

Onesided Approximation by Entire Functions

Friedrich Littmann

Pacific Institute for the Mathematical Sciences University of British Columbia Vancouver, BC, Canada

> Preprint number: PIMS-05-3 Received on February 17, 2005

http://www.pims.math.ca/publications/preprints/

ONESIDED APPROXIMATION BY ENTIRE FUNCTIONS

FRIEDRICH LITTMANN

ABSTRACT. Let $f : \mathbb{R} \to \mathbb{R}$ have an *n*th derivative of finite variation $V_{f^{(n)}}$ and a locally absolutely continuous (n-1)st derivative. Denote by $E^{\pm}(f, \delta)_p$ the error of onesided approximation of f (from above and below, respectively) by entire functions of exponential type $\delta > 0$ in $L^p(\mathbb{R})$ -norm. For $1 \le p \le \infty$ we show the estimate

$$E^{\pm}(f,\delta)_p \le C_n^{1-1/p} \pi^{1/p} V_{f(n)} \delta^{-n-\frac{1}{p}}$$

with constants $C_n > 0$.

1. INTRODUCTION

This article considers the problem of onesided approximation of real-valued functions defined on the real line by entire functions of finite exponential type $\delta > 0$.

As part of his investigation of Beurling's extremal majorant of $\operatorname{sgn}(x)$ and related functions, J. D. Vaaler showed in Theorem 11 of [6] that onesided approximation in $L^1(\mathbb{R})$ by functions of exponential type δ is possible with an error bounded by $\pi V_f \delta^{-1}$. (V_f denotes the total variation of f on \mathbb{R} .) D. Dryanov [2] proved a similar result with an error given in terms of an integrated modulus of continuity under the additional restriction that $f \in L^1(\mathbb{R})$.

Below, Vaaler's result is generalized to functions f having the property that $f^{(n-1)}$ is absolutely continuous and $V_{f^{(n)}}$ is finite. Let $\mathcal{A}(\delta)$ be the class of entire functions of exponential type δ , i.e., $F \in \mathcal{A}(\delta)$ if and only if for every $\varepsilon > 0$ there exists $A_{\varepsilon} > 0$ such that

$$|F(z)| \leq A_{\varepsilon} e^{(\delta + \varepsilon)|z|}$$
 for all $z \in \mathbb{C}$.

Throughout the paper it is assumed that f is real-valued and normalized in the sense that $f(x) = 2^{-1}(f(x+) + f(x-))$ holds.

Definition 1. Let f be a real-valued function whose (n-1)st derivative is locally absolutely continuous. The error function $E^+(\delta, f)_p$ is defined as the infimum of $||A_+ - f||_p$ taken over all $A^+ \in \mathcal{A}(\delta)$ which satisfy $A_+ \geq f$ on the real line. $(E^-(\delta, f)_p)$ is defined using the reverse inequality.)

In previous investigations, the error of onesided approximation has been given in terms of $||A^+ - A^-||_p$. However, in anticipation of the statements of Lemma 1 and Lemma 5, it is preferable to keep upper and lower approximation separate.

Theorem 1. If f is real valued, has an nth derivative with bounded variation, and (for $n \ge 1$) a locally absolutely continuous (n-1)st derivative, then

(1)
$$E^{\pm}(\delta, f)_p \le C_n^{1-\frac{1}{p}} \pi^{\frac{1}{p}} V_{f^{(n)}} \cdot \delta^{-n-\frac{1}{p}}$$

The author is supported by a Postdoctoral Fellowship of the Pacific Institute of the Mathematical Sciences (PIMS).

where $1 \leq p \leq \infty$, and $C_n > 0$ is some constant.

The proof of Theorem 1 follows the approach of [6]. There, the function f is written as an integral convolution of f with the Dirac measure 1/2 d(sgn) and is approximated by replacing sgn(x) with its best (lower and upper) approximations of exponential type $\delta > 0$.

Here we use the same idea, i.e., f is approximated by a convolution of $f^{(n)}$ with measures dG_n^{\pm} where the functions G_n^{\pm} are the best upper and lower approximation of type δ to the truncated powers x_+^n , respectively. The approximations G_n^{\pm} were obtained in [3]. We review their properties in the next section.

It is worth pointing out that, since \mathbb{R} is only locally compact, the class of functions having an *n*th derivative of bounded variation is not contained in the class of functions having an (n-1)st derivative of bounded variation, i.e., the statement of Theorem 1 for n + 1 is not a refinement of the statement for n.

2. Extremal Functions for the Truncated Powers

Let $x_+ = x$ for $x \ge 0$ and $x_+ = 0$ for x < 0. We require the following facts about onesided best approximation of x_+^n .

