
PIMS-Director director@pims.math.ca (604) 822-3922

SFU-site sfu@pims.math.ca (604) 268-6655 UCalgary-site uc@pims.math.ca (403) 220-3951

UAlberta-site ua@pims.math.ca (780) 492-4308 UVic-site uvic@pims.math.ca (250) 472-4271

UBC-site ubc@pims.math.ca (604) 822-3922 UWashington-site uw@pims.math.ca (206) 543-1173

The no response test - a sampling method for

for inverse scattering problems

D. Russell Luke Roland Potthast
PIMS Institut for Numerical and Applied Mathematics
Simon Fraser University University of Göttingen
Burnaby BC V5A 1S6, CANADA Germany

Preprint number: PIMS-03-5

Received on March 11, 2003





The no response test - a sampling method for

inverse scattering problems

D. Russell Luke1 and Roland Potthast 2

Abstract. We describe a novel technique, which we call the no response test, to locate the support of a
scatterer from knowledge of a far-field pattern of a scattered acoustic wave. The method uses a set of sampling
surfaces and a special test response to detect the support of a scatterer without a priori knowledge of the physical
properties of the scatterer. Specifically, the method does not depend on information about whether the scatterer is
penetrable or impenetrable nor does it depend on any knowledge of the nature of the scatterer (absorbing, reflecting,
etc). In contrast to previous sampling algorithms, the techniques described here enable one to locate obstacles or
inhomogeneities from the far field pattern of only one incident field – the no response test is a one-wave-method.
We investigate the theoretical basis for the no response test and derive a one-wave uniqueness proof for a region
containing the scatterer. We show how to find the object within this region. We demonstrate the applicability
of the method by reconstructing sound-soft, sound-hard, impedance and inhomogeneous medium scatterers in two
dimensions from one wave with full and limited aperture far-field data.

Key words. inverse problems, scattering theory, image processing
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1. Introduction. Inverse scattering is concerned with recovering information about a medium
and its embedded objects by exciting or illuminating the medium with acoustic or electromagnetic
fields and measuring the resulting field. One of the fundamental problems is to determine the
location and shape of scatterers that are either buried or located in some inaccessible region of a
medium. Applications range from geoscience to medical imaging.

Over the past decade, several innovative and successful methods have been introduced into
the area of inverse scattering. Here, we add to the list a methodology that we call the no response
test and demonstrate its applicability. The idea of the method is to test the hypothesis that a
scatterer lies within a given test domain given the far-field data. We sample by construction the
set of incident fields that are small on the test domain and large outside. The far-field patterns
corresponding to these incident fields are then calculated using the given far-field data. We call the
calculated far field patterns responses. If all the responses are small, then the unknown scatterer
is shown to be a subset of the test domain, that is the hypothesis is true. The unknown scatterer
is located within the union of all test domains for which the hypothesis is true. Since small, rather
than large, responses indicate the location of the scatterer, the methodology is called the ”no
response” method.

To place this methodology relative to other reconstruction techniques we give a brief review of
the different reconstruction approaches. The evolutionary tree of inverse scattering algorithms is
diverse enough that some taxonomy is in order. We separate reconstruction algorithms into three
classes: iterative, decomposition, and sampling/probe methods.

1Simon Fraser University, Burnaby, British Columbia V5A 1S6, CANADA (luke@cecm.sfu.ca). This author is
a Postdoctoral Fellow of the Pacific Institute for the Mathematical Sciences. His work was supported while at the
University of Göttingen.
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2 THE NO RESPONSE TEST

Category Methods
I Iterative techniques

Newton Method
Landweber Scheme
Least Squares Fits (depending on the setup)
Conjugate Gradient Method

II Decomposition techniques
Colton-Monk Method / Dual Space Method
Kirsch-Kress Method
Potthast / Point Source Method

III Probe- and sampling techniques
Colton-Kirsch Method / Linear Sampling Method
Kirsch / Factorization Method
Potthast / Singular Sources Method
Ikehata / Probe Method
Ikehata / Enclosure Method
Luke-Potthast / No Response Test

Iterative methods (Category I in [16]) use the model of the full forward problem, or an ap-
propriate approximation thereof, for the solution of the inverse problem. These techniques have
the advantage that they use all information about the forward problem for the solution of the
inverse problem and they usually deliver quite good reconstructions. However, due to the need
to solve the forward problem many times, they can be computationally intensive. Also, obtaining
a localized reconstruction in a limited data setting is problematic since full data for solving the
forward problem is presumed. Indeed, at the very least it is presumed that one knows which model
the data should satisfy. Well-known examples of iterative techniques are the Newton method, the
Landweber method and various versions of least-squares fits.

Decomposition algorithms (Category II in [16]) consist of methods that split the inverse prob-
lem into an ill-posed part to reconstruct the scattered field and a well-posed part to find the
unknown scatterer due to some boundary condition. Representatives of this type of method are
the dual-space method proposed by Colton-Monk [3] [4] and the technique of Kirsch-Kress [2], but
also newer strategies like the point source method of Potthast [16, 14, 15], which turns out to be a
type of adjoint method to the Kirsch-Kress technique.

Sampling and probe methods comprise the third and most recent class of algorithms (Category
III in [16]). These involve testing a given region with a model mapping the data to a point in
the test region and locating the boundary of the unknown scatterer as the points where some
unusual or characteristic behavior (usually some resolvable type of blow-up) occurs in the model
functions. Where these techniques differ is in the construction of the model functions, which
leads to fundamentally different algorithms. These methods share the advantage that they can be
applied without knowing whether the scatterer is impenetrable (sound-soft or sound-hard), or an
inhomogeneous medium. The no response test belongs to this class. We discuss in more detail the
different strategies within this class that have been proposed since 1995.

