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Dominik Schötzau (schoetzau@math.ubc.ca)
Mathematics Department, University of British Columbia, 1984 Mathematics

Road, Vancouver, BC V6T 1Z2, Canada

Thomas P. Wihler (wihler@math.umn.edu) †

School of Mathematics, University of Minnesota, 206 Church Street SE,

Minneapolis, MN 55455, USA

Abstract. In this paper, we develop the a posteriori error estimation of mixed
discontinuous Galerkin finite element approximations of the Stokes problem. In
particular, we derive computable upper bounds on the error, measured in terms
of a natural (mesh–dependent) energy norm. This is done by rewriting the under-
lying method in a non-consistent form using appropriate lifting operators, and by
employing a decomposition result for the discontinuous spaces. A series of numer-
ical experiments highlighting the performance of the proposed a posteriori error
estimator on adaptively refined meshes are presented.
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1. Introduction

In recent years, several authors have been concerned with the devel-
opment of mixed discontinuous Galerkin (DG, for short) methods for
the numerical approximation of incompressible fluid flow problems. We
first mention here the work of Baker, Jureidini and Karakashian [2] and
Karakashian and Jureidini [16] who studied piecewise solenoidal discon-
tinuous Galerkin methods for the Stokes and Navier-Stokes equations.
Later, Cockburn, Kanschat, Schötzau and Schwab [7] and Cockburn,
Kanschat and Schötzau [6] proposed and analyzed local discontinuous
Galerkin discretizations for Stokes and Oseen flow. Hansbo and Lar-
son [12], Toselli [22] and Girault, Rivière and Wheeler [11] employed
mixed interior penalty methods for the approximation of saddle point
problems arising in linear elasticity and fluid flow. Finally, the papers
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2 P. Houston, D. Schötzau, and T. Wihler

of Toselli [22], Schötzau, Schwab and Toselli [20], and Schötzau and
Wihler [21] have been devoted to the extension of mixed DG methods
from the h– to the hp-version of the finite element method. The key
advantages of discontinuous Galerkin approaches in comparison with
standard conforming finite element methods lie in their robustness
and stability in transport-dominated regimes, their flexibility in the
mesh-design, and their freedom in the choice of velocity-pressure spaces.

While an extensive body of literature is available with a priori error
analyses for discontinuous Galerkin discretizations applied to elliptic
problems, there are considerably fewer papers that are concerned with
a posteriori error estimation for such approaches. In the context of
energy norm error estimation, we mention here the recent papers by
Becker, Hansbo and Larson [3], Becker, Hansbo and Stenberg [4] and
Karakashian and Pascal [17], which consider diffusion problems, as well
as the article by Houston, Perugia and Schötzau [14], where computable
upper bounds on the energy norm of the error in the mixed DG approx-
imation to the time–harmonic Maxwell operator were established. For
L2-norm or functional error estimation for DG discretizations of elliptic
problems, we refer to Becker, Hansbo and Stenberg [4], Kanschat and
Rannacher [15], Rivière and Wheeler [19] and the references therein.

In this paper, we initiate the development of the a posteriori error
estimation and adaptive mesh design for mixed discontinuous Galerkin
approximations of the Stokes problem for incompressible fluid flow. In
particular, computable upper bounds on the error, measured in terms
of a natural (mesh–dependent) DG energy norm, will be derived. In
contrast to the approach of Becker, Hansbo and Larson [3] and Hous-
ton, Perugia and Schötzau [14], which is based on employing a suitable
Helmholtz decomposition of the error, together with the underlying
conservation properties of DG methods, or the approach of Becker,
Hansbo and Stenberg [4], which hinges on a saturation assumption on
the meshes, here we present a new technique to derive a posteriori error
bounds. Indeed, the analysis presented in this article is based on rewrit-
ing the method in a non-consistent manner using lifting operators in
the spirit of Arnold, Brezzi, Cockburn and Marini [1] (see also Perugia
and Schötzau [18] and Schötzau, Schwab and Toselli [20]), and employ-
ing the decomposition result for discontinuous spaces from Houston,
Perugia and Schötzau [13]; the proof of this result is based on a crucial
approximation property from Karakashian and Pascal [17, Section 2].
The performance of the proposed error bound within an adaptive mesh
refinement procedure will be demonstrated for two-dimensional prob-
lems with both smooth and singular analytical solutions. In particular,
the results show that the error estimator converges to zero at the same
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A Posteriori Error Estimation for the Stokes Problem 3

asymptotic rate as the energy norm of the actual error on a sequence
of non-uniform adaptively refined meshes.

