x|
− iκ

)
v(x, κ)→ 0, |x| → ∞,
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uniformly in all directions.
The frequency-domain scattering problem that is central to this work is stated

as follows.

Let the sound-soft scatterer Ω satisfying Hypothesis 2.1 be embedded in
a homogeneous medium. Given a single-frequency incident field vi(·, κ) :
R
m → C that solves Eq.(2.3) on all of Rm, find the total field v(·, κ) :

Ωc → C satisfying Eq.(2.3) on Ω
c

with f := 0 in Eq.(2.4), and with
v = vi + vs, where vs(·, κ) is the scattered field satisfying Eq.(2.3) and
the radiation condition Eq.(2.7).

For simplicity, we only treat problems with the Dirichlet boundary condition Eq.(2.4).
The other boundary conditions Eq.(2.5)-(2.6) are handled similarly.

It is well known, that the scattering problem has a unique solution [2]. The
scattered field vs is a radiating solution to Eq.(2.3) and has the asymptotic behavior

(2.8) vs(x, κ) =
eiκ|x|

|x|
(m−1)

2

{
v∞(x̂, κ) +O

(
1

|x|

)}
, |x| → ∞,

where the function v∞(·, κ) : S→ C is known as far field pattern,

S := {x ∈ Rm | |x| = 1} and x̂ :=
x

|x|
.

Green’s formula, stated below, represents fields in terms of fundamental solutions
to the Helmholtz equation. In particular, let Ω ⊂ Rm satisfy Hypothesis 2.1 with
unit outward normal ν; let v(·, κ) ∈ C2(Ω

c
) ∩ C(Ωc) satisfy Eq.(2.3) and Eq.(2.7)

(i.e., v is a radiating solution to the Helmholtz equation), with normal derivative on
∂Ω in the sense of Gâteaux. Then

(2.9) v(x, κ) =

∫
∂Ω

{
v(y, κ)

∂Φ(y, x, κ)

∂ν(y)
− ∂v

∂ν
(y, κ)Φ(y, x, κ)

}
ds(y), x ∈ Ω

c
,

where Φ(·, x, κ) is the free space fundamental solution to Eq.(2.3) in Rm \ {x}. To
accommodate negative frequencies, the fundamental solution is defined so that it is
a Hermitian function of κ:

κ > 0 Φ(x, z, κ) ≡

{
i
4
H

(1)
0 (κ|x− z|), x 6= z, and m = 2

1
4π

eik|x−z|

|x−z| , x 6= z, and m = 3,
(2.10)

κ < 0 Φ(x, z, κ) ≡

{
−i
4
H

(2)
0 (|κ||x− z|), x 6= z, and m = 2

1
4π

e−i|k||x−z|

|x−z| , x 6= z, and m = 3,
(2.11)

where H
(n)
0 denotes the zero-th order Hankel function of the n-th kind [2, Eq.(3.60)

and Eq(2.1)].
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The representation in Eq.(2.9) gives the radiating solution to the Helmholtz
equation as a combination of acoustic single- and double-layer potentials defined
respectively by

(2.12) (Sκϕ)(x, κ) =

∫
∂Ω

Φ(x, y, κ)ϕ(y)ds(y) x ∈ Rm \ ∂Ω

and

(2.13) (Kκϕ)(x, κ) =

∫
∂Ω

∂Φ(x, y, κ)

∂ν(y)
ϕ(y)ds(y) x ∈ Rm \ ∂Ω.

For Ω satisfying Hypothesis 2.1, assuming that v is a solution to the scattering
problem for a sound-soft scatterer with incident wave vi satisfying Eq.(2.3) on all
of Rm, then the first part of the integrand in Eq.(2.9) is zero and we have v(x, κ) =
vi(x, κ) + vs(x, κ), x ∈ Ω

c
, κ ∈ R \ {0}, where the scattered field is given by

Huygens’ principle as

(2.14) vs(x, κ) = −
∫
∂Ω

∂v(y, κ)

∂ν(y)
Φ(x, y, κ)ds(y), x ∈ Ω

c
.

The corresponding far field pattern is given by

(2.15) v∞(x̂, κ) = −γ
∫
∂Ω

∂v

∂ν
(y, κ)e−iκx̂·yds(y), x̂ ∈ S,

which follows by passing to the far field pattern of Φ(·, y, κ).

The exterior Dirichlet problem is the fundamental problem we address in what
follows. This is stated precisely as:

Given a continuous function f on ∂Ω, find a radiating solution v ∈
C2(Ω

c
) ∩ C(Ωc) to Eq.(2.3) that satisfies Eq.(2.4).

Theorem 2.2 For κ ∈ R \ {0} fixed, the exterior Dirichlet problem has a unique
solution that depends continuously on the boundary data with respect to uniform
convergence of the solution on Ωc and all its derivatives on closed subsets of Ω

c
.