A scatterer is denoted by its support Ω ⊂ Rm (m = 2, or 3) where Ω is bounded. For our
purposes we need only assume that the boundary of the scatterer ∂Ω is Lipschitz, however this
introduces mathematical technicalities that cloud the central ideas here. We therefore limit our
discussion to twice continuously differentiable (C2) boundaries. Readers interested in the details
of boundaries with corners, or more generally Lipschitz boundaries, are referred to [11, 12]. We
denote by ν(x0) the unit outward normal to Ω at the point x0 ∈ ∂Ω, that is, |ν(x0)| = 1 and the
vector product (y − x0, ν(x0)) ≤ 0 for every y ∈ Ω.
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Let u, us : Rm → C and u∞ : S → C , denote the total, scattered, and far fields respectively
due to excitation from an incident plane wave ui at a fixed wavenumber κ > 0. Here S :=
{x ∈ Rm | |x| = 1}. We parameterize these fields by the direction of incidence ŷ of the incident
plane wave ui(x, ŷ) := eiκx·ŷ, x ∈ Rm ŷ ∈ S, where i =

√
−1 in the exponential. Similarly we

write the dependence on the direction of incidence explicitly in the argument of the other fields as
u(x, ŷ), us(x, ŷ), and u∞(x̂, ŷ) respectively. Here and elsewhere, the hat indicates a unit vector,
x̂ := x

|x| . When the far field data is known only on an open subset Γ of S, we call the data limited
aperture data.

Assumptions
Method Amount of on the physical

far field data needed nature of the
scatterer

Colton-Kirsch /
Linear Sampling Method u∞(x̂, ŷ), ∀x̂, ŷ ∈ Γ ⊂ S none
Kirsch / Factorization Method u∞(x̂, ŷ), ∀x̂, ŷ ∈ S none
Potthast /
Singular Sources Method u∞(x̂, ŷ), ∀x̂, ŷ ∈ Γ ⊂ S none
Ikehata / Probe Method u∞(x̂, ŷ), ∀x̂, ŷ ∈ S none
Ikehata / Enclosure Method u∞(x̂, ŷ), ∀x̂ ∈ S one ŷ ∈ S none
Luke-Potthast / u∞(x̂, ŷ), ∀x̂ ∈ Γ ⊂ S,
No Response Test one ŷ ∈ S none

The linear sampling method of Colton and Kirsch [1] characterizes the domain of an unknown
scatterer by the behavior of the solution to the integral equation of the first kind∫

S

u∞(x̂, ŷ)g(ŷ)ds(ŷ) = eiκx̂·z, x̂ ∈ S.(1.1)

Here a regularized solution g is calculated for all points z on a sampling grid G. The unknown
boundary is found where ||g(z)|| becomes unbounded.

Kirsch [10] proposed a modified version of this method by constructing a spectral decomposition
of the operator

(Fg)(x̂) :=
∫
S

u∞(x̂, ŷ)g(ŷ)ds(ŷ), x̂ ∈ S,

used in (1.1). He proposed to solve the equation

(F ∗F )1/4g(x̂) = eiκx̂·z, x̂ ∈ S

for all z ∈ G and showed that the equation is solvable if and only if z is in the interior of the
unknown scatterer. This technique of Kirsch is known as modified linear sampling or factorization
method.

Ikehata and Potthast have independently proposed two related algorithms, the probe method
[6] and the method of singular sources [16] respectively. These techniques are distinct from the
(modified) linear sampling methods above in that they use different quantities that blow up when
approaching the boundary of some scatterer.

The probe method of Ikehata uses Green’s formula to define an indicator function that blows
up when the virtual source touches the unknown obstacle. Let Λ be the Dirichlet-to-Neumann
map for the boundary value problem in a domain B with the unknown domain Ω ⊂ B and Λ0 be
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the Dirichlet-to-Neumann map for B without the existence of Ω. Ikehata proposed to consider

I(z, f) :=
∫
∂B

(Λ− Λ0)f · fds

for specially constructed functions f . It can be shown that I(z, f) tends to infinity if z tends to
the boundary of the unknown domain. The Dirichlet-to-Neumann map can be calculated from the
far field patterns u∞(x̂, ŷ) for all x̂, ŷ ∈ S, i.e. from the far field pattern for scattering of all plane
waves of one fixed frequency.

The singular sources method of Potthast uses a different functional which also blows up at the
boundary of the obstacle. This functional is defined as the magnitude of the scattered field Ψs(z, z)
of singular sources Ψ(·, z) and is calculated by backprojection of the form

Ψs(y, z) ≈
∫
S

∫
S

u∞(x̂, ŷ)g(x̂, y)g(−ŷ, z)ds(ŷ)ds(x̂), y, z ∈ Rm \ Ω,

for explicitly constructed kernels g(·, ·).
All of the linear sampling and probe methods share the advantage that no knowledge about

the boundary condition of the unknown scatterer is needed. With the exception of the Kirsch
factorization method, these methods are valid in the limited aperture case, where the far field data
is not known on the full sphere, but only on an open subset Γ ⊂ S. The principle disadvantage of
sampling and probe techniques, however, is that they all require the knowledge of far field patterns
for a large number of incident plane waves. The current challenge facing these algorithms is to
reduce the amount of data needed for reliable reconstructions.

Recent work by Ikehata has made significant progress toward the development of reconstruction
algorithms using very limited data. His enclosure method [7, 8] enables one to find the support
of convex polygons from the knowledge of one measured field. Ikehata uses a special harmonic
incident field

v = eτx·(ω+iω⊥),

to construct the following indicator function

Iω(τ, t) = e−τt
{〈

∂u

∂ν

∣∣∣∣
∂G

, v|∂G
〉
−
〈
∂v

∂ν

∣∣∣∣
∂G

, u|∂G
〉}

, τ > 0, t ∈ R,(1.2)

where ω ∈ S is a direction vetor, u is the unknown, weak solution to the scattering problem and
G is some domain containing the unknown scatterer, Ω ⊂ intG the interior of G. Ikehata shows
that at the corners of polygonal scatterers this indicator function becomes unbounded. He then
exploits this property to uniquely reconstruct the scatterer. For details on implementation see [9].
While for the purposes of analysis the presentation of the enclosure method is limited to specific
settings, it appears that in practice the method is independent of the material properties of the
scatterer.

