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Image processing for limited aperture

inverse acoustic obstacle scattering.

D. Russell Luke and Roland Potthast 1

Abstract. This work combines inverse obstacle scattering theory in a limited aperture setting
with image processing techniques for synthesizing several independent numerical reconstructions. We
employ the point source method in a limited aperture setting to locate the boundary of a sound-soft
obstacle. The point source method is a numerical algorithm for reconstructing parts of the boundary
of an unknown obstacle from partial far-field data generated by one or more incident plane waves.
Outside the region of validity for the reconstruction, one encounters systematic errors. These artifacts
are well understood and, in some sense, predictable even though the shape and precise location of
the obstacle are unknown. We use a priori knowledge about the physics of scattering and about the
point source method to synthesize several independent local boundary reconstructions into global
boundary reconstructions without artifacts. These techniques include filtered averaging and logical
image processing. We illustrate this methodology with examples from simulated data.
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1. Introduction. When we presented this work in seminars and colloquia at
the beginning of 2002, a common question from our audiences was in what sense
inverse scattering theory, logical image processing, and statistical image processing are
connected. Each of these is a field by itself. However, one of the characteristic features
of ill-posed inverse problems is that their solutions frequently require a synthesis of
ideas from separate, well-delineated disciplines. In other words, necessity is the mother
of invention. Medical doctors, for example, routinely synthesize measurements from
several different sources to solve the inverse problem of determining why someone is
ill. A doctor combines different data sets, a theoretical understanding of the physical
processes behind each data set, and a lot of experience to make a logical best estimate.
In a similar fashion, we propose logical and statistical image processing techniques
that combine different data sets, a theoretical understanding of the mathematical and
physical processes behind each data set, and experience to reconstruct an unknown,
sound-soft obstacle from several incomplete far-field measurements.

Recent methods for reconstructing the boundary of obstacles from far field data
[3, 7, 1] require measurements from a large number of incident waves. In many
practical situations such complete information is not possible. In this work we study
techniques that use a single incident wave. We combine the results from several such
reconstructions at several frequencies (less than 10) and directions (at most 4) to
obtain a complete estimate of the boundary.

We begin with a review the theory for obstacle reconstruction in a limited aper-
ture setting. In section 2 we investigate the application of the point source method
proposed by Potthast [9, 10]. In section 3 we discuss image processing strategies used
in conjunction with the point source method for obstacle reconstruction. The image
processing techniques we study include logical processing, introduced in section 3.1,
and filtered weighted averages, reviewed in section 3.2. While these techniques would

1Institut for Numerical and Applied Mathematics, University of Göttingen, Germany;
http://www.scienceatlas.de/nfg



2 Limited aperture inverse scattering

in practice be combined, we study the numerical performance of each separately in
section 4 to illustrate the strengths and weaknesses of each.

The forward model. We consider scattering of small amplitude, monochromatic,
time harmonic waves from a sound-soft obstacle embedded in an isotropic homoge-
neous medium. The obstacle is described by the bounded domain Ω ⊂ Rm (m = 2,
or 3) with a connected, piecewise C2 (twice continuously differentiable) boundary
∂Ω with well behaved corners [5] and the outward unit normal ν. Since the medium
is isotropic and the fields are single frequency time harmonic waves, we study fixed
frequency scalar waves, v : Rm\Ω → C . To avoid notational clutter we suppress any
explicit dependence of the field v on the wave number κ. In later sections, however, we
consider multiple frequencies and the dependence on κ is included in the argument of
the field. Given a continuous function f : ∂Ω → C , the field v ∈ C2(Rm\Ω)∩C(Rm\Ω)
satisfies the Helmholtz equation with Dirichlet boundary conditions:

(1.1) 4v(x) + κ2v(x) = 0, x ∈ Rm\Ω,

(1.2) v(x) = f, x ∈ ∂Ω,

where 4 denotes the Laplacian. Additionally, we impose the Sommerfeld radiation
condition

(1.3) r
m−1

2

( ∂
∂r

− iκ
)
v(x) → 0, r = |x| → ∞.

The scattering problem based on the above model is stated as follows:

Scattering Problem: For a sound-soft scatterer Ω and time harmonic waves in a
homogeneous medium, given an incident field vi : Rm → C that is an entire solution
to Eq.(1.1), find the total field v : Rm \Ω → C satisfying Eq.(1.1) on Rm \Ω with
v = 0 on ∂Ω and with v = vi + vs, where vs is the scattered field satisfying Eq.(1.1)
and the Sommerfeld radiation condition Eq.(1.3).

It is well known, that the scattering problem has a unique solution [4]. The scattered
field vs has the asymptotic behavior

(1.4) vs(x) =
eiκ|x|

|x|
(m−1)

2

{
v∞(x̂) +O

( 1
|x|

)}
, |x| → ∞,

where the function v∞ : S → C is known as far field pattern,

S := {x ∈ Rm | |x| = 1} and x̂ :=
x

|x|
.

Of particular interest is the field resulting from excitation by plane waves. We
denote this special field by

(1.5) u = us + ui where ui(x) := eiκx·d, x ∈ Rm.

Here d ∈ S, denotes the direction of incidence. As with the frequency, wherever
possible we avoid notational clutter by suppressing the dependence of ui on d. When
necessary we write the dependence explicitly in the argument of the fields as u(·, d, κ) ,
us(·, d, κ) , and ui(·, d, κ) respectively.
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The point source method described below also makes use of the dual to the scat-
tered fields due to incident plane waves, that is scattered fields due to incident point
sources. Let Φ(x, z) (x 6= z) denote the free space fundamental solution to the
Helmholtz equation at frequency κ in two or three dimensions respectively. We
denote the field resulting from excitation by a point source Φ(x, z) (x 6= z) by
w(·, z) : Rm\Ω → C :

(1.6) w(·, z) := wi(·, z) + ws(·, z), where wi(·, z) := Φ(·, z), z ∈ Rm\Ω,

The field w satisfies Eq.(1.1)-(1.2) for the boundary condition f = 0 on ∂Ω. This field
is the Green function for the boundary value problem Eq.(1.1)-(1.3), and is symmetric:

w(x, z) = w(z, x) x, z ∈ Rm\Ω, x 6= z.

The corresponding scattered field ws(·, z) satisfies Eq.(1.1)-(1.3) with f = −Φ(·, z) on
∂Ω.