The outline of the paper is as follows. In Section 2, we introduce
a mixed discontinuous Galerkin method for the Stokes problem. In
Section 3, our a posteriori error bound is presented and discussed. The
derivation of this result can be found in Section 4. In Section 5, we
present a series of numerical experiments to highlight the performance
of the proposed error estimator within an automatic mesh refinement
algorithm. Finally, in Section 6 we summarize the work presented in
this paper and draw some conclusions.

2. Mixed DG Approximation of Stokes Flow

In this section, we introduce a mixed discontinuous Galerkin finite
element method for the discretization of the Stokes problem.

2.1. Function Spaces

We begin by defining the function spaces that will be used throughout
the paper. Given a bounded domain D in R

d, d = 2, 3, we write H t(D)
to denote the usual Sobolev space of real-valued functions with norm
‖ · ‖t,D, t ≥ 0. In the case t = 0, we set L2(D) = H0(D). We define
H1

0 (D) to be the subspace of functions in H1(D) with zero trace on ∂D.
In addition, we set L2

0(D) = {q ∈ L2(D) :
∫
D q dx = 0}. For a function

space X(D), let X(D)d and X(D)d×d denote the spaces of vector and
tensor fields whose components belong to X(D), respectively. These
spaces are equipped with the usual product norms which, for simplicity,
are denoted in the same way as the norm in X(D). If Λ is a subset of ∂D,
we use ‖·‖0,Λ to denote the L2-norm in L2(Λ), L2(Λ)d and L2(Λ)d×d. For
vectors v,w ∈ R

d, and matrices σ, τ ∈ R
d×d, we define ∇v by (∇v)ij =

∂jvi, ∇ · σ by (∇ · σ)i =
∑d

j=1 ∂jσij , and set σ : τ =
∑d

i,j=1 σijτij. We
further denote by v ⊗ w the matrix whose ij-th entry is vi wj. With

this notation, we note that v · σ · w =
∑d

i,j=1 viσijwj = σ : (v ⊗w).

2.2. The Stokes Problem

Let Ω be a polygonal or polyhedral Lipschitz domain in R
d, d = 2, 3,

with boundary Γ = ∂Ω. Given f ∈ L2(Ω)d and ν > 0, we consider the
Stokes problem: find the velocity field u and the pressure p such that

−ν∆u + ∇p = f in Ω, (1a)

∇ · u = 0 in Ω, (1b)

u = 0 on Γ. (1c)
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4 P. Houston, D. Schötzau, and T. Wihler

By introducing the forms

A(u,v) =

∫

Ω
ν∇u : ∇v dx, B(v, q) = −

∫

Ω
q∇ · v dx,

the standard weak formulation of the Stokes problem (1) reads: find
(u, p) ∈ H1

0 (Ω)d × L2
0(Ω) such that





A(u,v) + B(v, p) =

∫

Ω
f · v dx,

−B(u, q) = 0

for all (v, q) ∈ H1
0 (Ω)d×L2

0(Ω). Due to the continuous inf-sup condition

inf
06=q∈L2

0
(Ω)

sup
06=v∈H1

0
(Ω)d

−
∫
Ω q∇ · v dx

‖∇v‖0,Ω‖q‖0,Ω
≥ κ > 0, (2)

where κ is the inf-sup constant, depending only on Ω, the variational
formulation above is well-posed and has a unique solution (u, p) ∈
H1

0 (Ω)d × L2
0(Ω); see Girault and Raviart [10] or Brezzi and Fortin [5]

for details.
The regularity results in Dauge [8] show that, under the forego-

ing assumptions, the solution (u, p) of the Stokes problem belongs to
H1+ε(Ω)d × Hε(Ω) with a regularity exponent ε > 0. The maximal
value of ε only depends on the opening angles at the edges and faces
of the domain. In particular, for a convex domain, we have ε = 1.