Proof. For positive κ the result can be found in [2, Theorem 3.9]. There, the
proof is given by the construction of a solution v(x, κ) which is a potential with the
density ϕ(y, κ),

(2.16) v(x, κ) = (Kκϕ)(x, κ)− iβ(Sκϕ)(x, κ), x ∈ Rm\∂Ω, κ ∈ R+\{0},

for the real coupling parameter β 6= 0. The density ϕ is the unique solution to the
integral equation

(2.17)
(
(I +Kκ − iβSκ)ϕ

)
(·, κ) = −2f(·, κ), x ∈ ∂Ω,
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where

(2.18) (Sκϕ)(x, κ) = 2

∫
∂Ω

Φ(x, y, κ)ϕ(y)ds(y), x ∈ ∂Ω,

and

(2.19) (Kκϕ)(x, κ) = 2

∫
∂Ω

∂Φ(x, y, κ)

∂ν(y)
ϕ(y)ds(y), x ∈ ∂Ω.

Thus we have the representation

(2.20) v(·, κ) = −2
(
(Kκ − iβSκ)(I +Kκ − iβSκ)−1f

)
(·, κ),

for all κ > 0.
The same theory applies to solutions with κ < 0, since Φ(x, y, κ) is Hermitian

with respect to κ. Indeed, Sκ = S−κ and Kκ = K−κ, and likewise for the double-
and single-layer potentials Kκ and Sκ defined by Eq.(2.13)-(2.12). Moreover, we
have

(I +K−κ + iβS−κ)
−1 = (I +Kκ + iβSκ)

−1 = (I +Kκ − iβSκ)−1.

The sign of the coupling parameter β is irrelevant to the representation Eq.(2.20),
thus the case κ < 0 is treated exactly as the case κ > 0. �

Corollary 2.3 If the boundary value f(x, κ) is n-times smoothly differentiable
with respect to κ ∈ R \ {0}, then so is the corresponding solution to the exterior
Dirichlet problem. Likewise, if f(x, κ) is Hermitian with respect to κ ∈ R\{0}, then
so is the corresponding solution to the exterior Dirichlet problem.

Proof. Consider the representation

(2.21) v(·, κ) = −2(Kκ − i sgn(κ)βSκ)(I +Kκ − i sgn(κ)βSκ)
−1f(·, κ),

where β 6= 0 and sgn(κ) = 1 for κ > 0 and −1 for κ < 0. At a fixed κ 6= 0
the double- and single-layer operators defined by Eq.(2.19) and Eq.(2.18), as well
as the double- and single-layer potentials given by Eq.(2.13) and Eq.(2.12), are
bounded linear operators, Hermitian and analytic with respect to κ. By the chain
and product rules, the solution v will be exactly as smooth with respect to κ as the
boundary value f(x, κ). To prove that v is Hermitian if f is, one need only show
that v(x, κ) = v(x,−κ) in the representation above. Indeed,

v(·, κ) = −2(Kκ − i sgn(κ)βSκ)(I +Kκ − i sgn(κ)Sκ)−1f(·, κ)

= −2(Kκ + i sgn(κ)βSκ)(I +Kκ + i sgn(κ)βSκ)
−1f(·, κ)

= −2(K−κ − i sgn(−κ)βS−κ)(I +K−κ − i sgn(−κ)βS−κ)
−1f(·,−κ)

= v(·,−κ).(2.22)
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With this, the proof is complete. �

Corollary 2.4 Let f ∈ C(∂Ω)×C(R\{0}) be the boundary value for the exterior
Dirichlet problem parameterized by κ ∈ C(R \ {0}). Then the corresponding solu-
tion v(x, κ) exists and satisfies the radiation condition Eq.(2.7) uniformly in κ on
compact subsets of R \ {0}.

Proof. Since f is continuous, Theorem 2.3 guarantees that v(x, κ) exists point-
wise in κ, and, by definition, satisfies Eq.(2.7) pointwise in κ. Moreover, by Corollary
2.3 v is continuous in κ on R \ {0}, therefore v satisfies Eq.(2.7) uniformly in κ on
compact subsets of R \ {0}. �

2.2 The time-domain

We now turn our attention to scattering in the time-domain, where the waves V :
R
m × R→ R satisfy the wave equation Eq.(2.1) with n = c = 1 on x ∈ Ω

c
, that is,(

4− ∂2

∂t2

)
V (x, t) = 0, x ∈ Ω

c
,(2.23)

V (x, t) = F (x, t), ∀ t and x ∈ ∂Ω (sound-soft)(2.24)

Radiating solutions to the wave equation whose domain of definition contains the
exterior of some sphere satisfy the time-domain Sommerfeld Radiation Condition:

(2.25)

∥∥∥∥|x|m−1
2

(
∂

∂|x|
− ∂

∂t

)
V (x, ·)

∥∥∥∥
L2(R)