Let $\alpha \in \mathbb{R}$ and define

(2)
$$\mathscr{G}_{n,\alpha}(z) := \frac{\sin^2 \pi (z-\alpha)}{\pi^2} z^n \Big[\psi'(\alpha-z) + \sum_{j=0}^n B_j(\alpha) z^{-j-1} \Big],$$

where $\psi = \Gamma'/\Gamma$ with the Euler Gamma function Γ , and B_j denotes the *j*th Bernoulli polynomial.

For even n > 0 we define z_n to be the zero of the *n*th Bernoulli polynomial in (0, 1/2), and we set $z_0 := 0$. We define for $n \in \mathbb{N}_0$

(3)
$$\alpha_n := \begin{cases} 1 - z_n, & & \\ 0, & & \\ z_n, & & \\ 1/2, & & \end{cases} \beta_n := \begin{cases} z_n & \text{if } n \equiv 0 \mod 4, \\ 1/2 & \text{if } n \equiv 1 \mod 4, \\ 1 - z_n & \text{if } n \equiv 2 \mod 4, \\ 0 & & \text{if } n \equiv 3 \mod 4. \end{cases}$$

These values are the maxima and minima on [0, 1] of the (n + 1)st Bernoulli polynomial.

Lemma 1 (cf. Theorem 7.2 of [3]). Let $n \in \mathbb{N}_0$ and $\delta > 0$. The functions $\delta^{-n}\mathscr{G}_{n,\alpha_n}(\delta x)$ and $\delta^{-n}\mathscr{G}_{n,\alpha_n}(\delta x)$ are the unique best onesided approximations from $\mathcal{A}(2\pi\delta)$ to x_+^n . In particular, they satisfy $\delta^{-n}\mathscr{G}_{n,\alpha_n}(\delta x) \leq x_+^n \leq \delta^{-n}\mathscr{G}_{n,\beta_n}(\delta x)$ for all $x \in \mathbb{R}$ and

(4)
$$\int_{\infty}^{\infty} \left(\delta^{-n} \mathscr{G}_{n,\beta_n}(\delta x) - x_+^n \right) dx = -\frac{B_{n+1}(\beta_n)}{n+1} \delta^{-n-1},$$

(5)
$$\int_{\infty}^{\infty} \left(x_{+}^{n} - \delta^{-n} \mathscr{G}_{n,\alpha_{n}}(\delta x) \right) dx = \frac{B_{n+1}(\alpha_{n})}{n+1} \delta^{-n-1}.$$

For the proof of Lemma 1 see [3].

We define for real x

(6)
$$\psi_{n,\alpha}(x) := \mathscr{G}_{n,\alpha}(x) - x_+^n.$$

The following lemma expresses symmetry properties of $\psi_{n,\alpha}$.

Lemma 2. Let $n \in \mathbb{N}_0$. If n is even, then

$$\psi_{n,\alpha_n}(x) = -\psi_{n,\beta_n}(-x),$$

if n is odd, then

$$\psi_{n,\alpha_n}(x) = \psi_{n,\alpha_n}(-x),$$

$$\psi_{n,\beta_n}(x) = \psi_{n,\beta_n}(-x).$$

Proof. Let F_n and G_n be best onesided approximations from $\mathcal{A}(2\pi)$ to $\operatorname{sgn}(x)x^n$ with $F_n(x) \geq \operatorname{sgn}(x)x^n \geq G_n(x)$ for $x \in \mathbb{R}$. Since $2x_+^n$ and $\operatorname{sgn}(x)x^n$ differ by a polynomial (which is of exponential type zero), we have

(7)
$$\begin{aligned} \psi_{n,\beta_n}(x) &= 2^{-1}(F_n(x) - \operatorname{sgn}(x)x^n), \\ \psi_{n,\alpha_n}(x) &= 2^{-1}(G_n(x) - \operatorname{sgn}(x)x^n). \end{aligned}$$

Since best onesided $L^1(\mathbb{R})$ -approximations from $\mathcal{A}(2\pi)$ to x_+^n are unique (cf. Theorem 7.2 of [3]), the functions F_n and G_n are unique best onesided approximations to $\operatorname{sgn}(x)x^n$. Since $(-1)^{n+1}F_n(-x)$ and $(-1)^{n+1}G_n(-x)$ are also (best) onesided $L^1(\mathbb{R})$ -approximations to $\operatorname{sgn}(x)x^n$, we obtain $F_n(x) = F_n(-x)$ and $G_n(x) =$ $G_n(-x)$ for odd n and $F_n(x) = -G_n(-x)$ for even n, since otherwise F_n and G_n would not be unique best approximations. Lemma 2 follows now from (7).