2.3. Meshes and Traces

Throughout, we assume that the domain Ω can be subdivided into
shape-regular affine meshes Th consisting of parallelograms {K} (d =
2) or parallelepipeds {K} (d = 3). For each K ∈ Th, we denote
by nK the outward unit normal vector on the boundary ∂K, and
by hK the elemental diameter. As usual, we define the mesh size by
h = maxK∈Th

hK .
An interior face of Th is the (non-empty) (d−1)-dimensional interior

of ∂K+ ∩ ∂K−, where K+ and K− are two adjacent elements of Th.
Similarly, a boundary face of Th is the (non-empty) (d−1)-dimensional
interior of F ∩ Γ where F is an entire face of an element K at the
boundary. We denote by FI the set of all interior faces, by FD the set
of all boundary faces, and define F = FI∪FD. We allow for so-called 1-
irregular meshes, that is, any interior face F ∈ FI is an entire elemental
face of at least one of the two adjacent elements sharing F , and the
number of interior faces contained in an elemental face is bounded
by 2d − 2. This assumption implies that the local mesh sizes are of
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bounded variation, that is, there is a positive constant C, depending
only on the shape-regularity of the mesh, such that ChK ≤ hK′ ≤
C−1hK , whenever K and K ′ share a common face.

Next, we define the trace operators that are needed for the DG
method. To this end, let K+ and K− be two adjacent elements of Th,
and x an arbitrary point on the interior face F ∈ FI with F =
∂K+ ∩ ∂K−. Furthermore, let q, v, and τ be scalar-, vector-, and
matrix-valued functions, respectively, that are smooth inside each ele-
ment K±. By (q±,v±, τ±), we denote the traces of (q,v, τ ) on F taken
from within the interior of K±, respectively. Then, we introduce the
following averages at x ∈ F ,

{{q}} = (q+ + q−)/2, {{v}} = (v+ +v−)/2, {{τ}} = (τ+ + τ−)/2.

Similarly, the jumps at x ∈ F are given by

[[q]] = q+ nK+ + q− nK− , [[v]] = v+ · nK+ + v− · nK− ,

[[v]] = v+ ⊗ nK+ + v− ⊗ nK− , [[τ ]] = τ+nK+ + τ−nK−.

On boundary faces F ∈ FD, we set {{q}} = q, {{v}} = v, {{τ}} = τ , as
well as [[q]] = qn, [[v]] = v ·n, [[v]] = v⊗n, and [[τ ]] = τn. Here, n is the
outward unit normal vector on the boundary Γ.

2.4. Discontinuous Galerkin Discretization

Given a mesh Th and a polynomial degree k ≥ 1, we approximate the
Stokes problem by finite element functions (uh, ph) ∈ Vh × Qh, where

Vh = {v ∈ L2(Ω)d : v|K ∈ Qk(K)d, K ∈ Th },

Qh = { q ∈ L2
0(Ω) : q|K ∈ Qk−1(K), K ∈ Th }.

Here, Qk(K) denotes the space of tensor product polynomials on K of
degree k in each coordinate direction.

We consider the following discontinuous Galerkin approximation of
the Stokes problem: find (uh, ph) ∈ Vh × Qh such that





Ah(uh,v) + Bh(v, ph) =

∫

Ω
f · v dx,

−Bh(uh, q) = 0
(3)

for all (v, q) ∈ Vh × Qh, where

Ah(u,v) = ν

∫

Ω
∇hu : ∇hv dx−

∫

F
({{ν∇hv}} : [[u]] +{{ν∇hu}} : [[v]])ds

+ν

∫

F
γh−1 [[u]] : [[v]] ds,

Bh(v, q) = −

∫

Ω
q∇h · v dx +

∫

F
{{q}}[[v]] ds.
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6 P. Houston, D. Schötzau, and T. Wihler

Here, ∇h denotes the discrete nabla operator that is taken element-
wise. We further use the notation

∫
F h ds =

∑
F∈F

∫
F h ds. The func-

tion γh−1 is the interior penalty stabilization with h ∈ L∞(F) denoting
the mesh function defined by

h(x) =

{
min{hK , hK′}, x ∈ F ∈ FI , F = ∂K ∩ ∂K ′,
hK , x ∈ F ∈ FD, F ⊂ ∂K,

and γ > 0 a parameter independent of the mesh size. To ensure coer-
civity of the DG form Ah, the parameter γ must be chosen sufficiently
large; see Arnold, Brezzi, Cockburn and Marini [1] and the references
cited therein.