In this work we propose another technique for locating a scatterer from a single incident wave
that also exploits the behavior of a special indicator function in the neighborhood of a scatterer.
Since we look, rather, for where the indicator function does not become unbounded, we call the
method the no response test. Like the enclosure method, the no response test can be used to
locate scatterers from only one incident wave. Moreover, neither the enclosure method nor the no
response test require a priori knowledge of the material properties of the scatterer. However, the
indicator function in the no response test is a different functional on the measured data than that
of Ikehata. Also, we do not make use of, nor place any particular constraints on, the goemetric
properties of the scatterer.
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It is often the case that numerical algorithms preceed by many years their mathematical
justification. The absence of analytical results for a particular application does not preclude the
successful implementation and numerical study of algorithms. At the expense of mathematical
analysis limited to narrow settings, we have chosen to highlight the robustness of the no response
test in a variety of settings by focusing on numerical results. We leave many unanswered questions,
however the demonstration of the applicability of the techniques discussed here helps to motivate
and formulate the analysis that must follow. In Section 3 we provide preliminary theoretical results
to motivate the method. A convergence proof for one-wave reconstructions would include a one-
wave uniqueness result. These results are not yet available. However, we can show that a set
(depending on some test domain Ω0

t ) surrounding the unknown scatterer, which we call its corona,
is uniquely determined by the one-wave far field pattern independent of the boundary condition.

The no response algorithm is given in Section 4. In the same section we show reconstructions
for scattering from scatterers with Dirichlet, Neumann, or impedance boundary condition, or for
scattering from an inhomogeneous medium. We show results from each of these scatterers with
full and limited aperture data. Preparatory to this, we briefly review in Section 2 the fundamental
scattering models for sound-soft, sound-hard, and mixed obstacles as well as inhomogeneous media.

2. Dirichlet, Neumann, impedance and medium scattering problems. This section
serves to briefly review the key elements of scattering by bounded objects or media, and to provide
some tools for the inversion method described in Section 3. We also describe how we solved the
forward problems to produce the data used for the demonstration of the no response test.

Scattering review. Let vi be an incident field that satisfies the Helmholtz equation,

4v + κ2v = 0,

with wave number κ > 0 on Rm. The incident field produces a scattered field vs that solves
the Helmholtz equation on the exterior of the scatterer Ω and satisfies the Sommerfeld radiation
condition

r
m−1

2

( ∂
∂r
− iκ

)
v(x)→ 0, r = |x| → ∞

uniformly in all directions. For impenetrable scatterers we consider cases where the scatterer is
either sound-soft (a perfect conductor), sound-hard (a perfect reflector) or some mixture of these.
Each of these types of scatterers is modeled by a total field,

v = vi + vs,

that satisfies either Dirichlet, Neumann or impedance boundary conditions. These boundary con-
ditions are given respectively as

v|∂Ω = 0,
∂v

∂ν
|∂Ω = 0,

∂v

∂ν
|∂Ω + λv|∂Ω = 0,

with the impedance function λ ∈ C(∂Ω). We also treat penetrable scatterers, where the inho-
mogeneity is modeled by a nonegative refractive index n : Rm → R+ and where n(x) := 1 for
x ∈ Rm \ Ω. Then the total field v ∈ H2

loc(R
m) solves the inhomogeneous Helmholtz equation,

4v + κ2nv = 0,

in Rm, and vs = v − vi satisfies the Sommerfeld radiation condition.
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The following result enables us to calculate the scattered and far fields of any reasonable
incident field as the weighted superposition of the corresponding fields generated by scattering
from incident plane waves. This result is fundamental to the no response test.

Theorem 2.1. Let Γ be an open subset of S, the unit sphere on Rm (m = 2, 3), and let Ω ⊂ Rm
denote the bounded support of a scattering body with C2 boundary. Denote by us : Rm → C and
u∞ : S→ C , the scattered and far fields respectively due to excitation from an incident plane wave
ui at a fixed wavenumber κ > 0 with direction −ŷ, ui(x,−ŷ) := eiκx·(−ŷ), x ∈ Rm, ŷ ∈ S.
Consider the superposition of plane waves

vi(x) =
∫

Γ

eiκx·(−ŷ)g(−ŷ)ds(ŷ), x ∈ Rm,(2.1)

where g ∈ L2(−Γ). The corresponding solution to the scattering problem with Dirichlet, Neumann
or impedance boundary conditions or scattering by an inhomogeneous medium is given by v = vi+vs

where

vs(x) =
∫

Γ

us(x,−ŷ)g(−ŷ)ds(ŷ), x ∈ Rm \ Ω.

The corresponding far field pattern is given by

v∞(x̂) =
∫

Γ

u∞(x̂,−ŷ)g(−ŷ)ds(ŷ), x̂ ∈ S.(2.2)

Proof. The proof relies only on the linearity and boundedness of the particular scattering
problem. Linearity implies that the sum of two incident fields is scattered onto the sum of the
single scattered fields. By boundedness of the scattering operator from C(Ω) into Cloc(Rm \Ω) the
limit for the integration can be performed and we obtain the stated results. �

The signs in the expressions for vi, vs, and v∞ above have been chosen so that the backprojection
mapping between the far field measurments and the scattered field which we derive below has a
natural interpretation in terms of a physical aperture in the far field. Note that the function g
is defined on −Γ where −Γ is the mirror image of the interval Γ: ŷ ∈ Γ ⇐⇒ −ŷ ∈ −Γ. Using
the standard far field reciprocity relation u∞(x̂,−ŷ) = u∞(ŷ,−x̂), (x̂, ŷ ∈ S), we see that the far
field is defined on Γ with any incident wave direction −x̂. When Γ = S this virtual aperture is
not as apparent. The incident field vi given by Eq.(2.1) is called a Herglotz wave function. Since
this function depends on the density g we write this explicitly as vi[g](x). We denote the scattered
field for scattering of a Herglotz wave function vi[g](x) by vs[g](x). Similarly the corresponding
far field pattern is given by v∞[g](x̂).

Numerical considerations. As a basis both for the theoretical discussion and the implemen-
tations (that is, the generation of the simulated data) we briefly sketch the solution of the above
scattering problems. For all proofs and a detailed discussion we refer to [2] and [16].

For the solution of the Dirichlet problem we represent the scattered field as a combined single-
and double layer potential

vs(x) =
∫
∂Ω

{
∂Φ(x, y)
∂ν(y)

− iΦ(x, y)
}
ϕ(y)ds(y), x ∈ Rm \ ∂Ω.

