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ONESIDED APPROXIMATION BY ENTIRE FUNCTIONS

FRIEDRICH LITTMANN

ABSTRACT. Let f : R — R have an nth derivative of finite variation V() and
a locally absolutely continuous (n — 1)st derivative. Denote by E<(f,d), the
error of onesided approximation of f (from above and below, respectively) by
entire functions of exponential type ¢ > 0 in LP(R)-norm. For 1 < p < oo we
show the estimate

E*(f,8)p < C}fl/pﬂl/pVﬂn)fn*%,

with constants C,, > 0.

1. INTRODUCTION

This article considers the problem of onesided approximation of real-valued func-
tions defined on the real line by entire functions of finite exponential type § > 0.

As part of his investigation of Beurling’s extremal majorant of sgn(x) and related
functions, J. D. Vaaler showed in Theorem 11 of [6] that onesided approximation
in L'(R) by functions of exponential type § is possible with an error bounded by
7V¢d~ 1. (Vs denotes the total variation of f on R.) D. Dryanov [2] proved a similar
result with an error given in terms of an integrated modulus of continuity under
the additional restriction that f € L'(R).

Below, Vaaler’s result is generalized to functions f having the property that
=1 is absolutely continuous and Vi is finite. Let A(6) be the class of entire
functions of exponential type 0, i.e., F' € A(¢) if and only if for every ¢ > 0 there
exists A, > 0 such that

|F(2)] < A.eP®TOEl for all 2 € C.

Throughout the paper it is assumed that f is real-valued and normalized in the
sense that f(z) = 27(f(x+) + f(x—)) holds.

Definition 1. Let f be a real-valued function whose (n — 1)st derivative is locally
absolutely continuous. The error function E* (4, f), is defined as the infimum of
||Ay — f||, taken over all AT € A(J) which satisfy A} > f on the real line.
(E~(9, f)p is defined using the reverse inequality.)

In previous investigations, the error of onesided approximation has been given
in terms of ||[AT — A~||,. However, in anticipation of the statements of Lemma 1
and Lemma 5, it is preferable to keep upper and lower approximation separate.

Theorem 1. If f is real valued, has an nth derivative with bounded variation, and
(for n > 1) a locally absolutely continuous (n — 1)st derivative, then

1-1 1 Cp1
(1) EE(6,f)p < Cn P77 Vi 6" 7,
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where 1 < p < 0o, and C,, > 0 is some constant.

The proof of Theorem 1 follows the approach of [6]. There, the function f is
written as an integral convolution of f with the Dirac measure 1/2d(sgn) and is
approximated by replacing sgn(x) with its best (lower and upper) approximations
of exponential type § > 0.

Here we use the same idea, i.e., f is approximated by a convolution of f(™ with
measures dG; where the functions G are the best upper and lower approximation
of type d to the truncated powers z'}, respectively. The approximations G were
obtained in [3]. We review their properties in the next section.

It is worth pointing out that, since R is only locally compact, the class of func-
tions having an nth derivative of bounded variation is not contained in the class of
functions having an (n — 1)st derivative of bounded variation, i.e., the statement of
Theorem 1 for n + 1 is not a refinement of the statement for n.

2. EXTREMAL FUNCTIONS FOR THE TRUNCATED POWERS

Let x4 = x for x > 0 and 4 = 0 for z < 0. We require the following facts about
onesided best approximation of z7}.
Let o € R and define

.92 n
sin®7(z — ) i
2 g = TETd) "[ o — B; i1,
(2) n.a(2) a2 [Ye—2)+ ]2::0 ()2
where ¢ = I'/I' with the Euler Gamma function I', and B; denotes the jth
Bernoulli polynomial.
For even n > 0 we define z, to be the zero of the nth Bernoulli polynomial in
(0,1/2), and we set zg := 0. We define for n € Ny

11—z, Zn ifn=0 mod 4,

0, 1/2 ifn=1 mod 4,
(3) oy, 1= By, = / .

Zns 1—2, ifn=2 mod4,

1/2, 0 ifn=3 mod 4.

These values are the maxima and minima on [0, 1] of the (n + 1)st Bernoulli poly-
nomial.