It was recently shown that the mixed method defined in (3) satisfies
a discrete inf-sup condition, and is thereby well-posed; for details, see
Hansbo and Larson [12], Toselli [22], Schötzau, Schwab and Toselli [20]
and the references cited therein. Consequently, for (piecewise) smooth
analytical Stokes solutions (u, p), the approximations (uh, ph) obtained
from (3) satisfy a priori error bounds that are optimal in the mesh size
and almost optimal in the polynomial degree. In polygonal domains
in R

2, extensions of these a priori results to Stokes solutions (u, p)
with regularity below H2(Ω)2 × H1(Ω) can be found in Schötzau and
Wihler [21]; see also Wihler, Frauenfelder and Schwab [24] for closely
related bounds for diffusion problems in non-smooth domains.

REMARK 2.1. The discontinuous Galerkin form Ah in (3) is also
referred to as the interior penalty form. Several other DG forms are
available for the discretization of the Laplacian; see Arnold, Brezzi,
Cockburn and Marini [1] for a discussion and unifying approach of
several DG methods for diffusion problems.

We further point out that our mixed approximation in (3) is based
on so-called mixed-order elements (or (Qk)d − Qk−1 elements), where
the approximation degree for the pressure is of one order lower than for
the velocity. In view of the approximation properties, this pair is opti-
mally matched. However, by introducing suitable pressure stabilization
terms, it is also possible to employ equal-order elements (or (Qk)d−Qk

elements) with the same approximation degree for the velocity and the
pressure; see the LDG approaches by Cockburn, Kanschat, Schötzau
and Schwab [7] and Cockburn, Kanschat and Schötzau [6] for details.

REMARK 2.2. In the case of inhomogeneous Dirichlet boundary con-
ditions, u = g on Γ, with a datum g satisfying the compatibility con-
dition

∫
Γ g · n ds = 0, the functional on the right-hand side of the first

equation in (3) must be replaced by

Fh(v) =

∫

Ω
f · v dx −

∫

FD

(g ⊗ n) : (ν∇hv) ds + ν

∫

FD

γh−1 g · v ds.
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Additionally, the right-hand side of the second equation in (3) is set
equal to

Gh(q) = −

∫

FD

q g · n ds.

3. A Posteriori Error Estimation

In this section we present and discuss an a posteriori estimator for the
error measured in terms of the energy norm ||| · |||DG given by

|||(v, q)|||2DG = ν‖∇hv‖
2
0,Ω + νγ

∫

F
h−1|[[v]]|2 ds + ν−1‖q‖2

0,Ω.

The following theorem is the main result of this paper.

THEOREM 3.1. Let (u, p) ∈ H1
0 (Ω)d × L2

0(Ω) be the analytical solu-
tion of the Stokes problem (1) and (uh, ph) ∈ Vh × Qh its mixed DG
approximation obtained by (3). Then, the following a posteriori error
bound holds:

|||(u − uh, p − ph)|||DG ≤ CEST

( ∑

K∈Th

η2
K

) 1

2 ,

where the elemental error indicator ηK is given by

η2
K = ν−1h2

K‖f + ν∆uh −∇ph‖
2
0,K + ν‖∇ · uh‖

2
0,K

+ν−1‖h
1

2 ([[ph]] − [[ν∇huh]])‖2
0,∂K\Γ + γ2ν‖h−

1

2 [[uh]]‖2
0,∂K .

Here, the constant CEST > 0 depends on γ, the inf-sup constant κ
in (2), the shape-regularity of the mesh and the polynomial degree k,
but is independent of ν and the mesh size.

REMARK 3.1. For residual-based a posteriori error estimation, the
constant CEST , arising in a bound of the type derived in Theorem 3.1,
is usually unknown analytically and must be determined numerically
for the underlying problem at hand; see Eriksson, Estep, Hansbo and
Johnson [9], for example. From the proof of Theorem 3.1, it follows
that

CEST = CS(CCCP + CA) + CPγ−1 max(1, γ
1

2 ),

where CS is the stability constant of the problem (cf. Lemma 4.3), CC

is a continuity constant (cf. Lemma 4.2), CP is a Poincaré constant
(cf. Proposition 4.1) and CA is the constant arising in Proposition 4.2.
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8 P. Houston, D. Schötzau, and T. Wihler

REMARK 3.2. Note that, for simplicity, the error in the approxi-
mation of the source term f is not taken into account explicitly in
Theorem 3.1. However, this can be done straightforwardly by using the
triangle inequality, giving rise to a standard data oscillation term. We
point out that, in our numerical results below, the source terms f are
always chosen in such a way that the error in the data approximation
can be neglected.