For this representation of the scattered field and the boundary condition, the density ϕ must satisfy
the integral equation

ϕ+Kϕ− iSϕ = −2vi,(2.3)
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where S is the single-layer operator,

(Sϕ)(x) := 2
∫
∂Ω

Φ(x, y)ϕ(y)ds(y), x ∈ ∂Ω

and K is the double-layer operator,

(Kϕ)(x) := 2
∫
∂Ω

∂Φ(x, y)
∂ν(y)

ϕ(y)ds(y), x ∈ ∂Ω.

The equation has a unique solution that depends continuously on the right-hand side in C(∂Ω).
For the Neumann problem we use the modified approach due to Panich [13]

vs(x) =
∫
∂Ω

{
Φ(x, y)ϕ(y) + i

∂Φ(x, y)
∂ν(y)

(S2
0ϕ)(y)

}
ds(y), x ∈ Rm \ ∂Ω,(2.4)

where S0 denotes the single layer operator in the case κ = 0. For this representation of the scattered
field, the density ϕ can be shown to satisfy the boundary integral equation

ϕ−K ′ϕ− iTS2
0ϕ = 2

∂vi

∂ν
(2.5)

where

(K ′ϕ)(x) := 2
∫
∂Ω

∂Φ(x, y)
∂ν(x)

ϕ(y)ds(y), x ∈ ∂Ω,

and

(Tϕ)(x) := 2
∂

∂ν(x)

∫
∂Ω

∂Φ(x, y)
∂ν(y)

ϕ(y)ds(y), x ∈ ∂Ω.

Both Eq.(2.3) and Eq.(2.5) have unique solutions that depend continuously on the incident field
in C(∂Ω).

For the impedance boundary value problem we follow the same approach using the represen-
tation (2.4). An application of the jump relations leads to the equation

[
I −K ′ − iTS2

0 − λS − iλ(I +K)S2
0

]
ϕ = 2

∂vi

∂ν
+ 2λvi.(2.6)

Under suitable assumptions on the impedance λ (basically ensuring uniqueness of the impedance
scattering problem) the integral equation Eq.(2.6) has a unique solution which depends continu-
ously on the incident field in C(∂Ω).

For the penetrable inhomogeneous medium we use Green’s formula applied to the total field to
recast the solution to the scattering problem as the solution to the Lippmann-Schwinger equation

v(x) = vi − κ2

∫
Rm

Φ(x, y)m(y)v(y), x ∈ Rm,

where m(y) := 1 − n(y) for the index of refraction n : Rm → R+ . The Lippmann-Schwinger
equation has a unique solution in C(Ω) that depends continuously on the incident field vi.
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3. The inverse problem and the no response test. The inverse problem we consider
is to locate the scatterer Ω given an incident plane wave ui and the far field data restricted to
the aperture u∞|Γ, where Γ ⊂ S is some open set. The solution to the inverse problem is often
called the reconstruction of the scatterer. The no response method is a reconstruction algorithm
that uses only one incident wave, and does not use any a priori information about the physical
characteristics of the scatterer.

We consider the hypothesis that a scatterer lies within a given domain. The no response test
is a way to determine whether or not this hypothesis is true. We begin with a heuristic description
of the reconstruction method based on this test. An explicit formulation of the full algorithm is
given in the next section.

The scattering test response. Let Ωt ⊂ Rm be a bounded test domain with a C2 boundary.
Sample by construction (see Eq.(2.1)) the set of incident fields that are small on the test domain Ωt
and large outside. The far-field patterns corresponding to these incident fields are then calculated
via Eq.(2.2). We call the magnitude of the calculated far field patterns responses. If the maximum
of the sampled responses is small, we show that this is an indication that the unknown scatterer
is a subset of the test domain Ωt. While general goemetric properties of the test domain are not
important (e.g. convexity, symmetry, and so forth), it is critical that the test domain be large
enough that by translation the scatterer is containted in the interior. The no response algorithm
makes use of a template test domain Ω0

t that is rotated and translated around the computational
domain. The location and shape of the scatterer is then recovered by the behavior, with respect to
these test domains, of the sampled scattering test response, that is, the supremum over all responses
for a fixed test domain. This is defined below.

Definition 3.1 (scattering test response). Given the far field pattern u∞ due to an incident
plane wave ui with direction −x̂ and a scatterer Ω as in Theorem 2.1, let vi[g] denote a Herglotz
wave function defined by Eq.(2.1), and v∞[g] the corresponding far field pattern given by Eq.(2.2).
We define the scattering test response for the test domain Ωt by

µε(Ωt,Ω, x̂) := sup
{
|v∞[g](x̂)| : g ∈ L2(−Γ)(3.1)

such that ||vi[g]||C(Ωt) ≤ ε
}
.

We keep the direction x̂ fixed in the sequel, so to reduce notational clutter we drop the argument
and use the notation µε(Ωt,Ω) whenever there is no chance for confusion.

To calculate µε from the far field pattern u∞|Γ for scattering of a plane wave ui with direction
−x̂, we use the reciprocity relation u∞(x̂,−ŷ) = u∞(ŷ,−x̂), (x̂, ŷ ∈ S) and Theorem 2.1 to obtain

v∞(x̂) =
∫

Γ

u∞(x̂,−ŷ)g(−ŷ)ds(ŷ)

=
∫

Γ

u∞(ŷ,−x̂)g(−ŷ)ds(ŷ).(3.2)

Thus, from knowledge of the far field pattern u∞(ŷ,−x̂), ŷ ∈ Γ for one wave with direction of inci-
dence −x̂, we can reconstruct µε(Ωt,Ω) for any domain Ωt by construction of appropriate kernels
g of the (limited aperture) Herglotz wave functions. Before discussing in detail the construction
of the densities g and the test domains Ωt, we prove some basic results about the behavior of the
scattering test response that motivate our numerical methods.