Lemma 3. If $n \in \mathbb{N}_0$ and $\alpha \in \{\alpha_n, \beta_n\}$ then the derivatives $[\mathscr{G}_{n,\alpha}(x) - x_+^n]^{(k)}$ for $0 \leq k \leq n$ and $\mathscr{G}_{n,\alpha}^{(n+1)}$ are absolutely integrable on the real line.

Proof. Let $\alpha \in \{\alpha_n, \beta_n\}$. By equations (4.4) and (4.6) in [3], $\mathscr{G}_{n,\alpha}$ has the representations

$$\mathscr{G}_{n,\alpha}(x) = \frac{F(x-\alpha)}{x} \int_{-\infty}^{0} e^{-xt} \gamma_{\alpha}^{(n+1)}(t) dt \quad \text{for } x < 0,$$
$$= x^n - \frac{F(x-\alpha)}{x} \int_{0}^{\infty} e^{-xt} \gamma_{\alpha}^{(n+1)}(t) dt \quad \text{for } x > 0,$$

where $F(x) = \pi^{-2} \sin^2 \pi x$ and $\gamma_{\alpha}(t) = t e^{\alpha t} (e^t - 1)^{-1}$.

Let $k \in \{1, ..., n+1\}$. We obtain after k differentiations with respect to x and an integration by parts with respect to t that if $k \leq n$, then $(\mathscr{G}_{n,\alpha}(x) - x_+^n)^{(k)} \leq C_1 |x|^{-2}$, and if k = n + 1, then $\mathscr{G}_{n,\alpha}^{(n+1)}(x) \leq C_2 |x|^{-2}$ as $|x| \to \infty$.

Remark 1. If $F - x_+^n \in L^1(\mathbb{R})$ for an entire function F of finite exponential type, then $(F - x_+^n)^{(k)}$ for $k \leq n$ and $F^{(n+\ell)}$ for $\ell \geq 1$ are also elements of $L^1(\mathbb{R})$. This can be seen by adding and subtracting \mathscr{G}_{n,β_n} , and then applying a theorem of Plancherel and Polya [5] to $F - \mathscr{G}_{n,\beta_n}$ and Lemma 3 to $\mathscr{G}_{n,\beta_n} - x_+^n$.

3. Entire approximation

We define the function x_{-}^{n} to be x^{n} for x < 0 and 0 for x > 0.

Lemma 4. If $f^{(n-1)}$ is locally absolutely continuous and $f(0) = f'(0) = ... = f^{(n-1)}(0) = 0$, then we can represent f(x) in the form

$$f(x) = \begin{cases} -(n!)^{-1} & \int_0^\infty f^{(n)}(u)d[(x-u)^n_+] & \text{for } x \ge 0, \\ (n!)^{-1} & \int_{-\infty}^0 f^{(n)}(u)d[(x-u)^n_-] & \text{for } x \le 0. \end{cases}$$

Proof. For n = 0, the claim follows from the fact that $d(x_+^0)$ is the Dirac measure at the origin.

Let n be a positive integer and assume x > 0. Under the assumption of the lemma, we have

$$-\int_0^\infty f^{(n)}(u)d(x-u)_+^n = n\int_0^x f^{(n)}(u)(x-u)^{n-1}du$$

and the claim follows for n = 1 directly and for n > 1 with an integration by parts and induction on n. The computations for x < 0 can be done in the same way.

Let V(x, f) be the total variation of f on the interval $(-\infty, x)$. Let $f : \mathbb{R} \to \mathbb{R}$ be a function with a locally absolutely continuous (n-1)st derivative, and with an *n*th derivative which has finite variation. By a classical theorem of real analysis (Theorem VII of §516 in [4]), the functions $f_n^{\pm}(x) := 2^{-1}(f^{(n)}(x) \pm V(x, f^{(n)}))$ are non-decreasing, have bounded variation, satisfy

(8)
$$f^{(n)} = f_n^+ - f_n^-$$

and the sum of their total variations equals the total variation of $f^{(n)}$.

We establish now the main result of this paper.