REMARK 3.3. To incorporate the inhomogeneous boundary condition
u = g on Γ, the error indicators ηK are simply modified with a cor-

responding modification of the jump indicators γ2ν‖h−
1

2 [[uh]]‖2
0,∂K on

∂K ∩ Γ, neglecting again data oscillation terms accounting for the
approximation of boundary data.

The proof of Theorem 3.1 is carried out in the next section. It
relies on a non-consistent reformulation of the method by using lift-
ing operators in the spirit of Arnold, Brezzi, Cockburn and Marini [1]
and then exploiting the recent decomposition result for discontinuous
spaces from Houston, Perugia and Schötzau [13]. This is in contrast
to the approach of Becker, Hansbo and Larson [3], which is based on
employing a suitable Helmholtz decomposition of the error, together
with the underlying conservation properties of the DG method, and
the approach of Becker, Hansbo and Stenberg [4] that hinges on a
saturation assumption on the meshes.

4. Proof of Theorem 3.1

The aim of this section is to prove Theorem 3.1; to this end, we proceed
in the following steps.

4.1. Lifting Operators

We begin by suitably extending the forms Ah and Bh to the continuous
level using the lifting operators introduced in Arnold, Brezzi, Cock-
burn and Marini [1]; see also Perugia and Schötzau [18] and Schötzau,
Schwab and Toselli [20]. To this end, we define the space

V(h) = H1
0 (Ω)d + Vh, (4)

and endow it with the norm

‖v‖2
1,h = ‖∇hv‖

2
0,Ω +

∫

F
h−1|[[v]]|2 ds.
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Next, by using the auxiliary space

Σh = {τ ∈ L2(Ω)d×d : τ |K ∈ Qk(K)d×d,K ∈ Th},

we introduce the lifting operator L : V(h) → Σh by
∫

Ω
L(v) : τ dx =

∫

F
[[v]] : {{τ}} ds ∀τ ∈ Σh.

In addition, we define M : V(h) → Qh by
∫

Ω
M(v)q dx =

∫

F
[[v]]{{q}} ds ∀q ∈ Qh.

The above lifting operators have the following stability properties;
see Perugia and Schötzau [18] or Schötzau, Schwab and Toselli [20] for
details.

LEMMA 4.1. There exists a constant CL > 0 such that

‖L(v)‖2
0,Ω ≤ CL

∫

F
h−1|[[v]]|2 ds, ‖M(v)‖2

0,Ω ≤ CL

∫

F
h−1|[[v]]|2 ds,

for any v ∈ V(h). The constant CL is independent of the mesh size,
but depends on the shape-regularity of the mesh and the polynomial
degree k.

We are now ready to introduce the following auxiliary forms:

Ãh(u,v) = ν

∫

Ω
∇hu : ∇hv dx−

∫

Ω
(L(u) : ν∇hv + L(v) : ν∇hu) dx

+ν

∫

F
γh−1 [[u]] : [[v]] ds,

B̃h(v, q) = −

∫

Ω
q∇h · v dx +

∫

Ω
M(v)q dx.

We first point out that, in contrast to Ah and Bh, and A and B, the
forms Ãh and B̃h are well-defined on V(h) ×V(h) and V(h) × L2(Ω),
respectively. Furthermore, we observe that

Ãh = Ah on Vh ×Vh, Ãh = A on H1
0 (Ω)d × H1

0 (Ω)d,

and

B̃h = Bh on Vh × Qh, B̃h = B on H1
0 (Ω)d × L2

0(Ω).