The no response test is built upon two observations. First, when the scatterer Ω is contained
in interior of the test domain Ωt, the value µε(Ωt,Ω) is small or bounded. Second, if the scatterer
is in the exterior of the test domain then µε(Ωt,Ω) large or unbounded. These facts are used to
locate the support Ω of the scatterer as a region contained in the union of test domains where
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the scattering test response µε is bounded. We summarize this critical behavior in the following
theorem.

Theorem 3.2 (behavior of the scattering test response). If Ω ⊂ Ωt then there is a constant
c ∈ R such that

µε(Ωt,Ω) ≤ cε.

On the other hand, if Ω ∩ Ωt = ∅, and Rm \ (Ω ∪ Ωt) is connected, then we have

µε(Ωt,Ω) =∞.

Proof. When Ω ⊂ Ωt the boundedness of the scattering map vi 7→ v∞ implies the existence of
a constant c such that for all vi satisfying

||vi||C(Ωt) ≤ ε,

we have

||v∞||C(S) ≤ cε.

This completes the proof of the first statement.
To prove the second statement, we consider two disjoint domains, Ω′t and Ω′ satisfying Ωt ⊂ Ω′t,

Ω ⊂ Ω′ and Ω′t ∩ Ω′ = ∅. We further require that the interior homogeneous Dirichlet problems
for Ω′t and Ω′ have only the trivial solution. Then the Herglotz wave operator H : L2(−Γ) →
L2
(
∂(Ω′t ∪ Ω′)

)
, defined by

(Hg)(x) := vi[g](x)
∣∣∣
∂(Ω′t∪Ω′)

,

has dense range. This can be shown in a similar fashion to the proof of Lemma 3.1.2 of [16]. Choose
y 6∈ Ω′t ∪Ω′ such that the far field pattern w∞(x̂, y) for scattering of Φ(·, y) by Ω is not zero. This
is always possible since, by the mixed reciprocity relation ([16, Theorem 2.1.4]), we have

w∞(x̂, y) = γus(y,−x̂)

and us(·,−x̂) cannot vanish on an open subset of Rm. Next, construct vi[g](x) satisfying

||vi[g](x)||C(Ω′t)
≤ ε, ||vi[g](x)− βΦ(·, y)||C(Ω′) ≤ ε.

Then since Ωt ⊂ Ω′t, we have

µε(Ωt,Ω) ≥ |v∞[g](x̂)|.

By definition Ω ⊂ Ω′, thus ∣∣∣v∞[g](x̂)− βw∞(x̂, y)
∣∣∣ ≤ cε,

with some constant c, which, by the triangle inequality, yields

|v∞[g](x̂)| ≥ β|w∞(x̂, y)| − cε.

Thus we have

µε(Ωt,Ω) ≥ β|w∞(x̂, y)| − cε,
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for all β ∈ R. This completes the proof. �

Remark 3.3. In general we would like to know if the implication

Ω 6⊂ Ωt =⇒ µε(Ωt,Ω) =∞

is true. It would immediately yield a convergence proof of the no response test to find the support of
unknown scatterers. This implication is strongly linked to the uniqueness question for the inverse
scattering problem under consideration, for which to date there is no proof. Colton and Sleeman
[5] have proven uniqueness for the problem with Dirichlet boundary data given a finite number of
incident fields and a priori information about the size of the scatterer. The number of incident fields
required depends on the size of the scatterer and the wavelength of the incident field. Alternatively,
we could try to prove

Ω 6⊂ Ωt =⇒ µε(Ωt,Ω) > C

for the smallest constant C = cε for which Theorem 3.2 is true. This would also lead to a con-
vergence proof for the no response test under the condition that the right constant C is chosen
appropriately for the judgment about a test domain. Both problems will be part of future research.

In the following corollary to Theorem 3.2, we use Eq.(3.2) to show that the far field pattern
on a limited aperture Γ resulting from excitation by a single incident field uniquely determines the
union of all translations of a fixed test domain Ω0

t for which µε is finite. This is stated precisely
below.

Definition 3.4 (corona of Ω corresponding to Ω0
t ). Let Ω0

t denote a fixed, bounded test
domain with C2 boundary. Denote translations of Ω0

t by Ω0
t (z) := Ω0

t + z for z ∈ Rm. Define the
corona of the scatterer Ω by

M(Ω0
t ,Ω, x̂) :=

⋃{
Ω0
t (z) : z ∈ Rm, µε(Ω0

t (z),Ω, x̂) <∞
}
.(3.3)

Corollary 3.5 (uniqueness and bounds for the corona). Let Ω0
t ⊂ Rm with Rm\Ω0

t connected
be a bounded domain large enough that there is some z ∈ Rm for which Ω ⊂ Ω0

t (z), where Ω denotes
the support of the scatterer. Then we have

M(Ω0
t ,Ω, x̂) ⊂

⋃{
Ω0
t (z) : z ∈ Rm,Ω0

t (z) ∩ Ω 6= ∅
}

(3.4)

and the scatterer Ω is a subset of its corona, M(Ω0
t ,Ω, x̂). Moreover, the corona is uniquely

determined by the far field pattern for scattering of one plane wave with direction of incidence
−x̂.

Proof. For points z with µε(Ω0
t (z)) <∞,, we apply Theorem 3.2 to conclude that Ω0

t (z)∩Ω 6= ∅,
from which we immediately obtain the relation (3.4). For Ω ⊂ Ω0

t (z) we have µε(Ω0
t (z)) <∞ and

thus the support of the scatterer is a subset of its corona: Ω ⊂M .
Using Eq.(3.2) the values of µε(Ω0

t (z),Ω, x̂) can be calculated directly from the limited aperture
far field pattern u∞(ŷ,−x̂), ŷ ∈ Γ, that is, for fixed test domain Ω0

t and direction x̂, the scattering
test response µε(Ω0

t (z),Ω, x̂) is a scalar-valued mapping of x̂. Since the direction of incidence of
a plane wave uniquely determines the far field pattern u∞(·,−x̂), then the corona is uniquely
determined by the far field pattern u∞. �

The corona corresponding to the circular test domain of a boat-shaped scatterer (see Figure
3.1) is shown in Figure 3.2. From the above uniqueness theorem we know that the unknown
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scatterer – whatever its physical nature might be – is located in the corona. Note that, at the very
least, we can use the center of the corona for a single incident wave as an estimate for the center
of the obstacle. In our experiments here, however, we are able to extract even more information
about the scatterer from the corona. Recall from Remark 3.3 that we cannot say anything specific
about the behavior of µε for Ω ∩ Ω0

t (z) 6= ∅ when Ω 6⊂ Ω0
t (z). We observe numerically that the

value of the scattering test response increases as the intersection Ω ∩ Ω0
t (z) 6= ∅ becomes smaller.