→ 0, |x| → ∞

uniformly in all directions.
Note that, in contrast to the frequency domain radiation condition Eq.(2.7),

the radiation condition Eq.(2.25) is satisfied in norm rather than pointwise with
respect to t. Also notice that no initial value is specified in the system above. The
boundary-value problem Eq.(2.23)-(2.25) is under-determined. To remedy this we
impose further restrictions on the decay of V and its derivatives. These are given
explicitly by

(2.26)
∂n

∂tn
∂m

∂xm
V (x, ·) ∈ L1(R), m, n ∈ {0, 1, 2},

and

(2.27)

∫
|t|>r

∣∣∣∣ ∂n∂tn ∂m

∂xm
V (x, t)

∣∣∣∣→ 0, r →∞, m, n ∈ {0, 1, 2},
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uniformly in x on compact sets. The motivation for these decay conditions will
become apparent in the proof to the correspondence between the time-domain scat-
tering problem and the frequency domain problem, Theorem 2.5.

We would like to point out the contrast between the system of equations Eq.(2.23)-
(2.25) together with the decay conditions Eq.(2.26)-(2.27) and systems for which the
limiting amplitude principle [10] holds. The limiting amplitude principle gives the
steady state solution to the inhomogeneous wave equation with zero initial and
boundary values in terms of radiating solutions to the inhomogeneous Helmholtz
equation with zero boundary values. This is very different from the situation above,
where, rather than the steady state, we are interested in the behavior of the waves
for all time. Indeed, the steady state for our system of equations is not very inter-
esting since it is simply zero. Instead, it is what happens inbetween that allows us
to reconstruct the obstacle.

The time-domain Dirichlet scattering problem that we consider is the following.

For a scatterer Ω satisfying Hypothesis 2.1, given an incident field V i :
R
m ×R→ R that solves Eq.(2.23) on all of Rm ×R, find the total field

V : Ωc → R satisfying Eq.(2.23) on Ω
c

with F := 0 in Eq.(2.24) and
with V = V i + V s, where V s is the scattered field satisfying Eq.(2.23)
and the radiation conditions Eq.(2.25)-(2.27).

The next theorem establishes the correspondence between this scattering problem
and the classical scattering problem in the frequency-domain.

Theorem 2.5 (Correspondence of time- and frequency-domain.) Let
f(x, κ) : ∂Ω × R → C satisfy f ∈ C(∂Ω) × C2

c (R), with f(x, ·) Hermitian and
supp f = ∂Ω × K, where K ⊂ R \ {0} is compact. Then the function v satisfies
the exterior Dirichlet problem at almost every κ ∈ K if and only if the Fourier dual
V : Rm × R → R , V ∈ C2(Ω

c
) × C2(R), satisfies the time-domain boundary value

problem Eq.(2.23)-(2.27), with F (x, t) := (Fκf)(x, t) in Eq.(2.24).

Proof. Suppose that v(x, κ) satisfies the exterior Dirichlet problem with boundary
values f at almost every κ ∈ K. Then, by Corollary 2.3, v is almost everywhere
equivalent to v∗ ∈ (C2(Ω

c
)∩C(Ωc))×C2(R), with supp v∗(x, ·) ⊂ K and v∗(x,−k) =

v∗(x, k). Also, by Corollary 2.4, v∗ satisfies Eq.(2.7) uniformly in κ on K, thus

(2.28)

∥∥∥∥|x|m−1
2

(
∂

∂|x|
− iκ

)
v∗(x, ·)

∥∥∥∥
L2(R)

→ 0, |x| → ∞.

We show next that the Fourier transform of v∗ and it’s derivatives are abso-
lutely integrable with respect to κ uniformly in x on compact sets. To see this,
recall that, for m = 0, 1 or 2, the partial derivative ∂mv∗

∂xm
is Hermitian and be-

longs to (C2−m(Ω
c
) ∩ C(Ωc)) × C2(R). The Fourier transform of ∂mv∗

∂xm
, call it Vm
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where Vm(x, t) = (Fκ ∂
mv∗
∂xm

)(x, t), is therefore a bounded, real-valued function with

Fκ(iκ)n ∂
mv∗
∂xm

= ∂nVm
∂tn

, satisfying
∣∣∣∂nVm(x,t)

∂tn

∣∣∣ ≤ Mm(x) (1 + |t|)−2 by standard Fourier

analysis, and, in particular, ∂nVm(x,·)
∂tn

∈ L1(R), for n ≥ 0 uniformly in x on com-
pact sets. Now, since v∗ is bandlimited with respect to κ and twice continuously
differentiable with respect to x then ∂mv∗

∂xm
∈ L1(R) uniformly in x on compact sets.

Thus, by [5, Theorem 53.5] we can differentiate under the integral in the Fourier
transform to yield Vm = ∂mV

∂xm
(m = 0, 1 or 2). The Fourier dual V therefore sat-

isfies Eq.(2.26)-(2.27) and the boundary value problem Eq.(2.23)-(2.25) where the
radiation condition Eq.(2.25) follows from Parseval’s relation.