Hence, the form Ãh is an extension of both Ah and A to the space
V(h) ×V(h), while B̃h extends Bh and B to V(h) × Q(h).
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10 P. Houston, D. Schötzau, and T. Wihler

Using these auxiliary forms, we may rewrite the discrete problem (3)
as follows: find (uh, ph) ∈ Vh × Qh such that





Ãh(uh,v) + B̃h(v, ph) =

∫

Ω
f · v dx,

−B̃h(uh, q) = 0
(5)

for all (v, q) ∈ Vh × Qh.
Then, by setting

Ah(u, p;v, q) = Ãh(u,v) + B̃h(v, p) − B̃h(u, q),

for any (u, p), (v, q) ∈ V(h) × L2(Ω), we may further reformulate
problem (3) as follows: find (uh, ph) ∈ Vh × Qh such that

Ah(uh, ph;v, q) =

∫

Ω
f · v dx (6)

for all (v, q) ∈ Vh×Qh. On the discrete spaces Vh and Qh, problem (6)
is equivalent to (3).

Next, in order to specify how well the analytical solution (u, p) of the
Stokes problem (1) satisfies the formulation in (6), we need to introduce
the functional Rh given by

Rh(u, p;v, q) = Ah(u, p;v, q) −

∫

Ω
f · v dx, (v, q) ∈ Vh ×Qh. (7)

We will then make use of the following error equation:

Ah(u − uh, p − ph;v, q) = Rh(u, p;v, q), (v, q) ∈ Vh × Qh. (8)

Using the results of Section 8 of Schötzau, Schwab and Toselli [20], it
can be seen that, for a sufficiently smooth analytical solution (u, p) to
the Stokes problem, there holds

Rh(u, p;v, q) = ν

∫

F
{{∇hu− Π(∇hu)}} : [[v]] ds −

∫

F
{{p − Πp}}[[v]] ds

for all v × q ∈ Vh × Qh, where Π and Π denote the L2-projection
operators onto Σh and Qh, respectively. Hence, the functional Rh is
in fact independent of q ∈ Qh and Rh(u, p;v, q) = 0 for any v ∈
Vh ∩ H1

0 (Ω)d.

4.2. Stability Results

In this section, we collect some basic stability properties of the form Ah.
First of all, we have the following continuity result:
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LEMMA 4.2. For any (u, p), (v, q) ∈ V(h) × L2(Ω), there holds

|Ah(u, p;v, q)| ≤ CC |||(u, p)|||DG|||(v, q)|||DG,

with CC = max(2 + d, 1 + 2CLγ−1), where CL is the constant arising
in Lemma 4.1.

Proof. From the stability estimates for L and M in Lemma 4.1, the
definition of the forms Ãh and B̃h, and the Cauchy-Schwarz inequality,
we readily obtain

|Ah(u, p;v, q)| ≤

(
2ν‖∇hu‖

2
0,Ω + ν(2CLγ−1 + 1)

∫

Fh

γh−1|[[u]]|2 ds

+ν‖∇h · u‖2
0,Ω + 2ν−1‖p‖2

0,Ω

) 1

2

×

(
2ν‖∇hv‖

2
0,Ω + ν(2CLγ−1 + 1)

∫

Fh

γh−1|[[v]]|2 ds

+ν‖∇h · v‖2
0,Ω + 2ν−1‖q‖2

0,Ω

) 1

2

.

Since ‖∇h ·u‖
2
0,Ω ≤ d‖∇hu‖

2
0,Ω and ‖∇h ·v‖

2
0,Ω ≤ d‖∇hv‖

2
0,Ω, the claim

follows. 2

Next, we recall the following stability result for the form Ah re-
stricted to H1

0 (Ω)d × L2
0(Ω). This result is a direct consequence of the

definition of the auxiliary forms Ãh and B̃h and the inf-sup condition
in (2).

LEMMA 4.3. There exists a stability constant CS > 0 such that for
any (u, p) ∈ H1

0 (Ω)d × L2
0(Ω), there is (v, q) ∈ H1

0 (Ω)d × L2
0(Ω) with

Ah(u, p;v, q) ≥ |||(u, p)|||DG, |||(v, q)|||DG ≤ CS .

The constant CS is independent of ν, γ and the mesh size, but depends
on the inf-sup constant κ in (2).

Proof. Let p ∈ L2
0(Ω). Then, referring to (2) there exists w ∈ H1

0 (Ω)d

such that

−

∫

Ω
p∇ ·w dx ≥ κ‖p‖2

0,Ω, ‖w‖1,h = ‖∇w‖0,Ω ≤ ‖p‖0,Ω. (9)

Now, we choose

v̂ = αu + ν−1βw, q̂ = αp,
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12 P. Houston, D. Schötzau, and T. Wihler

with
α = 1 + κ−2, β = 2κ−1.