Limited aperture scattering. Let Λ ⊂ S denote an open set of directions on S.
We define the far field operator restricted to Λ for a far field corresponding to the
scatterer Ω, FΩ : L2(Λ) → L2(S) , by

(FΩg)(x̂) :=
∫

Λ

u∞(x̂,−d)g(−d)ds(d), x̂ ∈ S.

The signs in the expression above might seem peculiar, but they are chosen in such
a way that the backprojection mapping between the far field measurements and the
scattered field which we derive below has a very natural interpretation in terms of a
physical aperture in the far field. To hint at this, by the standard far field reciprocity
relation [4, Theorem 3.13], the above expression can be written as

(FΩg)(x̂) =
∫

Λ

u∞(d,−x̂)g(−d)ds(d), x̂ ∈ S.

Note that the function g is only defined on −Λ where −Λ is the rotation of the
interval Λ around the unit circle 180 degrees: d ∈ Λ ⇐⇒ −d ∈ −Λ. The far field,
however, is defined on Λ with any incident wave direction −x̂. In the discussion below
it will become clear that the density g is naturally defined on this virtual aperture
−Λ corresponding to the physical aperture Λ on which all of our sensors lie. When
Λ = S this virtual aperture is not as apparent.

Similarly, define the operator H : L2(Λ) → L∞(Rm) by

(Hg)(x) :=
∫

Λ

eiκx·(−d)g(−d)ds(d), x ∈ Rm.

We call the function v(x) = (Hg)(x) the limited aperture Herglotz wave function.
Abusing the definition slightly, we refer to the limited aperture Herglotz wave function
simply as the Herglotz wave function. The Herglotz wave function is an entire solution
to the Helmholtz equation.

The next lemma relates the far field due to scattering from an incident Herglotz
wave function to the far field due to scattering from incident plane waves. This formal-
izes the principle of superposition for far field patterns and motivates the numerical
techniques we study.
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Lemma 1.1 (superposition of far field patterns). Let g ∈ L2(−Λ). Then the
solution to the scattering problem for the incident wave

(1.7) vi(x) = (Hg)(x), x ∈ Rm,

is given by

vs(x) =
∫

Λ

us(x,−d)g(−d)ds(d), x ∈ Rm\Ω,

and has the far field pattern

(1.8) v∞(x̂) = (FΩg)(x̂), x̂ ∈ S.

Proof. Representing the total field v as a boundary integral via [4, Eq.(3.25)] with a
density satisfying [4, Eq.(3.26)], the result follows from the linearity and boundedness
of the scattering map ui 7→ us. �

Limited aperture inverse scattering. The inverse problem we consider is to
reconstruct all or part of the boundary ∂Ω of the scatterer Ω given the incident field
ui and the far field data restricted to the aperture, u∞|Λ. Let Ωa ⊂ Rm be a second
domain with the same properties as Ω. Denote the operator H restricted to ∂Ωa by

H∂Ωa := H|∂Ωa .

The adjoint of H∂Ωa
: L2(Λ) → L2(∂Ωa) is denoted H∗

∂Ωa
: L2(∂Ωa) → L2(Λ) and

is given by

(H∗
∂Ωa

ψ)(d) :=
∫

∂Ωa

e−iκx·(−d)ψ(x) ds(x), d ∈ Λ.

If H∂Ωa
is injective and has dense range, then with a given density g we can get

arbitrarily close to any convenient incident field vi on ∂Ωa. Moreover we can construct
a mapping from the measured far field pattern to some far field pattern v∞ that we
know more about, and, presumably, can use to find parts of the unknown boundary
∂Ω. Indeed, we can choose vi, parameterized by some point z, such that v∞(x̂, z) =
us(z, x̂). In this way we can reconstruct the scattered field due to an incident field
with direction x̂ and use this to construct parts of the boundary.

2. The point source method for limited aperture. The fundamental solu-
tion Φ(·, z) and the plane wave e−ikx̂·z are dual to each other in the sense that the
far field of the fundamental solution Φ∞ is given by Φ∞(x̂, z) = γe−ikx̂·z, where γ is
a constant scaling factor. We use this duality to motivate the point source method.
First note that, for incident fields due to point sources Φ(·, z) with source point lo-
cated within the obstacle, z ∈ Ω, the scattered wave ws(·, z) is given by −Φ(·, z), and
thus the far field pattern is given by −Φ∞. Secondly, for Ω ⊂ Ωa, a straight forward
argument using Green’s theorem and the boundary conditions for the fields u and w
(see [8]) shows that

(2.1) w∞(x̂, z) = γus(z,−x̂), x̂ ∈ S, z ∈ Rm\Ωa,

or, in words, the scattered field at a point z ∈ Rm\Ωa due to an incident plane wave
with direction −x̂, us(z,−x̂), is proportional to the far field at the point x̂ due to an
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incident point source located at z, w∞(x̂, z). This is referred to as the mixed reciprocity
relation and is discussed in further detail in [11, Theorem 2.1.4]. By scanning a region
with some approximating domain Ωa we can put the above facts together not only to
locate the boundary ∂Ω as the points z where w∞(·, z) + Φ∞(·, z) = 0, but also to
reconstruct the scattered field on some region E outside of Ω.

Placing point sources in some medium around a buried object in order to detect
it is tantamount to digging the object up. The next theorem shows us how to do this
virtually by approximating the far field pattern for scattering due to point sources
with the far field pattern for scattering from incident plane waves.

Approximation of point sources by plane waves. In order to construct from
plane waves any convenient incident wave, we first must show that the Herglotz wave
operator restricted to ∂Ωa is injective with dense range.