We therefore propose a technique that allows us to detect these increases, and thereby detect the
location and shape of the scatterer within the corona. We begin by describing the choice of the
test domain and the calculation of the scttering test response. Details for efficient implementation
together with the algorithm are given in the following section.

The test domain Ω0
t . For fixed scatterers Ω and incident wave directions x̂, the scattering test

response µε takes as input the test domains Ω0
t (z) and returns a scalar value as output. We would

like to know which test domains Ω0
t (z) yield small values for µε without having to work with the

unwieldy domains themselves. For this, we construct a mapping from the domain Ω0
t (z) to the

point z′ ∈ Ω0
t (z) and assign to that point the corresponding value of µε. It is how we choose the

point z′ that allows us to get much more information about the obstacle than we would expect.
The key property that we exploit is the observation that µε grows as the intersection Ω∩Ω0

t (z)
becomes smaller. We emphasize that this observation is empirical, since at this time we cannot
prove anything about the behavior of µε in this situation. In order to detect this growth, assign
the domain Ω0

t (z) to a point z′ on the boundary ∂Ω0
t (z). To avoid keeping track of more points

than necessary, we construct the generating domain Ω0
t such that 0 ∈ ∂Ω0

t and map the translated
domain ∂Ω0

t (z) to the point z′ = z. When z ∈ Ω then the the scatterer will not to fall entirely
within the domain Ω0

t (z). In this case we observe that the scattering test response µε is significantly
higher than when z is in the parts of the corona that do not intersect with the scatterer, representing
the situation where Ω ⊂ Ω0

t (z).
We now describe a special realization of the no response test. We assign to the point z the

value of the scattering test response

f∗(z; Ω0
t ) := µε(Ω0

t (z),Ω).(3.5)

However, by restriction to the point z from the full set Ω0
t (z) we loose information: we obtain

small values for f∗(z; Ω0
t ) only on one side of the unknown object as shown in Figure 3.3, where

f∗(z; Ω0
t ) is plotted. The full information is recovered by rotating the generating domain Ω0

t around
the origin and repeating the above procedure. This is described in detail next.

Rotations or other variations of the test domain are necessary because of our choice of the
mapping from Ω0

t (z) to the point z′ ∈ Ω0
t (z). Had we chosen a radially symmetric generating

domain Ω0
t and mapped this domain to its center, rotations would not be necessary. However,

in this case the image does not directly reflect the behavior of the test response that we use to
reconstruct the obstacle, not just its corona, that is, the behavior of the test response when the
boundary of the test domain intersects the scatterer. Note that the idea of monitoring the behavior
at the boundary of the test domain also appears in the enclosure method, where the test domain
is a half-space and the behavior of the indicator function Eq.(1.2) indicates which half-space the
obstacle belongs to [6, 9]. Alternatively, we could use an arbitrary set of generating domains Ω0

t

with 0 ∈ ∂Ω0
t , however it is much more convenient to work with a single generating domain rotated

about the origin.
The value f∗(z; Ω0

t ) assigned to the point z via Eq.(3.5) at one rotation of the domain Ω0
t

does not necessarily correspond to the value of the same point at a different rotation. To see
this, suppose that the scatterer Ω is contained in a small circle of radius 1 centered at the point
(−1, 0). Suppose further that Ω0

t is a circle of radius 2 with center (−2, 0). In this case Ω ⊂ Ω0
t

and f∗(0; Ω0
t ) will therefore be small. If we rotate Ω0

t about the origin by 180◦ and denote the
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Fig. 3.1. Scatterer Ω, and test domain Ω0
t used in reconstruction simulations. The obstacle Ω in (a) is

used for Dirichlet, Neumann and impedance obstacle reconstructions. The scatterer shown in (b) is used
for inhomogeneous media reconstructions.

resulting domain by Ω̃t
0
, then Ω ∩ Ω̃t

0
= {0}. In this case we observe that the corresponding

value for f∗(0; Ω̃t
0
) will be large. In each case we assign a value to the point z = 0, but clearly

the values do not correspond to the same situation. In order to prevent the large values of one
orientation from drowning out the information contained in the small values from other rotations,
we take the minimum of the values assigned to the points z over all rotations.

Let Rθ denote the rotation operator mapping the domain Ω0
t onto the rotated domain RθΩ0

t .
If at a point z the value F (z; Ω0

t ),

F (z; Ω0
t ) := inf

θ∈[0,2π]
f∗(z;RθΩ0

t ),(3.6)
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(a)

(b)

Fig. 3.2. The figure demonstrates the calculated corona and the corresponding bound for the location
of the unknown obstacle when Ω0

t is a circle with radius rt = 4 as shown in Figure 3.1(a). For this bound
we do not need to know the physical nature of the scatterer and only one scattered wave is necessary. Here
we used the wave number κ = 5, aperture opening θ = 0.9π;, regularization parameter α = 10−11 for an
incident wave with direction (−1, 0). The far field pattern contains 1-2% errors. The figure demonstrates
the change in the corona for different choices of the approximation domain: (a) shows the corona for
an approximation domain of radius rt = 4, (b) shows the corona for an approximation domain of radius
rt = 1.3.

Fig. 3.3. The figure shows a plot of the function f∗(z; Ω0
t ) given by Eq.(3.5) on a grid containing

the unknown scatterer. The scatterer is indicated by the black curve. Here, we used a Dirichlet boundary
condition.
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is large, then we suppose that the unknown obstacle lies partly outside all rotations of the test
domain about this point. In this way, by sampling all points z in and around the unknown scatterer
Ω we are able to reconstruct aspects of the shape, location and size of Ω. Details about how we
implement this are given next.