Since u and v̂ are in H1
0 (Ω)d, we have that L(u) = L(v̂) = 0 and

M(u) = M(v̂) = 0, together with [[u]] = [[v̂]] = 0 on F . Hence, using
the bounds in (9) and the arithmetic-geometric mean inequality, we
obtain

Ah(u, p; v̂, q̂) = ν

∫

Ω
∇u : ∇v̂ dx −

∫

Ω
p∇ · v̂ dx +

∫

Ω
q̂∇ · u dx

= να‖u‖2
1,h + β

∫

Ω
∇u : ∇w dx − ν−1β

∫

Ω
p∇ ·w dx

≥
(
να −

νβ

2κ

)
‖u‖2

1,h −
βν−1κ

2
‖w‖2

1,h + βν−1κ‖p‖2
0,Ω

≥
(
α −

β

2κ

)
ν‖u‖2

1,h +
1

2
βν−1κ‖p‖2

0,Ω

= |||(u, p)|||2DG.

Furthermore, employing the triangle inequality, we get

|||(v̂, q̂)|||2DG = ν‖v̂‖2
1,h + ν−1‖q̂‖2

0,Ω

≤ 2να2‖u‖2
1,h + 2ν−1β2‖w‖2

1,h + ν−1α2‖p‖2
0,Ω

≤ 2να2‖u‖2
1,h + (2β2 + α2)ν−1‖p‖2

0,Ω

≤ max(2α2, 2β2 + α2)|||(u, p)|||2DG.

Setting (v, q) = |||(u, p)|||−1
DG(v̂, q̂), completes the proof with the stability

constant CS given by C2
S = max(2α2, 2β2 + α2). 2

Finally, we state a decomposition result for discontinuous finite el-
ement spaces. To this end, let Vc

h = Vh ∩ H1
0 (Ω)d. The orthogonal

complement in Vh of Vc
h with respect to the norm ‖ · ‖1,h is denoted

by V⊥
h . For meshes with 1-irregular hanging nodes, as assumed in

this paper, the following equivalence result holds. The proof can be
found in Houston, Perugia and Schötzau [13]; it crucially relies on an
approximation result of Karakashian and Pascal [17, Section 2.1].

PROPOSITION 4.1. The expression

v 7→
( ∫

F
h−1|[[v]]|2 ds

) 1

2

is a norm on V⊥
h . This norm is equivalent to the norm ‖·‖1,h and there

is a constant CP > 0 such that

‖v‖1,h ≤ CP

( ∫

F
h−1|[[v]]|2 ds

) 1

2 ≤ CP ‖v‖1,h,
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A Posteriori Error Estimation for the Stokes Problem 13

for all v ∈ V⊥
h . The constant CP is independent of the mesh size,

but depends on the shape-regularity of the mesh and the polynomial
degree k.

REMARK 4.1. While the result in Proposition 4.1 holds for meshes
with 1-irregular hanging nodes (see Karakashian and Pascal [17, Sec-
tion 2.1]), it is unknown whether it holds on completely non-matching
meshes as the ones considered by Becker, Hansbo and Stenberg [4] for
diffusion problems. On the other hand, the approach there is based on a
saturation assumption on the meshes that is not present in our analysis.

4.3. An Auxiliary Result

Next, we prove an auxiliary result. To this end, we let (v, q) ∈ H 1
0 (Ω)d×

L2
0(Ω) be arbitrary; further, we write (vh, qh) ∈ Vh × Qh to denote an

approximation to (v, q) satisfying

∑

K∈Th

(h−2
K ‖v − vh‖

2
0,K + ‖∇(v − vh)‖2

0,K + ‖h−
1

2 (v − vh)‖2
0,∂K) (10)

≤ C2
I ‖∇v‖2

0,Ω,

as well as,
‖q − qh‖0,Ω ≤ CI‖q‖0,Ω, (11)

with an interpolation constant CI , which is independent of the mesh
size, but depends on the shape-regularity of the mesh and the poly-
nomial degree k. These assumptions are satisfied, for example, if vh

and qh are chosen to be L2-projections of v and q onto Vh and Qh,
respectively.

PROPOSITION 4.2. Under the foregoing assumptions (10) and (11),
the following inequality holds
∣∣∣∣
∫

Ω
f · (v − vh) dx −Ah(uh, ph;v − vh, q − qh)

∣∣∣∣

≤ CA

( ∑

K∈Th

η2
K

) 1

2 |||(v, q)|||DG.