Lemma 2.1 (Denseness of restricted Herglotz wave operators). Assume that κ2

is not a Dirichlet eigenvalue of the negative Laplacian −4 for the domain Ωa. Then
the operators H∂Ωa

and H∗
∂Ωa

are injective and have dense range.
Proof. Our proof is modeled after similar proofs for the full aperture case [4]

and [11]. We first show injectivity of H∂Ωa . The Herglotz wave function Hg with
(H∂Ωa

g)(x) = 0 on ∂Ωa uniquely solves the Helmholtz equation in Ωa with zero
boundary values. Thus by the assumptions on κ, Hg = 0 on the interior of Ωa.
Moreover, since Hg is an entire solution to the Helmholtz equation, Hg = 0 on all of
Rm and thus, extending g to S by zero and applying [4, Theorem 3.15], g = 0. This
proves the injectivity of H∂Ωa and by

(2.2) H∗
∂Ωa

(L2(∂Ωa)) = N(H∂Ωa
)⊥ = L2(Λ)

the denseness of the range of H∗
∂Ωa

.
Next, we assume that some density ϕ ∈ L2(∂Ωa) satisfies H∗

∂Ωa
ϕ = 0 on Λ. By

analytic continuation, this function vanishes on all of S. It can be shown (c.f. [4],
Theorem 2.5) that, for the single-layer potential

(S̃ϕ)(x) :=
∫

∂Ωa

Φ(x, y)ϕ(y) ds(y), x ∈ Rm,

the far field pattern is given by γH∗
∂Ωa

ϕ. Thus S̃ϕ has vanishing far field pattern
and by Rellich’s Lemma we conclude that S̃ϕ := 0 in Rm \ Ω. Now we proceed as in
the literature cited above using the jump relations for the single-layer potential, the
uniqueness of the interior Dirichlet problem for the Helmholtz equation in Ωa and the
jump relations for the normal derivative of the single-layer potential to derive ϕ = 0.
This yields uniqueness of H∗

∂Ωa
and from the equation Eq.(2.2) with the roles of H∂Ωa

and H∗
∂Ωa

interchanged we obtain the denseness of the range of H∂Ωa
. �

We are now ready to state the main result that justifies the point source method.
Theorem 2.1 (Far field patterns of incident point sources). Let Ωa ⊂ Rm be

a second domain with the same properties as Ω and let z ∈ Rm \Ωa. Assume that
Ω ⊂ Ωa. Given any ε > 0, there exists a c > 0 such that, for all g∗(·, z) ∈ L2(−Λ)
satisfying

(2.3) ‖Φ(·, z)−Hg∗‖C(∂Ωa) ≤ ε,

we have

(2.4) |us(z, ŷ)− (AΩa
u∞)(z, ŷ)| < cε, z ∈ Rm\Ωa, ŷ ∈ S,
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where

(2.5) (AΩa
ψ)(z, ŷ) :=

1
γ

∫
Λ

ψ(d, ŷ)g∗(−d, z)ds(d).

Proof. Let v be a solution to the scattering problem on Ω with vi(x) = (Hg∗)(x), x ∈
Rm, where g∗ satisfies Eq.(2.3). Then vi is a Herglotz wave function, and both vi and
Φ solve Eq.(1.1) on the interior of Ωa. Thus there is a constant c′ > 0 such that

‖Φ(·, z)− vi‖C(Ωa) ≤ c′ε

and hence

‖Φ(·, z)− vi‖C(∂Ω) ≤ c′ε.

On ∂Ω vi = −vs and ws(·, z) = −Φ(·, z) where ws is defined by Eq.(1.6). Thus, since
vs|∂Ω 7→ v∞ is a continuous mapping C(Ω) → C(S), there exists a constant c∞ > 0
such that ‖ws(·, z)− vs‖C(∂Ω) ≤ c′ε implies

|w∞(ŷ, z)− v∞(ŷ)| ≤ c∞c′ε, ∀ ŷ ∈ S.

By Lemma 1.1, v∞ = FΩg∗. Now, the mixed reciprocity relation Eq.(2.1) together
with the standard reciprocity relation u∞(ŷ, d) = u∞(−d,−ŷ) (see [4, Theorem 3.13])
yield the result ∣∣∣∣us(z,−ŷ)− 1

γ

∫
Λ

u∞(d,−ŷ)g∗(−d, z)ds(d)
∣∣∣∣ ≤ c∞c′ε.

�

The operator AΩa in Eq.(2.5) defines a back projection operator, mapping the far
field at a point d ∈ Λ due to scattering of a single incident plane wave ui with direction
−x̂ from sound-soft obstacle Ω to the scattered field at the point z ∈ Rm\Ω. Note also
that now the signs have a natural interpretation: the scattered field at z due to an
incident field with direction −x̂ is calculated directly by applying the backprojection
operator AΩa

to the corresponding far field on the limited aperture Λ where u∞ is
measured.

Approximation of the scattered field and the illuminated area. By
Lemma 2.1, if κ is not an eigenvalue of the negative Laplacian on Ωa, then the set
of densities satisfying Eq.(2.3) is nonempty. We can stably calculate g∗ and thus the
scattered field via Eq.(2.4). In our numerical experiments we calculate the standard
Tikhonov regularized estimate

(2.6) gα(·, z) := (H∗
∂Ωa

H∂Ωa + αI)−1H∗
∂Ωa

Φ(·, z).

Using this, we explicitly calculate the approximation us
α(z,−x̂) ≈ us(z,−x̂), where

(2.7) us
α(z,−x̂) :=

1
γ

∫
−Λ

u∞(−d,−x̂)gα(d, z) ds(d).

The procedure sketched above for approximating the scattered field presents us
with two challenges. First, for the inverse problem we do not know the location
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Fig. 2.1. Scatterer Ω, domain of interest Q, domain of approximation Ω0 centered on
the origin (denoted by ∗), and illuminated area E.

of Ω, thus we do not know how to construct Ωa. Second, solving Eq.(2.6)-Eq.(2.7)
for every z ∈ Rm could be quite expensive. Below we present efficient techniques
for meeting these challenges. We take advantage of an analog to the Fourier Shift
Theorem to perform these calculations quickly and efficiently without any knowledge
of the location of Ω. We focus on these techniques next.

Denote some general area of interest (the computational domain, for example) by
Q where Ω ⊂ Q. In principle, the way we find Ω is by scanning some general area Q
that we know satisfies Ω ⊂ Q with an approximation domain Ωa that we hope is large
enough to contain Ω. The quickest way to perform such a scan is by translations of a
fixed approximation domain Ω0,

(2.8) Ωz := z + Ω0.

Here Ω0 is a domain with 0 6∈ Ω0. Let gα(x, 0) ∈ L2(Λ) be given by Eq.(2.6) with the
point source Φ(·, 0) and domain of approximation Ω0. Since Φ is spatially invariant,
that is Φ(x, z) = Φ(x−z) = Φ(x−z, 0), then it can be shown that this, together with
the identity (H∂Ωa

g)(x− z) =
[
H∂Ωa(e−iκz·(·)g(·))

]
(x), yields

(2.9) gα(d, z) := e−iκz·dgα(d, 0), d ∈ −Λ.