4. Implementation and Numerical demonstrations.

Calculating the densities g. As prescribed in Eq.(3.1), we construct incident fields that are
small on the test domain Ω0

t (z). For this we approximate the fundamental solution to the Helmholtz
equation Φ(x, y) where the singularity is located at a point y ∈ Rm sufficiently far away from Ω0

t (z).
To construct the densities g corresponding to these incident fields we use Tikhonov regularization
to approximately solve the ill-posed equation(

Hzg(·, y)
)

(x) = Φ(x, y), for x ∈ ∂Ω0
t (z),

where Hz : L2(Γ)→ L2(∂Ω0
t (z)) is a (limited angle) Herglotz wave operator defined by

(Hzg)(x) :=
∫

Γ

eiκx·(−ŷ)g(−ŷ)ds(ŷ), x ∈ ∂Ω0
t (z).(4.1)

Specifically, for the regularization parameter α > 0, we define

gz,α(·, y) := (αI +H∗zHz)−1H∗zΦ(·, y),(4.2)

where the argument y of the density gz,α denotes the dependence of the density on the location
of the singularity in Φ. The subscripts z and α on g denote the dependence of the density on the
regularization parameter α and the test domain Ω0

t (z). This yields

vi[gz,α(·, y)](·) ≈ Φ(·, y) on ∂Ω0
t (z).

On Ω0
t (z), for d(y,Ω0

t (z)) ≥ ρ we have, for all α ∈ [0, α0] for fixed α0 sufficiently small,

|vi[gz,α(x, y)]| ≤

{
c√
ρ m = 2

c
ρ m = 3

, x ∈ Ω0
t (z),(4.3)

with some constant c that is typically of size smaller than 101. Thus by knowing the value of
vi[gz,α] at the point closest to the source point we obtain upper bounds on the size of the incident
field on all of Ω0

t (z). This is used in the calculation of the scattering test response µε. On the
exterior region Rm\Ωt the magnitude of vi[gz,α] is in the range of c/2α. For example |vi[gz,α]| is
of size 50 if c = 1 and α = 10−2. This corresponds to a data error of one percent.

Translations of the test domain. We describe a quick method to calculate lower estimates for
the test response µε for a large number of translated test domains Ω0

t (z) with generating domain
Ω0
t . In the moving reference frame of the test domain, spatial translations look like translations

of the incident field. We use this and the fact that phase shifts in the far field correspond to
spatial translations in the near field in order to translate the generating domain Ω0

t around the
computational domain.

Let Ω0
t be a generating test domain and define Ω0

t (z) = Ω0
t + z to be the corresponding

translated test domain. Translations of the Herglotz wave function vi[g] can be easily performed
by the multiplication of the density g by the complex factor e−iκz·d. At points z ∈ Q covering
the area where the unknown scatterer is supposed to be (that is, Q is the computational domain
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and satisfies Ω ⊂ Q) we calculate translations Ω0
t (z) of the test domain Ω0

t by the corresponding
translation of the Herglotz wave function vi[g]:

vi[g](x− z) = vi[e−iκz·(·)g(·)](x), x ∈ Rm.(4.4)

We define the function |v∞[g](x̂, z)| to be the far field pattern at the point x̂ ∈ S for scattering of
the shifted incident field vi[g](x− z). Then from Theorem 2.1 and Eq.(3.2) we obtain

|v∞[g](x̂, z)| =
∣∣∣ ∫

Γ

u∞(ŷ,−x̂)eiκz·ŷg(−ŷ)ds(ŷ)
∣∣∣.(4.5)

In words, the magnitude of the far field v∞ at the point x̂ ∈ S with test domain Ω0
t (z) is given

by the magnitude of the weighted superposition of the measured far field pattern due to a single
incident plane wave excitation; the weight g(−ŷ) is determined by the generating domain Ω0

t and
the phase shift is determined by the translation of Ω0

t .

Sampling the scattering test response. The scattering test response µε(Ω0
t (z),Ω) is the

supremum over |v∞[g](x̂, z)| where g ∈ L2(Γ) is chosen such that

||vi[g]||C(Ω0
t (z))

≤ ε.(4.6)

We choose a finite subset
{
g1, . . . , gny

}
of densities g such that (4.6) is satisfied and calculate the

maximum of the values |v∞[gj ](x̂, z)| for j = 1, . . . , ny via Eq.(4.5). To obtain different densities
g we solve Eq.(4.2) at the points yj , j = 1, . . . , ny in the exterior of Ω0

t (z). In our experiments we
chose ny ≈ 20. Using the efficient translations in Eq.(4.4), we need only solve Eq.(4.2) for g with
Ω0
t for each j = 1, . . . , ny, rather than solving for g for every translated domain Ω0

t (z). Also, from
the discussion following Eq.(4.3) if we choose the points yj appropriately, there is no need to check
explicitly if condition Eq.(4.6) is satisfied.

The no response algorithm We finish this section with a detailed prescription for using the no
response test to locate an unknown obstacle.

Algorithm 4.1 (no response test).
• Choose an appropriate test domain Ω0

t with 0 ∈ ∂Ω0
t , that is large enough such that trans-

lations of Ω0
t and its rotated versions may contain the unknown scatterer (see Figure 3.1).

• For the angles θl := 2πl/nr with l = 1, . . . , nr let RθlΩ
0
t be the domain that is obtained

from Ω0
t by rotation around the origin by angle θl as described in Section 3. For each

l = 1, . . . , nr do:
– Choose points yj, j = 1, . . . , ny in the exterior of RθlΩ

0
t and calculate the density gl,j

by

gl,j := (αI +H∗θlHθl)
−1H∗θlΦ(·, yj)

where Hθl is the Heglotz wave operator (see Eq.(4.1)) corresponding to the rotated
domain RθlΩ

0
t .

– For each j = 1, . . . , ny calculate

fj(z;RθlΩ
0
t ) :=

∣∣∣ ∫
Γ

u∞(ŷ,−x̂)eiκz·ŷgl,j(−ŷ)ds(ŷ)
∣∣∣,

for all z ∈ G, the computational grid, from the one-wave far field pattern u∞(ŷ,−x̂),
ŷ ∈ Γ.
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– Calculate the maximum with respect to the densities gl,j , that is calculate the sampled
version of Eq.(3.5)

f∗(z;RθlΩ
0
t ) := max

j=1,...,ny
fj(z;RθlΩ

0
t ), z ∈ G.

