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ONESIDED APPROXIMATION BY ENTIRE FUNCTIONS

FRIEDRICH LITTMANN

Abstract. Let f : R→ R have an nth derivative of finite variation Vf(n) and

a locally absolutely continuous (n− 1)st derivative. Denote by E±(f, δ)p the

error of onesided approximation of f (from above and below, respectively) by

entire functions of exponential type δ > 0 in Lp(R)–norm. For 1 ≤ p ≤ ∞ we
show the estimate

E±(f, δ)p ≤ C
1−1/p
n π1/pVf(n)δ

−n− 1
p ,

with constants Cn > 0.

1. Introduction

This article considers the problem of onesided approximation of real-valued func-
tions defined on the real line by entire functions of finite exponential type δ > 0.

As part of his investigation of Beurling’s extremal majorant of sgn(x) and related
functions, J. D. Vaaler showed in Theorem 11 of [6] that onesided approximation
in L1(R) by functions of exponential type δ is possible with an error bounded by
πVfδ

−1. (Vf denotes the total variation of f on R.) D. Dryanov [2] proved a similar
result with an error given in terms of an integrated modulus of continuity under
the additional restriction that f ∈ L1(R).

Below, Vaaler’s result is generalized to functions f having the property that
f (n−1) is absolutely continuous and Vf(n) is finite. Let A(δ) be the class of entire
functions of exponential type δ, i.e., F ∈ A(δ) if and only if for every ε > 0 there
exists Aε > 0 such that

|F (z)| ≤ Aεe
(δ+ε)|z| for all z ∈ C.

Throughout the paper it is assumed that f is real-valued and normalized in the
sense that f(x) = 2−1(f(x+) + f(x−)) holds.

Definition 1. Let f be a real-valued function whose (n− 1)st derivative is locally
absolutely continuous. The error function E+(δ, f)p is defined as the infimum of
||A+ − f ||p taken over all A+ ∈ A(δ) which satisfy A+ ≥ f on the real line.
(E−(δ, f)p is defined using the reverse inequality.)

In previous investigations, the error of onesided approximation has been given
in terms of ||A+ − A−||p. However, in anticipation of the statements of Lemma 1
and Lemma 5, it is preferable to keep upper and lower approximation separate.

Theorem 1. If f is real valued, has an nth derivative with bounded variation, and
(for n ≥ 1) a locally absolutely continuous (n− 1)st derivative, then

E±(δ, f)p ≤ C
1− 1

p
n π

1
p Vf(n) · δ−n− 1

p ,(1)
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where 1 ≤ p ≤ ∞, and Cn > 0 is some constant.

The proof of Theorem 1 follows the approach of [6]. There, the function f is
written as an integral convolution of f with the Dirac measure 1/2 d(sgn) and is
approximated by replacing sgn(x) with its best (lower and upper) approximations
of exponential type δ > 0.

Here we use the same idea, i.e., f is approximated by a convolution of f (n) with
measures dG±n where the functions G±n are the best upper and lower approximation
of type δ to the truncated powers xn

+, respectively. The approximations G±n were
obtained in [3]. We review their properties in the next section.

It is worth pointing out that, since R is only locally compact, the class of func-
tions having an nth derivative of bounded variation is not contained in the class of
functions having an (n− 1)st derivative of bounded variation, i.e., the statement of
Theorem 1 for n+ 1 is not a refinement of the statement for n.

2. Extremal Functions for the Truncated Powers

Let x+ = x for x ≥ 0 and x+ = 0 for x < 0. We require the following facts about
onesided best approximation of xn

+.
Let α ∈ R and define

Gn,α(z) :=
sin2 π(z − α)

π2
zn

[
ψ′(α− z) +

n∑
j=0

Bj(α)z−j−1
]
,(2)

where ψ = Γ′/Γ with the Euler Gamma function Γ, and Bj denotes the jth
Bernoulli polynomial.