Conversely, suppose that the bounded, real-valued function V : Rm × R →
R , V ∈ C2(Ω

c
) × C2(R), satisfies Eq.(2.26)-(2.27) uniformly in x on compact

sets, in addition to the time-domain boundary value problem Eq.(2.23)-(2.25), with
F (x, t) := (Fκf)(x, t) in Eq.(2.24). Then [5, Theorem 53.5] can be applied to show
Ft ∂V∂|x| = ∂v

∂|x| and Ft4V = 4v, where v = FtV . These, together with the decay

conditions Eq.(2.27) yield

(4+ κ2)v(x, κ) = 0, x ∈ Ω
c
,

v(x, κ) = f(x, κ), x ∈ ∂Ω,

and

∥∥∥∥|x|m−1
2

(
∂

∂|x|
− iκ

)
v(x, ·)

∥∥∥∥
L2(R)

→ 0, |x| → ∞.(2.29)

To complete the proof, we must achieve a pointwise decay condition from Eq.(2.29).
To do this, define Sj := {x ∈ Rm | |x| = rj }, where the sequence of scalars rj →∞.
The corresponding sequence of functions is given by

ψj(κ) := max
x∈Sj

∣∣∣∣|x|m−1
2

(
∂

∂|x|
− iκ

)
v(x, κ)

∣∣∣∣ .
The radiation condition Eq.(2.29) implies that ‖ψj‖L2 → 0, thus there exists a sub-
sequence ψji(κ) converging pointwise almost everywhere to zero in κ [16, Theorem
3.12]. Since v(·, κ) satisfies Eq.(2.3), ψji(κ)→ 0 implies that∣∣∣∣|x|m−1

2

(
∂

∂|x|
− iκ

)
v(x, κ)

∣∣∣∣→ 0, |x| → ∞,

that is, v(x, κ) satisfies the exterior Dirichlet Problem at almost every κ. �

Corollary 2.6 (Uniqueness and Existence for time-domain scattering.)

Under the hypotheses of Theorem 2.5, solutions V to Eq.(2.23)-(2.27) are unique.

Proof. This follows directly from Theorem 2.2 and Theorem 2.5. �
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3 Inverse Scattering

The point source method seeks to construct a backprojection operator from the far
field to the near field of a scatterer that is illuminated by an incident field that can
be represented as a superposition of plane waves. In the frequency domain the far
field pattern u∞ describes the asymptotic behavior of the scattered field us when
the modulus |x| tends to infinity as described by equation (2.8). In the time domain
we define the far field U∞ to be the Fourier transform Fκu∞of u∞. In practical
applications, U∞ is approximately the time dependent scattered field U s on the
surface of a large ball centered at the origin with radius R� 1, ∂BR(0), normalized
with the appropriate decay factor eiκR/R(m−1)/2.

The backprojection operator as introduced in [14] relies on the duality of point
sources and plane waves. We denote the total field generated by an incident plane
wave by u,

(3.1) u(x, κ, η̂) = ui(x, κ, η̂) + us(x, κ, η̂)

where ui(x, κ, η̂) := eiκx·η̂, x ∈ Rm, κ ∈ R, and η̂ ∈ S denotes the direction of
incidence. The field resulting from excitation by a point source Φ(x, , κ, z) (x 6= z)

is given by w(·, κ, z) : Ω
c → C :

(3.2) w(·, κ, z) := wi(·, κ, z) + ws(·, κ, z),

where wi(·, κ, z) := Φ(·, κ, z), z ∈ Ω
c
, and κ 6= 0. The field w is a solution

to the scattering problem with an incident point source. This field is the Green
function for the boundary value problem Eq.(2.3), Eq.(2.4) (or Eq.(2.5) or Eq.(2.6))
and Eq.(2.7), and is symmetric: w(x, κ, z) = w(z, κ, x) x, z ∈ Ω

c
, x 6= z. The

corresponding scattered field ws(·, κ, z) satisfies Eq.(2.3)-(2.7) with f = −Φ(·, κ, z)
on ∂Ω.

3.1 The time-dependent point source method

Consider Ωa ⊂ Rm a bounded domain with simply connected piecewise C2 boundary
with corners satisfying the cone conditions [3]. We first note that, for Ω ⊂ Ωa, a
straight forward argument using Green’s theorem and the boundary conditions for
the fields u and w (see [4]) shows that

(3.3) w∞(x̂, κ, z) = γ(κ)us(z, , κ,−x̂), x̂ ∈ S, z ∈ Ω
c

a,

where

(3.4) γ(κ) =

{
e−i

π
4√

8πκ
, m = 2

1
4π

m = 3
.
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Equation Eq.(3.3) is referred to as the mixed reciprocity relation and is discussed
in further detail in [14, Theorem 2.1.4]. Second, by the principle of superposition
for far field patterns [2, Theorem 3.16], the far field pattern due to scattering from
any incident field (in particular an incident point source) can be expressed as a
superposition of far field patterns due to scattering from incident plane waves. The
point source method uses these two facts to reconstruct the scattered field on some
region E outside of Ω. This technique has been explored in [7, 8, 12–14] where
it is applied to frequency-domain problems. Here we extend this methodology to
nonharmonic, time-dependent waves.