• Calculate the minimum with respect to the rotations θl, that is the sampled version of
Eq.(3.6):

F (z; Ω0
t ) := min

l=1,...,nr
f∗(z;RθlΩ

0
t ), z ∈ G.

• Choose a threshold C and calculate

Ωrec :=
{
z ∈ G : F (z; Ω0

t ) ≥ C
}
.

Now, an approximation for the support Ω of the unknown scatterer is given by the compo-
nents of Ωrec that are not connected with infinity.

For the choice of the constant C we propose dynamical thresholding on the image F (z) that
is informed by a priori knowledge about the approximate size of the object.

Numerical results. All the following numerical reconstruction procedures are based on the
same algorithm independent of the boundary condition or physical nature of the scatterer. All
reconstructions use the far field data for one wave only. We show results for full and limited
aperture data.

To compare different reconstructions for obstacles with different boundary condition for all the
following pictures we used the far field pattern for one wave with direction of incidence (−1, 0).
We first show results for full aperture and demonstrate the influence of the cut-off parameter.

In a second part, we restrict our measurements to a limited aperture. Here, we would like to
show that even with limited aperture the method yields reasonable results. Figures 4.7 to 4.10 show
limited aperture reconstructions for the Dirichlet, Neumann and impedance boundary condition
and for the inhomogeneous medium. We used κ = 5 and an aperture of 0.6π, or 108◦.

5. Concluding remarks. The no response test is a novel sampling technique for reconstruct-
ing the support of unknown scatterers. The method does not require a priori knowledge about the
physical or geometric properties of the unknown scatterer. Reconstructions can be obtained from
the far field pattern for scattering of a single incident wave. The method appears to be robust and
can be used in limited aperture settings. The results and open questions discussed in this work
offer a new perspective on some old questions (for example the uniqueness question for one wave)
and provide new directions for future research, both in numerical techniques and analysis.
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(a)

(b)

(c)

Fig. 4.1. (a) Original total field for scattering by a Dirichlet obstacle. (b) A plot of the function F (z)
defined by (3.6) for z ∈ G, the computational grid. (c) Thresholded version of the function F with C = 1.4
(see Alg. 4.1). Here we used the wave number κ = 5, aperture opening θ = 1.8π;, regularization parameter
α = 10−11 for an incident wave with direction (−1, 0). The far field pattern contains 1-2% errors.
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(a) (b)

Fig. 4.2. (a) Original total field for scattering by an impedance obstacle with λ = i. (b) A plot of the
function F (z) defined by (3.6) for z ∈ G, the computational grid. Here we used the wave number κ = 5,
aperture opening θ = 1.8π;, regularization parameter α = 10−11 for an incident wave with direction (−1, 0).
The far field pattern contains 1-2% errors.

(a) (b)

(c) (d)

(e)

Fig. 4.3. We show different thresholded versions of the reconstruction to demonstrate the influence of
the cut-off parameter C. The wave number is κ = 5, aperture opening θ = 1.8π;, regularization parameter
α = 10−11 for an incident wave with direction (−1, 0), that is the incident wave is coming from the right-
hand side. The far field pattern contains 1-2% errors.
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(a) (b)

(c) (d)

Fig. 4.4. (a)-(b) Original total field for scattering by an obstacle with Neumann boundary condition,
we show a surface and a contour plot of the field. (c) A plot of the function F (z) defined by (3.6) for
z ∈ G and (d) a thresholded version of the reconstruction with C = 2.0. Here we used the wave number
κ = 5, aperture opening θ = 1.8π;, regularization parameter α = 10−11 for an incident wave with direction
(−1, 0). The far field pattern contains 1-2% errors.

(a) (b)

Fig. 4.5. (a) Original total field for scattering by a homogeneous penetrable medium with n := 4 in Ω
where the inhomogeneity is shown in Figure 3.1. (b) A plot of the function F (z) defined by (3.6) for z ∈ G.
Here we used the wave number κ = 5, aperture opening θ = 1.8π;, regularization parameter α = 10−11 for
an incident wave with direction (−1, 0). The far field pattern contains 1-2% errors.
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(a)

(b)

(c)

(d)

Fig. 4.6. (a)-(d) We show several thresholded versions of the function F for the reconstruction of an
inhomogeneous medium, where we used the thresholds C = 0.1, C = 0.06 C = 0.05 and C = 0.045.
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(a) (b)

Fig. 4.7. Limited aperture reconstruction of a Dirichlet obstacle. (a) A plot of the function F (z) defined
by (3.6) for z ∈ G, the computational grid. (b) Thresholded version of the function F . Here we used the
wave number κ = 5, aperture opening θ = 0.6π;, regularization parameter α = 10−11 for an incident wave
with direction (−1, 0). The far field pattern contains 1-2% errors.

(a) (b)

Fig. 4.8. Limited aperture reconstruction of a Neumann obstacle. (a) A plot of the function F (z)
defined by (3.6) for z ∈ G. (b) Thresholded version of the function F . Here we used the wave number
κ = 5, aperture opening θ = 0.6π;, regularization parameter α = 10−11 for an incident wave with direction
(−1, 0). The far field pattern contains 1-2% errors.
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(a) (b)

Fig. 4.9. Limited aperture reconstruction of an impedance obstacle with λ = i. (b) A plot of the
function F (z) defined by (3.6) for z ∈ G, the computational grid. (c) Thresholded version of the function
F . Here we used the wave number κ = 5, aperture opening θ = 0.6π;, regularization parameter α = 10−11

for an incident wave with direction (−1, 0). The far field pattern contains 1-2% errors.

(a) (b)

Fig. 4.10. Limited aperture reconstruction of the support of an inhomogeneous medium. (a) A plot of
the function F (z) defined by (3.6) for z ∈ G. (b) Thresholded version of the function F . Here we used the
wave number κ = 5, aperture opening θ = 0.6π;, regularization parameter α = 10−11 for an incident wave
with direction (−1, 0). The far field pattern contains 1-2% errors.