This is an analog of the Fourier Shift Theorem. Thus, to obtain us
α(z) we need only

calculate Eq.(2.6) at the point z = 0. The integral in Eq.(2.7) is a simple scalar
integral and is very easy to calculate for all points z. With this, the backprojection
operatorAΩz

, defined by Eq.(2.5) for domain of approximation Ωz defined by Eq.(2.8),
is efficiently approximated by (AΩz

ψ)(z, x̂) ≈ (Aαψ)(z, x̂) where

(2.10) (Aαψ)(z, x̂) :=
1
γ

∫
Λ

ψ(d, x̂)e−iκz·(−d)gα(−d, 0) ds(d), z ∈ Q.

The function us
α(·,−x̂) = (Aαu

∞)(·,−x̂) is a valid approximation to the scattered
field us at all points z ∈ E where

(2.11) E := {z ∈ Q : Ω ⊂ Ωz},

i.e. where the unknown scatterer is a subset of the domain of approximation Ωz. We
call E the illuminated area. Values for the magnitude of the field calculated by the
point source method at points outside of E are arbitrarily large – that is, we cannot
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Fig. 2.2. Contour plot of the magnitude squared of the fields u (a), uα (b) and the
unknown object Ω. The circle around the obstacle in (b) indicates the extent of the aperture.
Here, we used the parameters wave number κ = 2, regularization in Eq.(2.6) of α = 10−12,
and an incident wave with direction d = (−1, 0). For the domain of approximation Ω0 we use
a large circle with radius R = 4 and center (−4.1, 0) shown in Figure 2.1. The illuminated
area can clearly be seen in the right image and corresponds to the illuminated area shown
also in Figure 2.1

say what the behavior of us
α is on Rm \ E. In practice, the dynamic range of pixel

values calculated with the point source method is large, thus a thresholding operation
is required in order to see any image features at all. We observe that |uα| = |ui +us

α|,
on Q \ E, is typically (though not always) large. This being the case, the domain
of illumination is found by searching for areas of the domain of interest Q where the
magnitude of the field is smaller than some constant c > 0. This constant is estimated
by trial-and-error.

The point source method for domain reconstructions. Finally, from the
reconstructed total field uα we reconstruct the boundary of the sound-soft scatterer.
The field u satisfies Eq.(1.1) with f = 0 in Eq.(1.2), thus the natural first step is to
simply plot the contours of the magnitude of uα in a neighborhood of zero. A typical
contour plot for full aperture, Λ = S is shown in Figure 2.2. The image in Figure
2.2 only shows pixel values below a certain arbitrarily chosen cut-off. This yields the
irregular domain of illumination shown in the figure. The domain of illumination is
not known before hand since it depends not only on the domain of approximation Ωa

but also on the obstacle Ω.

3. Image Processing. As we can see from Figure 2.2, direct application of the
point source method yields many “minima”. The reconstructed total field uα on the
domain Q approximates the true total field u on the illuminated area E, but, since we
do not know Ω at the beginning of the reconstruction, the set E is not known. Also, in
the set Q \E in general we do not know how uα behaves thus we cannot immediately
distinguish between artifacts and true minima. In this section we introduce strategies
for processing the image in order to extract the correct minima from which one can
reconstruct the boundary of the unknown object.

There is no substitute for an abundance of good data. Our main goal is not only to
manipulate the reconstructed fields to yield more accurate boundary reconstruction,
but to compensate for poor and incomplete information by synthesizing data sets taken
from several different directions and at several different frequencies. From this point
forward we denote explicitly the dependence of the fields on the direction of incidence
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d ∈ S and the frequency κ ∈ (0,∞) by writing ui(·, d, κ), us(·, d, κ), u(·, d, κ) and
u∞(·, d, κ) for the incident, scattered, total and far fields respectively.

For simplicity, we restrict our attention to two dimensional scattering

Rm = R2.

We assume that a sampled version of some function ψ is given on a grid G, a partition
of the interval [a1, b1]× [a2, b2] into N1 ×N2 equal subintervals. Let n = (n1, n2) be
a multi-index and denote the corresponding index set by

N = {n |n1 ∈ {0, 1, · · · , N1}, n2 ∈ {0, 1, · · · , N2}} .

Denote the point x corresponding to the nth grid point by

(3.1) xn =
(
a1 + n1 ∗

(b1 − a1)
N1 − 1

, a2 + n2 ∗
(b2 − a2)
N2 − 1

)
, n ∈ N .

We write ψ(n) for the function ψ sampled at the point xn.
We consider two different approaches that are distinguished by the way the sam-

pled function ψ is defined:

ψ(j,k)(n) := |uα(xn, dj , κk)|2,(3.2)
or

ψj(n) :=

(∑
k

|uα(xn, dj , κk)|2
)−1

.(3.3)

In the first instance ψ is the intensity of the total field (i.e. the square of the modulus)
due to a single frequency incident field with frequency κk and direction dj . Here we
explicitly denote the dependence of the fields on the direction of incidence and the
frequency. In the second instance, Eq.(3.3), the data is the inverse intensity of the
total field of a polychromatic incident field with direction direction dj . This approach
is a multiple frequency version of the metric used in the linear sampling and MUSIC
algorithms for imaging extended objects [2].

Regardless of the definition of ψj , we gather several such images, each distin-
guished by either the frequency κ at which the image was generated, or the direction
of the incident field, d̃, or by both. The direction d̃ is determined by the aperture.
Define the aperture Λ ⊂ S by

(3.4) Λ(θ, d) :=
{
d̃ ∈ S

∣∣∣ d̃ · d ≥ cos(θ/2)
}

with angle θ ∈ (0, 2π) and direction d ∈ S. For simplicity, we consider only incident
waves with direction d̃ opposite that of the radial axis of the aperture Λ(θ, d), that is
d = d̃. The heuristic reason for this is that, regardless of the direction of the axis of the
aperture Λ(θ, d), the most informative data is that corresponding to backscattering,
d̃ = −d. Together the direction of the aperture axis and the direction of the incident
wave are called the view and are designated by the direction of the axis of the aperture,
d.