For even n > 0 we define zn to be the zero of the nth Bernoulli polynomial in
(0, 1/2), and we set z0 := 0. We define for n ∈ N0

αn :=


1− zn,

0,
zn,

1/2,

βn :=


zn if n ≡ 0 mod 4,
1/2 if n ≡ 1 mod 4,
1− zn if n ≡ 2 mod 4,
0 if n ≡ 3 mod 4.

(3)

These values are the maxima and minima on [0, 1] of the (n+ 1)st Bernoulli poly-
nomial.

Lemma 1 (cf. Theorem 7.2 of [3]). Let n ∈ N0 and δ > 0. The functions
δ−nGn,αn(δx) and δ−nGn,αn(δx) are the unique best onesided approximations from
A(2πδ) to xn

+. In particular, they satisfy δ−nGn,αn
(δx) ≤ xn

+ ≤ δ−nGn,βn
(δx) for

all x ∈ R and ∫ ∞

∞

(
δ−nGn,βn

(δx)− xn
+

)
dx = −Bn+1(βn)

n+ 1
δ−n−1,(4) ∫ ∞

∞

(
xn

+ − δ−nGn,αn
(δx)

)
dx =

Bn+1(αn)
n+ 1

δ−n−1.(5)

For the proof of Lemma 1 see [3].
We define for real x

ψn,α(x) := Gn,α(x)− xn
+.(6)

The following lemma expresses symmetry properties of ψn,α.
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Lemma 2. Let n ∈ N0. If n is even, then

ψn,αn
(x) = −ψn,βn

(−x),
if n is odd, then

ψn,αn
(x) = ψn,αn

(−x),
ψn,βn

(x) = ψn,βn
(−x).

Proof. Let Fn and Gn be best onesided approximations from A(2π) to sgn(x)xn

with Fn(x) ≥ sgn(x)xn ≥ Gn(x) for x ∈ R. Since 2xn
+ and sgn(x)xn differ by a

polynomial (which is of exponential type zero), we have

ψn,βn
(x) = 2−1(Fn(x)− sgn(x)xn),

ψn,αn(x) = 2−1(Gn(x)− sgn(x)xn).(7)

Since best onesided L1(R)–approximations from A(2π) to xn
+ are unique (cf. The-

orem 7.2 of [3]), the functions Fn and Gn are unique best onesided approximations
to sgn(x)xn. Since (−1)n+1Fn(−x) and (−1)n+1Gn(−x) are also (best) onesided
L1(R)–approximations to sgn(x)xn, we obtain Fn(x) = Fn(−x) and Gn(x) =
Gn(−x) for odd n and Fn(x) = −Gn(−x) for even n, since otherwise Fn and
Gn would not be unique best approximations. Lemma 2 follows now from (7).

Lemma 3. If n ∈ N0 and α ∈ {αn, βn} then the derivatives [Gn,α(x) − xn
+](k) for

0 ≤ k ≤ n and G
(n+1)
n,α are absolutely integrable on the real line.

Proof. Let α ∈ {αn, βn}. By equations (4.4) and (4.6) in [3], Gn,α has the repre-
sentations

Gn,α(x) =
F (x− α)

x

∫ 0

−∞
e−xtγ(n+1)

α (t)dt for x < 0,

= xn − F (x− α)
x

∫ ∞

0

e−xtγ(n+1)
α (t)dt for x > 0,

where F (x) = π−2 sin2 πx and γα(t) = teαt(et − 1)−1.
Let k ∈ {1, ..., n + 1}. We obtain after k differentiations with respect to x and

an integration by parts with respect to t that if k ≤ n, then (Gn,α(x) − xn
+)(k) ≤

C1|x|−2, and if k = n+ 1, then G
(n+1)
n,α (x) ≤ C2|x|−2 as |x| → ∞.

Remark 1. If F − xn
+ ∈ L1(R) for an entire function F of finite exponential type,

then (F − xn
+)(k) for k ≤ n and F (n+`) for ` ≥ 1 are also elements of L1(R).