Lemma 1 (cf. Theorem 7.2 of [3]). Let n € Ny and 6 > 0. The functions
07 "Gy 0, (0x) and 69, o, (0x) are the unique best onesided approximations from
A(276) to x't. In particular, they satisfy 0" Yy q, (0x) < a7t < 679, g, (6x) for
allz € R and

> —-n _n _ _B’ﬂ+1(18’ﬂ) —n—1
(4) /Oo (5 .8, (0) x+)dx =il 1) ,

> n —n Bn-‘rl(an) —n—
(5) /Oo (l’+ — 5 gn,an (5$))dm = niﬂ(s 1-

For the proof of Lemma 1 see [3].
We define for real x

(6) ¢n,a(x) = gn,a(x) - xi

The following lemma expresses symmetry properties of ¢, .
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Lemma 2. Letn € Ny. If n is even, then

Un,an, (37) = _wnﬁn(_x)v
if n is odd, then

Vn,a, (%) = Vn,a, (—2),

U, () = Y, (—2).
Proof. Let F,, and G,, be best onesided approximations from A(27) to sgn(x)z™
with F,(z) > sgn(z)z™ > G, (x) for x € R. Since 227 and sgn(z)z" differ by a
polynomial (which is of exponential type zero), we have
(7) Unp,(x) =271 (Fy(z) — sgn(z)a™),

Vn,a, (T) = 271Gy (x) — sgn(x)z").

Since best onesided L'(R)-approximations from A(27) to 27 are unique (cf. The-
orem 7.2 of [3]), the functions F,, and G,, are unique best onesided approximations
to sgn(z)z™. Since (—1)""1F,(—x) and (—1)"*'G, (—x) are also (best) onesided
L'(R)-approximations to sgn(x)z™, we obtain F,(z) = F,(—z) and G,(z) =
Gn(—z) for odd n and F,(xr) = —G,(—z) for even n, since otherwise F,, and
G,, would not be unique best approximations. Lemma 2 follows now from (7).

Lemma 3. Ifn € Ny and o € {ay,, Bn} then the derivatives (%, o(z) — xt]*®) for
0<k<nand %&Tﬁl) are absolutely integrable on the real line.

Proof. Let a € {ay,B,}. By equations (4.4) and (4.6) in [3], ¥, has the repre-
sentations

F _ 0
Gpalz) = %/ e "yt ()dt  for x < 0,
Flz—a) [*
=" — 7(32 @) / e "yt (dt for x>0,
0

where F(z) = 7~ 2sin® z and v,(t) = te®* (et — 1)~ 1.
Let k € {1,...,n + 1}. We obtain after k differentiations with respect to  and
an integration by parts with respect to ¢ that if k < n, then (%, (z) — 27)® <

C1|z|=2, and if k = n + 1, then %fﬁjl)(x) < Cylz|72 as |z| — oo.

Remark 1. If F — a7 € L'(R) for an entire function F of finite exponential type,
then (F — z7)® for k < n and F("*9 for £ > 1 are also elements of L*(R).
This can be seen by adding and subtracting %, g,, and then applying a theorem of
Plancherel and Polya [5] to ' — %, 5, and Lemma 3 to ¥, 5, — /.

3. ENTIRE APPROXIMATION

We define the function 2™ to be " for z < 0 and 0 for z > 0.

Lemma 4. If £~V s locally absolutely continuous and f(0) = f'(0) = ...
f(”*l)(()) =0, then we can represent f(x) in the form

—(n!)~1 /Ooof<n> (w)d[(z —u)}]  forx >0,

flx) = 0
(n!)~t /_ ™ w)d[(z —u)”]  forz <0.
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Proof. For n = 0, the claim follows from the fact that d(z9) is the Dirac measure
at the origin.

Let n be a positive integer and assume = > 0. Under the assumption of the
lemma, we have

B R VAN L VR
A £ @) — ) A(f()( =

and the claim follows for n = 1 directly and for n > 1 with an integration by parts
and induction on n. The computations for x < 0 can be done in the same way.

Let V(z, f) be the total variation of f on the interval (—oco,x). Let f: R — R
be a function with a locally absolutely continuous (n — 1)st derivative, and with
an nth derivative which has finite variation. By a classical theorem of real analysis
(Theorem VII of §516 in [4]), the functions f(x) := 27 1(f") (z) £ V(z, f(™)) are
non-decreasing, have bounded variation, satisfy

(8) = p =

and the sum of their total variations equals the total variation of f(™).
We establish now the main result of this paper.

Lemma 5. Let f be real-valued with Vf(m < oo and let § > 0. There are en-
tire functions A}r’nﬁ and A;’n,& of exponential type at most 2wd which satisfy the
conditions

A7, s(x) < flx) < AT, s(@)
for any real z and

Bn 1 ﬂn Bn 1o et
4% 05 = ﬂh_[fn(+())_yf(gﬁw)} |
15 = Al < [vy Bte) _y, P}

with the functions f+ given by (8).