Lemma 5. Let f be real-valued with $V_{f^{(n)}} < \infty$ and let $\delta > 0$. There are entire functions $A^+_{f,n,\delta}$ and $A^-_{f,n,\delta}$ of exponential type at most $2\pi\delta$ which satisfy the conditions

$$A^{-}_{f,n,\delta}(x) \le f(x) \le A^{+}_{f,n,\delta}(x)$$

for any real x and

$$\begin{split} ||A_{f,n,\delta}^{+} - f||_{1} &\leq \Big[V_{f_{n}^{-}} \frac{B_{n+1}(\beta_{n})}{(n+1)!} - V_{f_{n}^{+}} \frac{B_{n+1}(\alpha_{n})}{(n+1)!} \Big] \delta^{-n-1}, \\ ||f - A_{f,n,\delta}^{-}||_{1} &\leq \Big[V_{f_{n}^{+}} \frac{B_{n+1}(\beta_{n})}{(n+1)!} - V_{f_{n}^{-}} \frac{B_{n+1}(\alpha_{n})}{(n+1)!} \Big] \delta^{-n-1}, \end{split}$$

with the functions f_n^{\pm} given by (8).

After rescaling the exponential type of the approximation from $2\pi\delta$ to δ and an application of known estimates for the Bernoulli polynomials, Lemma 5 implies

(9)
$$E^{\pm}(f,\delta)_1 \le \pi V_{f^{(n)}} \delta^{-n-1}$$

which is Theorem 1 for p = 1. (The necessary estimates for the Bernoulli polynomials can be found in inequalities (23.1.13), (23.1.14) and (23.1.15) of Abramowitz and Stegun [1].)

Proof of Lemma 5. We require some definitions. Let g be a measurable, bounded function on \mathbb{R} , and let h be an element of $L^1(-\infty, x)$ for every fixed $x \in \mathbb{R}$. We define for $x \in \mathbb{R}$

(10)
$$\mathcal{I}_+[g;h](x) := \int_0^\infty g(u)h(x-u)du,$$

(11)
$$\mathcal{I}_{-}[g;h](x) := \int_{-\infty}^{0} g(u)h(u-x)du$$

Assume now that $f^{(n)}$ is non-decreasing on \mathbb{R} . With the kernel

$$\mathfrak{K}_{n,\alpha,\delta}(x) := \frac{1}{n!} \delta^{-n} \mathscr{G}_{n,\alpha}(\delta x)$$

we define for even n

$$A_{f,n,\delta}^+(x) := \mathcal{I}_+[f^{(n)}; \mathfrak{K}_{n,\alpha_n,\delta}'](x) + \mathcal{I}_-[f^{(n)}; \mathfrak{K}_{n,\beta_n,\delta}'](x) + \sum_{j=0}^{n-1} \frac{f^{(j)}(0)}{j!} x^j$$

and for odd n

$$A_{f,n,\delta}^+(x) := \mathcal{I}_+[f^{(n)}; \mathfrak{K}_{n,\alpha_n,\delta}'](x) - \mathcal{I}_-[f^{(n)}; \mathfrak{K}_{n,\alpha_n,\delta}'](x) + \sum_{j=0}^{n-1} \frac{f^{(j)}(0)}{j!} x^j.$$

The lower approximations $A_{f,n,\delta}^-$ are defined by reversing the roles of α_n and β_n in the definition of $A_{f,n,\delta}^+$.

The function $f^{(n)}$ is bounded, since it has bounded variation. The function $\mathfrak{K}'_{n,\alpha,\delta}$ is not an element of $L^1(\mathbb{R})$ for $n \geq 1$, but by Lemma 3 it is an element of $L^1(-\infty, x)$ for every fixed $x \in \mathbb{R}$ and $\alpha \in \{\alpha_n, \beta_n\}$. These two facts show that the half-line convolutions $\mathcal{I}_{\pm}[f^{(n)}; \mathfrak{K}'_{n,\alpha,\delta}](x)$ converge absolutely for every real x.

Moreover, $A_{f,n,\delta}^{+(n)}$ consists of the sum of the half-line convolutions of $f^{(n)}$ with $\Re_{n,\alpha,\delta}^{(n+1)}$, and the latter function is integrable on \mathbb{R} by Lemma 3. Hence the Fourier transform of $A_{f,n,\delta}^{+(n)}$ is continuous and bounded on \mathbb{R} . An investigation of its support and an application of the Paley-Wiener Theorem show that $A_{f,n,\delta}^{+(n)}$ and hence also $A_{f,n,\delta}^{+}$ are entire functions of exponential type $2\pi\delta$.