This can be seen by adding and subtracting Gn,βn
, and then applying a theorem of

Plancherel and Polya [5] to F − Gn,βn
and Lemma 3 to Gn,βn

− xn
+.

3. Entire approximation

We define the function xn
− to be xn for x < 0 and 0 for x > 0.

Lemma 4. If f (n−1) is locally absolutely continuous and f(0) = f ′(0) = ... =
f (n−1)(0) = 0, then we can represent f(x) in the form

f(x) =


−(n!)−1

∫ ∞

0

f (n)(u)d[(x− u)n
+] for x ≥ 0,

(n!)−1

∫ 0

−∞
f (n)(u)d[(x− u)n

−] for x ≤ 0.
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Proof. For n = 0, the claim follows from the fact that d(x0
+) is the Dirac measure

at the origin.
Let n be a positive integer and assume x > 0. Under the assumption of the

lemma, we have

−
∫ ∞

0

f (n)(u)d(x− u)n
+ = n

∫ x

0

f (n)(u)(x− u)n−1du,

and the claim follows for n = 1 directly and for n > 1 with an integration by parts
and induction on n. The computations for x < 0 can be done in the same way.

Let V (x, f) be the total variation of f on the interval (−∞, x). Let f : R → R
be a function with a locally absolutely continuous (n − 1)st derivative, and with
an nth derivative which has finite variation. By a classical theorem of real analysis
(Theorem VII of §516 in [4]), the functions f±n (x) := 2−1(f (n)(x)± V (x, f (n))) are
non-decreasing, have bounded variation, satisfy

f (n) = f+
n − f−n(8)

and the sum of their total variations equals the total variation of f (n).
We establish now the main result of this paper.

Lemma 5. Let f be real-valued with Vf(n) < ∞ and let δ > 0. There are en-
tire functions A+

f,n,δ and A−f,n,δ of exponential type at most 2πδ which satisfy the
conditions

A−f,n,δ(x) ≤ f(x) ≤ A+
f,n,δ(x)

for any real x and

||A+
f,n,δ − f ||1 ≤

[
Vf−n

Bn+1(βn)
(n+ 1)!

− Vf+
n

Bn+1(αn)
(n+ 1)!

]
δ−n−1,

||f −A−f,n,δ||1 ≤
[
Vf+

n

Bn+1(βn)
(n+ 1)!

− Vf−n

Bn+1(αn)
(n+ 1)!

]
δ−n−1

with the functions f±n given by (8).

After rescaling the exponential type of the approximation from 2πδ to δ and an
application of known estimates for the Bernoulli polynomials, Lemma 5 implies

E±(f, δ)1 ≤ πVf(n)δ−n−1,(9)

which is Theorem 1 for p = 1. (The necessary estimates for the Bernoulli polyno-
mials can be found in inequalities (23.1.13), (23.1.14) and (23.1.15) of Abramowitz
and Stegun [1].)
Proof of Lemma 5. We require some definitions. Let g be a measurable, bounded
function on R, and let h be an element of L1(−∞, x) for every fixed x ∈ R. We
define for x ∈ R

I+[g;h](x) :=
∫ ∞

0

g(u)h(x− u)du,(10)

I−[g;h](x) :=
∫ 0

−∞
g(u)h(u− x)du.(11)

Assume now that f (n) is non-decreasing on R. With the kernel

Kn,α,δ(x) :=
1
n!
δ−nGn,α(δx)
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we define for even n

A+
f,n,δ(x) := I+[f (n);K′n,αn,δ](x) + I−[f (n);K′n,βn,δ](x) +

n−1∑
j=0

f (j)(0)
j!

xj

and for odd n

A+
f,n,δ(x) := I+[f (n);K′n,αn,δ](x)− I−[f (n);K′n,αn,δ](x) +

n−1∑
j=0

f (j)(0)
j!

xj .