In the case of single frequency imaging defined by Eq.(3.2), for a given view dj we
produce images ψ(j,k) with different wave numbers κk, k = 1, ...,K. We extract the
part of the boundary of the obstacle Ω within the illuminated area E as the minima
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that are common to each of the images ψ(j,k). This is repeated for several different
views dj , j = 1, 2, . . . , J, so that, when taken together, the synthesized data sets
yield a correct estimate of the boundary. To reduce notational clutter we define the
multi-index j ∈ J where

J := {j = (j, k) | j ∈ {1, 2, . . . , J}, k ∈ {1, 2, . . . ,K}} .

The vector of images ψj is indicated with bold-faced type, ψ ∈ [RN1
+ × RN2

+ ]JK ,

(3.5) ψ = (ψ(1,1), ψ(1,2), ..., ψ(J,K))

3.1. The point source method and logical image processing. Since logical
image processing involves mappings of sampled function values to either 0 or 1, we
denote the binary set K = {0, 1} and thus the binary space corresponding to RN1×RN2

is KN1 ×KN2 . For points on the grid, z ∈ G , we use the 8-neighborhoods

(3.6)
{
y ∈ G : y = z +

(
ξ1

(b1 − a1)
N1 − 1

, ξ2
(b2 − a2)
N2 − 1

)
for ξ1, ξ2 ∈ {−1, 0, 1}

}
We call a set of points U ⊂ G connected, if for any two points z1, z2 ∈ U there is a se-
quence y1, ..., yn of points such that y1 = z1, yn = z2 and yj+1 is in a 8-neighborhood
of yj for j = 1, ...,n− 1. Usually, the subsets of G are mapped bijectively onto the
set of binary images on G where a subset U ⊂ G is identified with the binary image
ψ that has values ψ(z) = 1 for all z ∈ U and ψ(z) = 0 for all z ∈ G \ U .

Global minima. First, we search for small function values. This is performed by
the binary thresholding operator T0 : RN1

+ × RN2
+ → KN1 ×KN2 defined by

(3.7) (T0ψ)(n) :=
{

1, ψ(n) < δ,
0, otherwise,

for n ∈ N , where δ > 0 is some threshold parameter.

Local minima. Alternatively, we could search for local minima, which is of some
advantage when the data is corrupted by large error and the ’true’ minimum at the
boundary has larger values than the minima of the wave far from the boundary.
The extraction of local minima in direction (1, 0) is accomplished by applying T1 :
RN1

+ × RN2
+ → KN1 ×KN2 ,

(3.8) (T1ψ)(n) :=
{

1, ψ(n1 − 1, n2) > ψ(n), and ψ(n1 + 1, n2) > ψ(n);
0, otherwise.

The operator T2 corresponding to the local minimum in the direction (0, 1) is defined
analogously.

Removal of isolated noise. Next, we include some knowledge about the unknown
obstacle to narrow the number of possible minima. The boundary Γ of the obstacle
is a connected set where we expect some length of the boundary curve. Therefore, we
remove all minima that appear in some sense isolated. For parameters ρ2 > ρ1 > 0
we define the removal operator T3 : KN1 ×KN2 → KN1 ×KN2 by

(3.9) (T3ψ)(n) :=

 1, ψ(n) = 1 and ∃xm ∈ G with
ρ2 ≥ d(xm, xn) ≥ ρ1 and ψ(xm) = 1

0, otherwise,
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for n,m ∈ N . Here d(xm, xn) is the distance between the points xm, and xn.

Fixed view and logical ’and’. In the case of single frequency images defined
by Eq.(3.2), for a fixed view, dj , to find the minima common to all the images ψj

gathered at different frequencies κk we introduce the logical &. Define the operator
T4 : [KN1 ×KN2 ]K → KN1 ×KN2 by

(3.10) (T4ψ)(n) := ψj1
(n) & ... & ψjK

(n),

for jk = (j, k) ∈ J (j fixed), with the logical operator & that produces 1 only if all
arguments are 1 and 0 otherwise.

Multiple views and logical ’or’. For multiple views dj introduce the or operator
T5 : [KN1 ×KN2 ]J → KN1 ×KN2 by

(3.11) (T5ψ)(n) := ψj1
(n) | ... | ψjJ

(n),

for jj = (j, k) ∈ J , with ψ given by Eq.(3.5) and the logical operator | that produces 1
if one of the arguments is 1 and 0 otherwise. Alternatively, we might use an arithmetic
sum of the images and a thresholding operator afterwards.

Masking operations. The masking operation uses the knowledge about the illumi-
nated area. For each image and each minimum point in this image remove all minima
points from the other images that are located in a translated cone y+V with V given
by

(3.12) V(d, φ) =
{
x ∈ R2 |x · d ≥ |x| cos(φ).

}
Here d ∈ S is the corresponding image observation direction, y ∈ R2 the current
minimum pixel and φ ∈ [0, π/2] some prescribed opening angle.

3.2. Image synthesis via averaging. The & and | operations detailed above,
together with the masking and thresholding operations, are boolean versions of the
weighted averaging strategies discussed next.

Given the linear operators Mj : RN1 × RN2 → RN1 × RN2 and images ψj ∈
RN1

+ × RN2
+ , we seek a function ϕ ∈ RN1 × RN2 satisfying

(3.13) Mjϕ = ψj , ∀j ∈ J ,

where J is the index set of images defined above. Our situation is no different from
most practical applications in that a solution to Eq.(3.13) does not exist. Notwith-
standing noise, each view dj will generate an image that cannot possibly match
the images from other views because of the limited illuminated area E. We thus
seek a “best fit” to for the system Eq.(3.13) given some performance measure, ρ :[
RN1 × RN2

]JK → R . Also, in many applications the operators Mj do not have a
bounded inverse from RN1 × RN2 to RN1 × RN2 . To allow for this, we employ reg-
ularization strategies for the problem of finding an optimal solution to the general
problem

minimize ρ (ψ −Mϕ) + α̃f(ϕ)(3.14)
over ϕ ∈ RN1 × RN2 .
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where ψ ∈
[
RN1

+ × RN2
+

]JK

is the vector of functions ψj , M : RN1 × RN2 →[
RN1 × RN2

]JK is the vector of mappings Mj , and f : RN1 × RN2 → R is some
regularization mapping to stabilize the solution with respect to small variations in
the data ψj . The regularization parameter α̃ ∈ R+ is not to be confused with the
regularization parameter associated with the calculation of the Herglotz wave function
gα Eq.(2.6).