Let Λ ⊂ S denote an open set of directions on S. Here, Λ models the aperture on
which our sensors lie. In our numerical experiments, this is a symmetric interval of
the unit sphere centered with respect to the direction of the incident field. The far
field u∞ due to an incident plane wave with direction η̂ ∈ S is measured at points
ŷ ∈ Λ. Define the Herglotz wave operator Hκ : L2(−Λ)→ L∞(Rm) by

(3.5) (Hκg)(x) :=

∫
Λ

eiκx·(−ŷ)g(−ŷ) ds(ŷ), x ∈ Rm, g ∈ L2(−Λ).

The corresponding family of Herglotz wave functions parameterized by κ and map-
ping Rm to C, hg(·, κ) := (Hκg)(·), consists of entire solutions to the Helmholtz
equation for fixed κ. Of particular interest is the Herglotz wave operator restricted
to some surface X ⊂ Rm. The adjoint of Hκ with κ fixed, denoted H∗κ : L2(X) →
L2(Λ) , is given by

(H∗κψ)(d) :=

∫
X

e−iκx·(−d)ψ(x) ds(x), d ∈ Λ.

Let Ωa be a bounded domain for which κ2 is not a Dirichlet eigenvalue of −4 on the
interior of Ωa, and whose boundary ∂Ωa is simply connected, piecewise C2. It can be
shown that in this case Hκ and H∗κ restricted to ∂Ωa are injective with dense range.
Thus one can choose the Herglotz wave function hg with density g to approximate
arbitrarily closely any convenient incident field vi on ∂Ωa. The incident field we
shall approximate is an incident point source located at a point z ∈ Ω

c

a. To this end,
we define the Herglotz wave function as a function of the spatial variable x ∈ Ωa

and wavenumber κ ∈ R parameterized by the point z as

(3.6) hg(x, κ, z) :=

∫
Λ

eiκx·(−ŷ)g(−ŷ, κ, z) ds(ŷ).

The backprojection operator that is at the heart of the point source method is
built upon the integral operator Bg : L2(Λ×R× S)→ L2(Rm×R× S) with kernel
g(·, ·, z). For a function ψ ∈ L2(Λ× R× S), the operator Bg is defined by

(3.7) (Bgψ)(z, κ, η̂) :=

∫
Λ

ψ(x̂, κ, η̂)
g(−x̂, κ, z)

γ(κ)
ds(x̂),
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for γ(κ) given by Eq.(3.4). The corresponding time-domain operator, denoted Bg :
L2(Λ× R× S)→ L2(Rm × R× S) , is defined by

(3.8) Bg := FκBgFt

The next theorem states that, provided Ω ⊂ Ωa, the density g(·, κ, z) for which
the Herglotz wave function approximates Φ(·, κ, z) on ∂Ωa allows one directly to cal-
culate an approximation to the scattered field us at the point z from fixed frequency
far field data u∞. For multifrequency fields in the time-domain, we are interested
in the uniformity of such approximations over all κ. For this we need the following
lemma.

Lemma 3.1 Let Ωa ⊂ Rm be a bounded domain with simply connected, piecewise C2

boundary. The set of Dirichlet eigenvalues of the negative Laplacian on the interior
of Ωa has measure zero with respect to Lebesgue measure on R.

Proof. The spectrum of −4 on bounded domains has a countably infinite spectrum
[6, Theorem 4.1], and any countable set of points in R has measure zero with respect
to Lebesgue measure. �

Before stating the main result of this section, we introduce the far field mapping
TΩ′a : vs|Ω′a → v∞ mapping the scattered field vs restricted to any compact subset

Ω′a ⊂ Ω
c

containing open subsets to the far field v∞. This is a continuous mapping.
The time domain counterpart to this – also a continuous mapping – is denoted T
with TΩ′a : vs|Ω′a → v∞ . The next theorems show how to approximate the inverse
of the far field mapping of the scattered field due to an incident plane wave.

Theorem 3.2 (Norm convergence in frequency) Let Ωa ⊂ Rm be a bounded
domain with simply connected, piecewise C2 boundary satisfying Ω ⊂ Ωa and let
K = R \ B(0, ε′) where B(0, ε′) is the closed ball of radius ε′ centered at the origin.
Given any δ > 0 and any fixed z ∈ Ω

c

a, there exists an ε > 0 such that, for all η̂ ∈ S,

(3.9)
∥∥∥Φ(·, ·, z)− hg(·, ·, z)

∥∥∥
C(∂Ωa)×L2(K)

< ε

implies

(3.10)
∥∥∥us(z, ·, η̂)− (Bgu∞)(z, ·, η̂)

∥∥∥
L2(K)

< δ.