The lower approximations A−f,n,δ are defined by reversing the roles of αn and βn in
the definition of A+

f,n,δ.
The function f (n) is bounded, since it has bounded variation. The function

K′n,α,δ is not an element of L1(R) for n ≥ 1, but by Lemma 3 it is an element of
L1(−∞, x) for every fixed x ∈ R and α ∈ {αn, βn}. These two facts show that the
half-line convolutions I±[f (n);K′n,α,δ](x) converge absolutely for every real x.

Moreover, A+(n)
f,n,δ consists of the sum of the half-line convolutions of f (n) with

K
(n+1)
n,α,δ , and the latter function is integrable on R by Lemma 3. Hence the Fourier

transform of A+(n)
f,n,δ is continuous and bounded on R. An investigation of its support

and an application of the Paley-Wiener Theorem show that A+(n)
f,n,δ and hence also

A+
f,n,δ are entire functions of exponential type 2πδ.
Define

ψn,α,δ(x) :=
1
n!

(δ−nGn,α(δx)− xn
+).

Let n be even and x > 0. We have

f(x)−A+
f,n,δ(x) = −

∫ ∞

0

f (n)(u)d
(x− u)n

+

n!
+

∫ ∞

0

f (n)(u)dKn,αn,δ(x− u)

−
∫ 0

−∞
f (n)(u)dKn,βn,δ(u− x),

and combining the first two integrals into one integral, we obtain

f(x)−A+
f,n,δ(x) =

∫ ∞

0

f (n)(u)d
[
Kn,αn,δ(x− u)−

(x− u)n
+

n!

]
−

∫ 0

−∞
f (n)(u)dKn,βn,δ(u− x).

Since Kn,βn,δ(u − x) = ψn,βn,δ(u − x) = −ψn,αn,δ(x − u) for u − x < 0 and even
n (this follows from xn

+ = 0 for x < 0 and from Lemma 2), we obtain with an
integration by parts for even n and x > 0

f(x)−A+
f,n,δ(x) =

∫ ∞

−∞
f (n)(u)dψn,αn,δ(x− u)

=
∫ ∞

−∞
ψn,αn,δ(x− u)df (n)(u) ≤ 0,(12)

the last inequality follows from the fact that f (n) is assumed to be non-decreasing
and ψn,αn,δ ≤ 0. Similar computations give (12) for x < 0. The L1(R) estimates
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follow after integration over x and an application of Lemma 1. The lower approxi-
mation is obtained by interchanging αn and βn. The computations for odd n and
for f with non-increasing nth derivative are analogous.

If f (n) is not monotone, we consider its representation (8). We find the upper
approximation for an nth antiderivative of f+

n and the lower approximation for an
nth antiderivative of f−n . Up to a polynomial of degree n−1 (which has exponential
type 0), their difference is an upper approximation of the function f .

The remaining statements of Theorem 1 are shown in the usual fashion. For
α ∈ {αn, βn}, the function ψn,α defined in (6) is bounded on the real line, as can
be seen from the representations in the proof of Lemma 3. We set

Cn := max
{
||ψn,αn ||∞, ||ψn,βn ||∞

}
.

For 0 ≤ a ≤ 1 and 1 ≤ p < ∞, the inequality ap ≤ a is valid and leads to the
estimate ||h||pp ≤ ||h||p−1

∞ ||h||1, provided ||h||1 and ||h||∞ exist.
Assume first that f (n) is non-decreasing. In this case, (12) implies that h :=

f −A+
f,n,δ satisfies

||h||∞ ≤ ||ψn,αn,δ||∞Vf(n) = (n!)−1||ψn,αn ||∞Vf(n)δ−n,

||h||1 ≤ ||ψn,αn,δ||1 Vf(n) = (n!)−1||ψn,αn
||1 Vf(n)δ−n−1.

Inserting these estimates in the inequality for ||h||p above gives Theorem 1 for
f with non-decreasing and similarly for f with non-increasing nth derivative. The
general statement follows by writing f as a sum of two functions with nth derivatives
given by (8).
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