Any type of performance measure ρ is possible, each giving a different solution
ϕ. Likewise, the regularization term f(ϕ) can be chosen with some flexibility. The
most common regularized performance measure – the one we consider here – is the
Tikhonov regularized least squares measure2

minimize
∑

j

βj‖ψj −Mjϕ‖2 + α̃2‖ϕ‖2(3.15)

over ϕ ∈ RN1 × RN2 .

One advantage of the Tikhonov regularized least squares measure is that the optimal
solution to Pr.(3.15), ϕ∗, can be written down in closed form as the solution to the
normal equations

(3.16) ϕ∗ =

∑
j

βjM∗
jMj + α̃2

−1∑
j

βjM∗
jψj ,

where j ∈ J and M∗
j is the adjoint of Mj . This formulation yields some very old

and familiar techniques.
Example 3.1. :
(i) (weighted average) If Mj = I for all j ∈ J , then from Eq.(3.16) we have

(3.17) ϕ∗ =
1∑

j βj + α̃2

∑
j

βj |uj |2

(i) (filtered weighted average) For Mj , (j ∈ J ) a pointwise real multiplication
operator, that is (Mjϕ)(n) = Mj(n)ϕ(n), for n ∈ N , then from Eq.(3.16)
we have

(3.18) ϕ∗(n) =

∑
j βjMj(n)|uj(n)|2∑

j βjM2
j(n) + α̃2

We discuss specific filters Mj in the next section.
Our numerical demonstrations are generated from simulated data. Since practical

applications involve real data, a remark on the performace measure that we consider
for image averaging Eq.(3.15) is in order. While the least squares measure is mathe-
matically convenient and therefore common, the performance measure ρ in the general
formulation Eq.(3.14) should be consistent with the statistical model for the noise. If
ψj is a realization of a stochastic process with additive zero mean white noise, then

2The image averages discussed here are not to be confused with the standard optimization for-
mulation for finding the unknown boundary (see [4, pp.140-144] and references therein). Rather than
seeking a function Γ representing the boundary, we seek a function ϕ that is closest in a least squares
sense to the pointwise intensities of the total fields calculated from several far field measurements.
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Eq.(3.15) with α̃ = 0 is the negative of the log-likelihood functional of the maximum
likelihood estimator of the normal density functional p(ψj ;ϕ) parametrized by the
unknown function ϕ with variance 1/

√
2Mβj . Likewise, the regularization term can

be interpreted in an information theoretic setting. The penalty α̃‖ϕ‖2 is the stan-
dard Tikhonov regularization term. It can be shown that in this setting the optimal
choice of the parameter α̃ in a probabilistic sense is the value that corresponds to the
spectral density of the noise over all data sets j [6]. With this value of α̃, the solution
to Pr.(3.15) yields the optimal Wiener filter for the image ϕ. Obviously, ill-posedness
of the model Eq.(3.13) is also a factor, and a balance must be struck between noise
smoothing and computational stability. If the noise process does not follow Gaussian
statistics, then the least squares estimator is not appropriate and other performance
measures should be explored, for example, maximum entropy.

4. A numerical study. The test obstacles given below are parameterized by
t ∈ [0, 2π). We start with a simple ellipse Ω1,

(4.1) x1 = 0.5 ∗ cos(t)− 1, x2 = 1 ∗ sin(t)− 2.

The Object Ω2 is a boat given by

(4.2) x1 = 0.5 ∗ cos(t) + 0.1 ∗ sin(4 ∗ t))− y1, x2 = 1.5 ∗ sin(t)− y2,

where y = (y1, y2) is a translation parameter. We also tested a non-convex ’kite
shaped’ object Ω3 given by

(4.3) x1 = −1 ∗ (cos(t) + 0.65 ∗ cos(2 ∗ t)− 0.65)− 1, x2 = 1.5 ∗ sin(t)− 2.

The domain of illumination E for objects Ω1 − Ω3 corresponding to the domain
of approximation Ω0 shown in Figure 2.1 are shown in Figure 4.1.

We study the performance of the point source method in conjunction with the
image processing strategies discussed in section 3 on each of the obstacles in several
settings. First, we consider the case of one wave, single frequency. Note that the
reconstruction of the total field intensity with the limited aperture data in Figure
4.1(e) is not significantly different from the reconstruction using a full 2π aperture
shown in Figure 2.2(b). This is typical for our experiments, thus we use the ’moderate’
aperture of 0.4π shown here as our reference for all experiments. We also investigate
the breakdown in reconstructions as we vary the aperture size from small aperture,
θ = 0.1π to very small aperture, θ ≤ .02π. We then study the effect of using multiple
frequencies for a fixed view. Finally, we study the reconstruction of Ω with multiple
views, single and multiple frequency illumination.

4.1. Demonstration of logical image processing. We demonstrate the re-
sult of the logical operators for the processing of the images that are obtained from
the point source method for limited aperture. We start with results for scattering of
a single wave.

First, in Figure 4.2 we show the outcome of thresholding on the reconstructed field
corresponding to Figure 4.1(e). The minima of the curve are dynamically located such
that the Frobenius norm of the binary output is larger than some prescribed value
(we chose 10 for the image with a resolution of 40× 40 pixels).

The thresholded version of the images in Figure 4.2(a) shows a large number of
artifacts. These artifacts are ’small’ in the sense that they are isolated as described by
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Fig. 4.1. Frames (a)-(c) show a direct, forward, calculation of the intensity of the total
field for scattering from a single incident wave by the obstacles Ω1 − Ω3 respectively on the
domain of illumination E for the reconstructed total fields shown to the right. Frames (d)-
(f) show the intensity of the total field reconstructed on E corresponding to the domain of
approximation Ω0 shown in Figure 2.1 from 30 far field data samples on a limited aperture.
The parameters for all images are wave number κ = 2; aperture opening θ = 0.4 ∗ π; view
d = (1, 0); regularization in Eq.(2.6) of α = 10−12.

the operator T3. We apply the operator T3 three times, first with ρ1 = 1 and ρ2 = 2,
then with ρ1 = 2 and ρ2 = 3 and finally with ρ1 = 3 and ρ2 = 4, each measured in
pixels. The result is shown in Figure 4.2(b).