Define

$$\psi_{n,\alpha,\delta}(x) := \frac{1}{n!} (\delta^{-n} \mathscr{G}_{n,\alpha}(\delta x) - x_+^n).$$

Let n be even and x > 0. We have

$$f(x) - A_{f,n,\delta}^+(x) = -\int_0^\infty f^{(n)}(u) d\frac{(x-u)_+^n}{n!} + \int_0^\infty f^{(n)}(u) d\mathfrak{K}_{n,\alpha_n,\delta}(x-u) - \int_{-\infty}^0 f^{(n)}(u) d\mathfrak{K}_{n,\beta_n,\delta}(u-x),$$

and combining the first two integrals into one integral, we obtain

$$f(x) - A_{f,n,\delta}^+(x) = \int_0^\infty f^{(n)}(u) d \Big[\Re_{n,\alpha_n,\delta}(x-u) - \frac{(x-u)_+^n}{n!} \Big] \\ - \int_{-\infty}^0 f^{(n)}(u) d \Re_{n,\beta_n,\delta}(u-x)$$

Since $\Re_{n,\beta_n,\delta}(u-x) = \psi_{n,\beta_n,\delta}(u-x) = -\psi_{n,\alpha_n,\delta}(x-u)$ for u-x < 0 and even n (this follows from $x^n_+ = 0$ for x < 0 and from Lemma 2), we obtain with an integration by parts for even n and x > 0

(12)
$$f(x) - A_{f,n,\delta}^+(x) = \int_{-\infty}^{\infty} f^{(n)}(u) d\psi_{n,\alpha_n,\delta}(x-u)$$
$$= \int_{-\infty}^{\infty} \psi_{n,\alpha_n,\delta}(x-u) df^{(n)}(u) \le 0$$

the last inequality follows from the fact that $f^{(n)}$ is assumed to be non-decreasing and $\psi_{n,\alpha_n,\delta} \leq 0$. Similar computations give (12) for x < 0. The $L^1(\mathbb{R})$ estimates

FRIEDRICH LITTMANN

follow after integration over x and an application of Lemma 1. The lower approximation is obtained by interchanging α_n and β_n . The computations for odd n and for f with non-increasing nth derivative are analogous.

If $f^{(n)}$ is not monotone, we consider its representation (8). We find the upper approximation for an *n*th antiderivative of f_n^+ and the lower approximation for an *n*th antiderivative of f_n^- . Up to a polynomial of degree n-1 (which has exponential type 0), their difference is an upper approximation of the function f.

The remaining statements of Theorem 1 are shown in the usual fashion. For $\alpha \in \{\alpha_n, \beta_n\}$, the function $\psi_{n,\alpha}$ defined in (6) is bounded on the real line, as can be seen from the representations in the proof of Lemma 3. We set

$$C_n := \max\left\{ ||\psi_{n,\alpha_n}||_{\infty}, ||\psi_{n,\beta_n}||_{\infty} \right\}.$$

For $0 \le a \le 1$ and $1 \le p < \infty$, the inequality $a^p \le a$ is valid and leads to the estimate $||h||_p^p \le ||h||_{\infty}^{p-1} ||h||_1$, provided $||h||_1$ and $||h||_{\infty}$ exist.

Assume first that $f^{(n)}$ is non-decreasing. In this case, (12) implies that $h := f - A^+_{f,n,\delta}$ satisfies

$$\begin{aligned} ||h||_{\infty} &\leq ||\psi_{n,\alpha_{n},\delta}||_{\infty} V_{f^{(n)}} = (n!)^{-1} ||\psi_{n,\alpha_{n}}||_{\infty} V_{f^{(n)}} \delta^{-n}, \\ ||h||_{1} &\leq ||\psi_{n,\alpha_{n},\delta}||_{1} V_{f^{(n)}} = (n!)^{-1} ||\psi_{n,\alpha_{n}}||_{1} V_{f^{(n)}} \delta^{-n-1}. \end{aligned}$$

Inserting these estimates in the inequality for $||h||_p$ above gives Theorem 1 for f with non-decreasing and similarly for f with non-increasing nth derivative. The general statement follows by writing f as a sum of two functions with nth derivatives given by (8).

References

- M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, National Bureau of Standards, Applied Math. Series 55, U.S. Gov. Printing Office, Washington, D.C. 1964.
- [2] D. P. Dryanov, Onesided approximation with entire functions of exponential type, Serdica 10 (1984) 276–286.
- [3] F. Littmann, Entire approximations to the truncated powers, to appear in Constr. Approx.
- [4] J. M. H. Olmsted, Real Variables, Appleton-Century-Crofts, Inc., New York 1959.
- [5] M. Plancherel and G. Polya, Fonctions entières et intégrales de Fourier multiples, (Seconde partie) Comment. Math. Helv. 10 (1938) 110–163.
- [6] J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985) 183–216.

UNIVERSITY OF BRITISH COLUMBIA, DEPARTMENT OF MATHEMATICS, 1984 MATHEMATICS ROAD, VANCOUVER, BC, V6T 1Z2, CANADA, EMAIL: FLITTMAN@MATH.UBC.CA, PHONE: 604 294 1170