Here us and u∞ are the scattered field and far field pattern due to an incident plane
wave with direction η̂, Bg is defined by Eq.(3.7), and hg(·, ·, z) is defined by Eq.(3.6).
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Proof. Consider any g satisfying Eq.(3.9) (we know that such a g exists since Hκ

is injective with dense range). Both hg and Φ solve Eq.(2.3) on the interior of Ωa,
thus both are analytic with respect to the spatial variable [2, Theorem 2.2]. Let
A = {κ | κ2 is an eigenvalue of −4 on Ωa}. For all κ ∈ K \A solutions to Eq.(2.3)
with boundary values on ∂Ωa are unique. Thus on Ωa×K \A, given any δ′ there is
an ε such that Eq.(3.9) implies∣∣∣∣∣∣Φ(·, ·, z)− hg(·, ·, z)

∣∣∣∣∣∣
C(Ωa)×L2(K\A)

≤ δ′

and hence

(3.11)
∣∣∣∣∣∣Φ(·, ·, z)− hg(·, ·, z)

∣∣∣∣∣∣
C(∂Ω)×L2(K\A)

≤ δ′.

By Lemma 3.1, the set A has measure zero, thus the inequalities above hold when
K \ A is replaced by K in the norm above.

Now consider the scattered field associated with the incident field vi(x, κ, z) =
hg(x, κ, z) due to scattering from the sound-soft obstacle Ω. Likewise, consider the
scattered field ws due to an incident point source Φ(x, κ.z), z ∈ Ωc

a. On ∂Ω we have
vi = −vs and ws = −Φ, thus Eq.(3.11) can be rewritten as∣∣∣∣∣∣− ws(·, ·, z) + vs(·, ·, z)

∣∣∣∣∣∣
C(∂Ω)×L2(K)

≤ δ′.

Since the far field mapping is T∂Ω is a continuous mapping, given any δ > 0 there is
a δ′ > 0 such that ‖ws(·, ·, z)− vs(·, ·, z)‖C(∂Ω)×L2(K) ≤ δ′ implies∣∣∣∣∣∣w∞(−η̂, ·, z)− v∞(−η̂, ·, z)

∣∣∣∣∣∣
L2(K)

≤ δ, ∀ η̂ ∈ S.

By [2, Lemma 3.16], v∞(−η̂, κ, z) =
∫

Λ
u∞(−η̂, κ,−ŷ)g(−ŷ, κ, z)ds(ŷ), where u∞

is the far field pattern due to scattering of an incident plane wave. Now, the
mixed reciprocity relation Eq.(3.3) together with the standard reciprocity relation
u∞(−η̂, κ,−ŷ) = u∞(ŷ, κ, η̂) (see [2, Theorem 3.13]) yield the result∥∥∥∥us(z, ·, η̂)− 1

γ(κ)

∫
Λ

u∞(ŷ, ·, η̂)g(−ŷ, ·, z)ds(ŷ)

∥∥∥∥
L2(K)

≤ δ, ∀ η̂ ∈ S.

�

Corollary 3.3 (Pointwise convergence in time) In addition to the assump-
tions of Theorem 3.2, let ui(·, κ, η̂) = 0 for all κ ∈ B(0, ε′). Then, for any sequence
{gi} with

(3.12)
∥∥∥Φ(·, ·, z)− hgi(·, ·, z)

∥∥∥
C(∂Ωa)×L2(K)

→ 0.
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there exists a subsequence {gij} such that, for any z ∈ Ω
c

a

(Bgij
U∞)(z, η̂, t)→ U s(z, η̂, t), ∀ η̂ ∈ S,

where Bgij
is defined by Eq.(3.8).

Proof. Since ui(·, κ, η̂) = 0 for κ ∈ B(0, ε′), then the scattered field and far
field pattern at these wavenumbers are also zero. Without loss of generality define
g(ŷ, κ, z) := 0 for κ ∈ B(0, ε′). Thus, the inequality Eq.(3.10) can be extended to

(3.13)
∥∥∥us(z, ·, η̂)− (Bgu∞)(z, ·, η̂)

∥∥∥
L2(R)

< δ.

By Parseval’s identity, we have

(3.14)
∥∥∥U s(z, ·, η̂)− (BgU

∞)(z, ·, η̂)
∥∥∥
L2(R)

< δ,

where U s = Fκus, U∞ = Fκu∞ and B is defined by Eq.(3.8). Now let δi be a
sequence with δi → 0. By Theorem 3.2 there exists a sequence εi → 0, such that,
for any corresponding sequence {gi} satisfying∥∥∥Φ(·, ·, z)− hgi(·, ·, z)

∥∥∥
C(∂Ωa)×L2(K)

< εi → 0,

we have ∥∥∥U s(z, ·, η̂)− (BgiU
∞)(z, ·, η̂)

∥∥∥
L2(R)

< δi → 0, ∀ η̂ ∈ S.