Next, we consider the case of multiple frequencies. We start with a fixed view and
choose some waves with different wave numbers, here with κ = 1, κ = 1.5 and κ = 2
and combine the images by the logical operator T4. The images for the different wave
numbers are shown in Figure 4.3. The last image in Figure 4.3 is the result of the
logical ’and’ as given by the operator T4. The curve shows only those points which
are part of all three preceding images.
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Fig. 4.2. The image (a) after the application of the operator T0 with δ = 0.4. The
removal step (b) for isolated artifacts obtained by an application of the operator T3 to the
thresholded image. For each we measure the far field at 30 points with the parameters wave
number κ = 2; aperture opening θ = 0.4 ∗ π; view d = (1, 0); regularization α = 10−12.
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Fig. 4.3. (a) The first three images shows thresholded reconstructions for fixed view and
different wave numbers. The fourth image and an enlarged version in image (b) is obtained
by the application of T4 to the first three images. We use the parameters wave numbers κ = 1,
κ = 1.5 and κ = 2; aperture opening θ = 0.4 ∗ π; view d = (1, 0); regularization α = 10−12

for the reconstructions of the obstacle Ω1. For each frequency we took 30 measurements of
the far field pattern.

By changing both the direction of incidence of the incoming waves and the location
of the measurement device we expect more information about the different sides of
the object under consideration. The logical operator T5 has been built to incorporate
the additional knowledge by a logical ’or’ operation on different images. Figure 4.4
demonstrates the result of the operator T5 applied to images that have been produced
by three different views.

With another image we demonstrate the need for further logical operators, since
the operator T5 keeps some artifacts that can be removed by taking into account
more knowledge about the illuminated area of the point source method. In Figure
4.5 we employ a masking operation that removes minima points using the operator
T6 described in section 3.1.

4.2. Demonstration of averaging. The averaging techniques described in sec-
tion 3.2, complementary to the logical image processing illustrated above, are robust
techniques for extracting image features from several data sets. The critical compo-
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Fig. 4.4. (a) The image shows the separate reconstruction result for three views,
each with three different wave numbers. (b) The image shows the integrated reconstruc-
tion result for three views produced by the logical operator T5. In each of these we use
the parameters wave numbers κ = 1, 1.5, 2; aperture opening θ = 0.2 ∗ π; views v =
(
√

0.5,−
√

0.5), (1, 0), (
√

0.5,
√

0.5); regularization α = 10−7 for a reconstruction of the ob-
stacle Ω1. The far field has been measured at 30 points.
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Fig. 4.5. (a) demonstrates artifacts coming from the pure logical summation (’or’ opera-
tion) of images. For (b) we employ a masking operation as defined by the logical operator T6

to remove the artifacts. We use the parameters wave numbers κ = 1,κ = 1.5,κ = 2; aperture
openings θ = 0.4 ∗ π; views v = (0,−1), v = (1, 0), v = (0, 1), v = (−1, 0); regularization
α = 10−12 for a reconstruction of the obstacle Ω1.

nent of the averaged image prescribed by Eq.(3.16) is the filter Mj and the definition
of ψj . This is illustrated with the following examples.

Averaging intensities: single view. We begin with limited aperture far field data
generated from a single incident wave. It is clear from Figure 2.2 that reconstruction of
the total field intensity generates many minima in addition to the one at the boundary.
To rule out certain possibilities we average the intensities of the total fields over several
wavelengths. This simple but effective technique is illustrated in Figure 4.6.

Averaging and filtering intensities: multiple views. For the images defined
by Eq.(3.2), averaging over several different views of the obstacle is not so straight
forward. The reason for this is that large uninformative pixel values calculated by the
point source method dominate the smaller pixel values of interest. Shown in Figure
4.7(a) is an unfiltered (Mj = I for all j ∈ J ) average of each of the views calculated
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Fig. 4.6. Frames (a)-(c) show the average intensity at 9 different wavelengths
of the total field reconstructed on the domain of illumination (see Figure 4.1) from
30 far field data samples on a limited aperture with one incident wave direction and
9 different wavelengths. The parameters for all images are wave numbers κ =
.75, 1.0833, 1.4167, 1.75, 2.0833, 2.4167, 2.75, 3.0833, 3.4167, 3.75; aperture opening θ = 0.4∗π;
view v = (1, 0); regularization α = 10−12.

via Eq.(3.17). Nearly all information about the obstacle is lost in averaging – but
not all. The remaining information allows us to estimate the center of the obstacle.
We then use this center information to construct a mask similar to the operator T6

described in section 3.1 for filtering out the large pixel values outside the domain of
illumination. The mask is illustrated in Figure 4.7(c).

To estimate the center of the unknown obstacle, we first calculate the total field
for each of the incident wave and view directions. Next, the region E is estimated by
applying a threshold to the calculated intensities for each of the incident fields/views.
The intersection of the domains E is shown in Figure 4.7(b). Without any knowl-
edge of the location of the obstacle, we observe that, when the views are radially
symmetric, the geometric center of the intersection of the domains of illumination
roughly coincides with the geometric center of the obstacle. When the views are not
radially symmetric, as is the case when only “one sided” views are possible, we add a
constant bias to the calculation of the center of the filter in order to compensate for
the asymmetry of the views. For our example, the center of mass of the intersection
of all of the domains of illumination is calculated to be (−3.8,−2.0). The true center
of the obstacle is at (−1.0,−2.0). Note that the second coordinate is exact, while the
first coordinate – the direction of asymmetry – has a significant negative bias.

We use this calculated center of mass as the center of a series of translated cone
masks shown in Figure 4.7(c). Let n be the pixel location, nc the center of mass
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(in pixels) of the intersection of the domains of illumination, dj ∈ S the vector corre-
sponding to the direction of the view, and let φ > 0 be the opening angle of the cone
given by Eq.(3.12). The mask is explicitly given by

(4.4) Mj(n) =
{

1 if (n− nc) ∈ V(dj , φ)
0 otherwise .

In our experiments we choose the opening angle φ so that the cone V(dj , φ) has the
same opening angle for every direction dj . These opening angles are chosen large
enough so that translated cones from different views overlap slightly as shown in
Figure 4.7(c). This in effect oversamples the outer edges of the domains of illumination
in an attempt to match disjoint regions of the image. The result of applying such a
mask to the image average via Eq.(3.18) is shown in Figure 4.7(d). The results for
the other objects are shown in Figure 4.7(e)-(f).