After rescaling the exponential type of the approximation from 276 to 6 and an
application of known estimates for the Bernoulli polynomials, Lemma 5 implies

9) E=(f,6)1 < 7V ",

which is Theorem 1 for p = 1. (The necessary estimates for the Bernoulli polyno-
mials can be found in inequalities (23.1.13), (23.1.14) and (23.1.15) of Abramowitz
and Stegun [1].)
Proof of Lemma 5. We require some definitions. Let g be a measurable, bounded
function on R, and let h be an element of L'(—oo,x) for every fixed x € R. We
define for x € R

(10) Tilg;hl(x) := /Ooog(u)h(x — u)du,
0
(11) Z{gihl@) = [ guh(u o)

Assume now that f(™ is non-decreasing on R. With the kernel

1
Rae(T) = mé‘”'gma(éx)
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we define for even n

n—1 (]) )
AL, (@) =T, [ R, @) + T @)+ 3 LD

=
and for odd n
n—1 .
. . F90) .
A g0) = Tl F i, g)(0) = T3 %, )0+ 3 T
=0

The lower approximations A;m s are defined by reversing the roles of o, and (3, in
the definition of A}, .
The function f(™ is bounded, since it has bounded variation. The function
a6 18 not an element of L*(R) for n > 1, but by Lemma 3 it is an element of
L'(—o0,z) for every fixed x € R and o € {ay, B, }. These two facts show that the

half-line convolutions Z.[f(™); ﬁ;’a, s](z) converge absolutely for every real z.

Moreover, A}rgln(); consists of the sum of the half-line convolutions of (™) with
ﬁ(n+1)

nos» and the latter function is integrable on R by Lemma 3. Hence the Fourier

transform of A}rgl"(); is continuous and bounded on R. An investigation of its support

and an application of the Paley-Wiener Theorem show that A}FSL”(); and hence also

A;n, 5 are entire functions of exponential type 276.
Define

1
wn,oz,é(x) = 5(5_”%1@(5@ — .’Ei)

Let n be even and = > 0. We have

R e IOy A T S E

0 0
0
[ R, o),

and combining the first two integrals into one integral, we obtain
n

1) = AL ) = [ 100 R )~

n!

0
[ @S, sl - o)
Since Ry 8, 5(u —x) = Vg, s(u —x) = —Ppa,s(x —u) for u —2 < 0 and even

n (this follows from 2’} = 0 for x < 0 and from Lemma 2), we obtain with an
integration by parts for even n and x > 0

F@) = A7 5(0) = [ 1O @, sla =)
(12) ~ [ bnaslo— 0w <0,

the last inequality follows from the fact that f(") is assumed to be non-decreasing
and ¥, o, s < 0. Similar computations give (12) for < 0. The L'(R) estimates
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follow after integration over x and an application of Lemma 1. The lower approxi-
mation is obtained by interchanging a., and (,,. The computations for odd n and
for f with non-increasing nth derivative are analogous.

If (™ is not monotone, we consider its representation (8). We find the upper
approximation for an nth antiderivative of f,I and the lower approximation for an
nth antiderivative of f,;. Up to a polynomial of degree n—1 (which has exponential
type 0), their difference is an upper approximation of the function f.

The remaining statements of Theorem 1 are shown in the usual fashion. For
a € {an, Bn}, the function ¢, o defined in (6) is bounded on the real line, as can
be seen from the representations in the proof of Lemma 3. We set

Cy := max {Hd’nanHom ||wnﬁn”00}
For 0 <a <1and 1l < p < oo, the inequality a? < a is valid and leads to the
estimate [|h|[2 < ||R[[5;![|h]]1, provided [|h||; and ||h]|o exist.
Assume first that f(™) is non-decreasing. In this case, (12) implies that h :=
- A}in’5 satisfies

HhHoo < ‘Wn,ocn,ﬁHoon(") = (n!)_luwn,anHoonW)‘S_na
Al < l¥n.ansllt Vien = () M [¢n,a,llt Vimd "1

Inserting these estimates in the inequality for ||h||, above gives Theorem 1 for
f with non-decreasing and similarly for f with non-increasing nth derivative. The
general statement follows by writing f as a sum of two functions with nth derivatives
given by (8).
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