Thus by [16, Theorem 3.12] there exists a subsequence {gij} such that

lim
j→∞

(Bgij
U∞)(z, t, η̂) = U s(z, t, η̂), ∀ η̂ ∈ S and for a.e. t ∈ R.

Since U s(z, ·, η̂) and (BgiU
∞)(z, ·, η̂) ∈ C2(R) convergence is pointwise everywhere.

�

We close this section with a few remarks about the regularity of the point source
method, by which we mean that the method admits a regular regularization strategy.
This is defined below.

Definition 3.4 Let X and Y be normed spaces and let A : X→ Y be an injective
bounded linear operator. Regularized inverses of A are bounded linear operators
Rα : X→ Y parameterized by α > 0, a regularization parameter, with the property
of pointwise convergence to A−1 for all ϕ ∈ X,

lim
α→0

RαAϕ = ϕ, ∀ϕ ∈ X.

A regularized solution to the problem of solving Aϕ = ψ for the unknown ϕ (ψ ∈
rangeA) is the approximation ϕα = Rαψ.
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Noisy inverse problems are characterized by a mismatch, or error, between the true
image ψ of the input ϕ under the operator A, ψ = Aϕ, and the observed image
ψδ. The next definition establishes the framework for analyzing the convergence
properties of regularized inversion in the presence of noise.

Definition 3.5 A regularization strategy Rα, that is a rule for choosing α depend-
ing on the size of the image error δ, is called regular if, for all ψ ∈ rangeA and all
ψδ ∈ Y with ‖ψδ − ψ‖ ≤ δ we have

Rα(δ)ψδ → A−1ψ, as δ → 0.

Corollary 3.6 (Regularity of the time-domain point source method)

The density gα(ŷ, κ, z) given by

(3.15) gα(x, κ, z) := (H∗κHκ + αI)−1H∗κΦ(x, κ, z)

is a regularized solution (in fact, the Tikhonov regularized solution) to the inverse
problem

(Hκg)(x, κ, z) = Φ(x, κ, z), x ∈ ∂Ωa.

Moreover, under the assumptions of Corollary 3.3, the operator Bgα defined by
Eq.(3.8) is a regularized inverse of the far field mapping TΩ′a on compact subsets

of Ω
c
, which, in the presence of noise, admits a regular regularization strategy.

Proof. Recall that Hκ and H∗κ, restricted to ∂Ωa for fixed κ and κ2 not a Dirichlet
eigenvalue of −4 on Ωa, are injective with dense range. Thus the operator Rα =
(αI + H∗κHκ)

−1H∗κ is the Tikhonov regularized inverse operator for Hκ on ∂Ωa, for
κ ∈ K \ {Dirichlet eigenvalues of −4 on ∂Ωa} (see for example [2, Ch.4]).

To prove the remainder of the theorem we decompose the error into the regular-
ization error and the data error:

||BgαU
∞
δ′ − T−1

Ω′a
U∞|| ≤ ||BgαU

∞ − T−1
Ω′a
U∞||+ ||Bgα(U∞ − U∞δ′ )||(3.16)

where U∞δ′ is a noisy measurement satisfying ‖U∞(z, t, η̂) − U∞δ′ (z, t, η̂)‖ < δ′(t).
To show that Bgα is a regularized inverse of TΩ′a , we need only show that, for all
U∞ ∈ rangeTΩ′a , the first norm on the right of Eq.(3.16) tends to zero as α →
0. If the second norm on the right of Eq.(3.16) tends to zero as the data error
‖U∞(z, t, η̂)− U∞δ′ (z, t, η̂)‖ < δ′(t)→ 0, then by Definition 3.5 Bgα is regular.

First, assuming that us(·, κ, η̂) = 0 for all κ ∈ Kc, then by Eq.(3.14), given any
δ > 0 and any U∞ ∈ rangeT{z}, there exists ε > 0 and α > 0 such that∣∣∣∣∣∣Φ(x, κ, z)− (Hκgα)(x, κ, z)

∣∣∣∣∣∣
C(∂Ωa)×L2(K)

< ε
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implies

(3.17)
∥∥∥(T−1

{z}U
∞)(z, ·, η̂)− (BgαU

∞)(z, ·, η̂)
∥∥∥
L2(R)

<
δ

2
, ∀ η̂ ∈ S.

Since (αI +H∗κHκ)
−1H∗κ is a regularized inverse of Hκ, which is injective with dense

range, the norm above tends to zero as ε, and α→ 0.
For the second step, recall that for fixed t, the backprojection operator Bgα is a

continuous linear operator, thus, for each function δ′′(t) > 0 with
(∫
R
δ′′(t)dt

)1/2
= δ,

there exists a function δ′(t) > 0 such that∥∥∥U∞(·, t, η̂)− U∞δ′ (·, t, η̂)
∥∥∥2

L2(Λ)
< δ′(t), ∀ η̂ ∈ S

implies ∣∣∣(BgαU
∞)(z, t, η̂)− (BgαU

∞
δ′ )(z, t, η̂)

∣∣∣2 ≤ δ′′(t)

4
, ∀ η̂ ∈ S.