Inverse intensity of polychromatic waves. In all of the examples above we
have used the data definition given by Eq.(3.2), that is, the intensity of monochromatic
waves. This data illustrates dramatically the effect of filtering on image reconstruc-
tion. Here, we briefly demonstrate the alternative data definition given by Eq.(3.3),
that is, the inverse intensity of polychromatic waves. This change in the data yields
tremendous improvements in image quality without the use of filters. In Figure 4.8
we show results from 4 views with 9 frequencies.

We emphasize that the results shown in Figure 4.8 are achieved without the use
of filters. In our experiments, filtering with the cone mask described in the previous
subsection did improve the quality of the reconstructions, but not as dramatically as
with the averaged intensities.

4.3. Small aperture, very small aperture, and undersampling the far
field. We conclude this section with a demonstration of the breakdown of the pro-
cedures outlined above for very small apertures and sparse sampling of the far field.
We begin with an illustration of the breakdown in the image reconstruction as the
sampling on the aperture is decreased. Figure 4.9 demonstrates the breakdown of the
reconstruction when we pass from 15 far field samples to three samples. We show in
Figure 4.10 that as the aperture becomes smaller the data in the far field approximates
simple backscattering and curvature information in the boundary of the object is lost.
Image degradation is noticeable for apertures as small as 0.05π, and by 0.01π much
of the fine detail of the obstacle has been lost, although the approximate location
and size can still be estimated. The effect of decreasing aperture size on boundary
reconstructions from multiple views is also shown in Figure 4.10. For all of these im-
ages, the number of samples on the apertures was kept constant at 30 sample points,
regardless of the size of the aperture. Finally, in Figure 4.11 we show reconstructions
with very small aperture of 0.1 degree, i.e. 0.0006π, 10 far field measurements and
three different wave numbers. The location and approximate size of the object can
be well reconstructed even with this extremely limited amount of data.

5. Conclusion. The logical and statistical image processing techniques demon-
strated above combine different data sets, a theoretical understanding of the mathe-
matical and physical processes behind each data set, and experience to reconstruct an
unknown, sound-soft obstacle from several incomplete far-field measurements. Each
data set consists of limited aperture measurements of the far field pattern resulting
from a single incident excitation. We use the point source method to obtain localized
reconstructions of the boundary of the obstacle. We combined the results from several
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Fig. 4.7. (a) the unfiltered, Mj = I for all j ∈ J , average intensity of the far field
reconstructed from the far field data sampled at three different directions corresponding to
three different incident field directions; (b) the overlapping domains of illumination for all of
the three views; (c) the cone mask filter prescribed by Eq.(4.4) for all of the views centered on
the center of mass of the intersection of the domains of illumination; (d) the averaged total
field intensity calculated via Eq.(3.18). (e)-(f) the averaged total field intensity calculated
via Eq.(3.18) with the cone mask given by Eq.(4.4) for obstacles Ω2 and Ω3 respectively.
The centers for the masks are calculated separately depending on the center of mass of the
intersection of the domains of illumination. The parameters for all images are wave numbers
κ = .75, 1.0833, 1.4167, 1.75, 2.0833, 2.4167, 2.75, 3.0833, 3.4167, 3.75; aperture opening θ =
0.4 ∗ π; views v = (1/2,

√
3/2), (1, 0), (1/2,−

√
3/2); regularization α = 10−12.

such reconstructions at several frequencies (less than 10) and directions (at most 4) to
obtain an estimate of the boundary where possible. In the case of “one sided” views
we were only able to reconstruct the corresponding side of the obstacle. For views
around the entire obstacle, we were able to obtain a complete estimate of the obsta-
cle. These techniques allow one to reliably reconstruct scatterers from limited and
incomplete scattering data. Indeed, we showed that these techniques together yield
reasonable boundary estimates with extremely limited amounts of data. This will
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greatly facilitate future research employing these techniques in realistic 3 dimensional
settings in which a scarcity of data is a major hurdle.
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Fig. 4.8. The unfiltered, Ml = I for all l, average intensity of the far field reconstructed
from the far field data sampled at four different directions corresponding to four different
incident field directions. Frames (a)-(c) are the reconstructions of the ellipse, the boat and the
kite-shaped objects (Ω1 − Ω3) respectively. The parameters for all images are wave numbers
κ = .75, 1.0833, 1.4167, 1.75, 2.0833, 2.4167, 2.75, 3.0833, 3.4167, 3.75; aperture opening θ =
0.4 ∗ π; views v = (1, 0), (0, 1), (−1, 0), (0,−1); regularization α = 10−12.
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Fig. 4.9. (a)-(b) the averaged total field intensity calculated via Eq.(3.18) with no filter for
obstacle Ω2 reconstructed from 15 and 3 far field samples respectively. The aperture for each
image is held constant at 0.4π independent of the sampling rate. The parameters for all im-
ages are wave numbers κ = .75, 1.0833, 1.4167, 1.75, 2.0833, 2.4167, 2.75, 3.0833, 3.4167, 3.75;
aperture opening θ = 0.4π; view v = (1, 0); (a) regularization α = 10−5, (b) α = 5x10−1.
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Fig. 4.10. (a)-(b) a single unfiltered view of the averaged total field intensity calcu-
lated via Eq.(3.18) for obstacle Ω2 with ever smaller apertures. (c)-(d) the averaged total
field intensity calculated via Eq.(3.18) with the cone mask given by Eq.(4.4) for obstacle Ω2

with increasingly smaller apertures. The number of far field samples for each image is held
constant at 10 samples independent of the size of the aperture. The parameters for all im-
ages are wave numbers κ = .75, 1.0833, 1.4167, 1.75, 2.0833, 2.4167, 2.75, 3.0833, 3.4167, 3.75;
(a), (c) aperture opening θ = 0.1π; (b), (d) θ = 0.02π; views (a)-(b) v = (1, 0); (c)-(d)

v = (1/2,
√

3/2), (1, 0), (1/2,−
√

3/2); regularization (a)-(d) α = 10−12.
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Fig. 4.11. (a)-(b) show reconstructions by logical image processing with the application of
the operators T0 to T4 for very small aperture 0.0006π, 10 far field measurements and three
different wave numbers. The parameters for all images are wave numbers κ = 1.6, 1.8, 2.0;
aperture opening θ = 0.0006π; view v = (1, 0); regularization α = 10−12.