Integrating with respect to t and taking the square root yields

(3.18)
∥∥∥BgαU

∞(z, ·, η̂)−BgαU
∞
δ′ (z, ·, η̂)

∥∥∥
L2(R)

≤ δ

2
, ∀ η̂ ∈ S.

Together Eq.(3.17) and Eq.(3.18) yield∥∥∥T−1
{z}U

∞(z, ·, η̂)−BgαU
∞
δ′ (z, ·, η̂)

∥∥∥
L2(R)

< δ, ∀ η̂ ∈ S,

and thus the regularity of the point source method. �

Remark 3.7 Corollary 3.6 relies on some strong, but practical, assumptions about
the nature of the noise. Specifically, we require that the error in the time dependent
far field pattern U∞δ′ is integrable with respect to time. This is often enforced in the
form of a priori assumptions on the decay of the wave with respect to time.

4 Numerical examples

We conclude with two numerical demonstrations of the method described above.
The following images show the actual and reconstructed time progression of the
total wave-field (scattered plus incident waves) as it scatters around a sound soft
obstacle. The incident wave travels from right to left, and has the frequency profile
shown in Figure 1. As this picture shows, the incident field, that is, the boundary
condition f in Eq.(2.4), has been constructed so that it satisfies the hypotheses
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of Theorem 2.5. We demonstrate the point source method when the obstacle is
an ellipse shown in Figure 2(a), and, to see the effects of nonconvexity, when the
obstacle is a kite shape obstacle shown in Figure 2(b). Note that the wave numbers
range from −5 to 5 and the obstacle diameters are around 2, thus the wave numbers
are in the resonance region of the obstacles.

The data consists of time-series measurements of the scattered field on a sphere S
in the far field. To generate the forward data we use integral equations as described in
[2]. We discretize the integral equations using 160 points on the boundary, ignoring
the singularity. This approach yields far field data with approximately 2% error.
We evaluate the far field pattern at 80 points on the unit sphere with 66 time slices.
The scattered field, reconstructed using the point source method, was computed at
6400 evenly spaced radial points in the computational domain. For reference, we
calculated the true scattered field via boundary integral techniques on a 80 × 80
Cartesian grid.

To implement the point source method in this setting, we apply the Fourier trans-
form to the far field data and solve for the scattered field at the sampled wavenumber
κ in the usual way with the point source method (see [7, 12, 14]). We refine our so-
lution for the scattered fields at each frequency by estimating the location of the
center of the obstacle via the techniques outlined in [9]. With the location of the
center in hand, we then reconstruct the total field at each frequency along radial
lines extending from this center. Applying the inverse Fourier transform yields the
time-dependent wave. This is shown in the series of snap-shots of the wave dis-
played in Figures 3(a)-(c) and 4(a)-(c) for the obstacles shown in Figures 2(a) and
(b) respectively. Each of these is compared to the true time-dependent wave shown
in Figures 3(e)-(h) and 4(e)-(h). The true solution is calculated using boundary
integral techniques outlined in [2].

To give some idea of the computational intensity of these experiments, the for-
ward solution for the time-dependent scattered field calculated on the 80×80 Carte-
sian grid via boundary integral techniques took 206 seconds using MATLAB with
the DP Toolbox [11] on a parallel cluster of 6 Linux PC’s (2 Ghz, 1280 MB RAM).
In contrast, the inverse solution, calculated on a polar grid of 6400 evenly spaced
points from 80 simulated far field measurements, took 13 seconds.

References

[1] D. Colton, J. Coyle, and P. Monk : ”Recent Developments in Inverse Scattering
Theory,” SIAM Rev. 42(3), 369-414 (2000).

[2] Colton, D. and Kress, R.: Inverse Acoustic and Electromagnetic Scattering
Theory. 2nd Ed., Springer-Verlag (1998).



18 Time-dependent Inverse Obstacle Scattering

Figure 1: Frequency profile of incident wave.

(a) (b)

Figure 2: Sound-soft obstacles.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 3: (a)-(d) Amplitude of the total wave calculated via the point source method from
far field measurments at times t = 21, 31, 35 and 42 for the ellipse shown in Figure 2(a).
(e)-(h) Amplitude of total wave at the same times calculated using the forward problem
with exact boundary data.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 4: (a)-(d) Amplitude of the total wave calculated via the point source method
from far field measurments at times t = 15, 25, 30 and 40 for the kite-shaped obstacle
shown in Figure 2(b). (e)-(h) Amplitude of total wave at the same times calculated using
the forward problem with exact boundary data.
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