Here, CA = CI

(
5
2 (1 + 2CLγ−2)

) 1

2 , where CI and CL are the constants

from (10), (11) and from Lemma 4.1, respectively.

Proof. We set ξv = v − vh, ξq = q − qh, and

T =

∫

Ω
f · ξv dx −Ah(uh, ph; ξv, ξq).
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14 P. Houston, D. Schötzau, and T. Wihler

We first note that

T =

∫

Ω
f · ξv dx− Ãh(uh, ξv) − B̃h(ξv, ph) + B̃h(uh, ξq). (12)

Integration by parts and the definition of the lifting operator L leads
to

−Ãh(uh, ξv) =
∑

K∈Th

(∫

K
ν∆uh · ξv dx−

∫

∂K
ν∇huh : (ξv ⊗ nK)ds

)

+

∫

Ω
νL(uh) : ∇hξv dx +

∫

Ω
νL(ξv) : ∇huh dx

−ν

∫

F
γh−1 [[uh]] : [[ξv]] ds

=
∑

K∈Th

∫

K
ν∆uh · ξv dx−

∫

FI

[[ν∇huh]] · {{ξv}} ds

+

∫

Ω
νL(uh) : ∇hξv dx − ν

∫

F
γh−1 [[uh]] : [[ξv]] ds.

Similarly, by integration by parts, we obtain

−B̃h(ξv, ph) + B̃h(uh, ξq) = −
∑

K∈Th

∫

K
∇ph · ξv dx +

∫

FI

[[ph]] · {{ξv}} ds

−
∑

K∈Th

∫

K
ξq∇ · uh dx +

∫

Ω
M(uh)ξq dx.

Substituting the above expressions into (12), we get

T =
∑

K∈Th

∫

K
(f + ν∆uh −∇ph) · ξv dx−

∑

K∈Th

∫

K
ξq∇ · uh dx

+

∫

FI

([[ph]] − [[ν∇huh]]) · {{ξv}} ds − ν

∫

F
γh−1[[uh]] : [[ξv]] ds

+

∫

Ω
νL(uh) : ∇hξv dx +

∫

Ω
M(uh)ξq dx.

Using the stability bounds from Lemma 4.1, we obtain

|T | ≤
∑

K∈Th

ν− 1

2 hK‖f + ν∆uh −∇ph‖0,K ν
1

2 h−1
K ‖ξv‖0,K

+
∑

K∈Th

ν
1

2 ‖∇ · uh‖0,K ν− 1

2 ‖ξq‖0,K

+
∑

F∈FI

ν− 1

2 ‖h
1

2 ([[ph]] − [[ν∇huh]])‖0,F ν
1

2 ‖h−
1

2 {{ξv}}‖0,F
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+
∑

F∈F

γν
1

2 ‖h−
1

2 [[uh]]‖0,F ν
1

2 ‖h−
1

2 [[ξv]]‖0,F

+ν
1

2 C
1

2

L

(
∑

F∈F

‖h−
1

2 [[uh]]‖2
0,F

) 1

2

ν
1

2 ‖∇hξv‖0,Ω

+ν
1

2 C
1

2

L

(
∑

F∈F

‖h−
1

2 [[uh]]‖2
0,F

) 1

2

ν− 1

2 ‖ξq‖0,Ω.

Applying the Cauchy-Schwarz inequality, results in

|T | ≤

(
∑

K∈Th

(
ν−1h2

K‖f + ν∆uh −∇ph‖
2
0,K + ν‖∇ · uh‖

2
0,K

)

+ν−1
∑

F∈FI

‖h
1

2 ([[ph]] − [[ν∇huh]])‖2
0,F

+(1 + 2CLγ−2)νγ2
∑

F∈F

‖h−
1

2 [[uh]]‖2
0,F

) 1

2

×

(
∑

K∈Th

(
νh−2

K ‖ξv‖
2
0,K + ν‖∇ξv‖

2
0,K + 2ν−1‖ξq‖

2
0,K

)

+ν
∑

F∈FI

‖h−
1

2 {{ξv}}‖
2
0,F + ν

∑

F∈F

‖h−
1

2 [[ξv]]‖2
0,F

) 1

2

.

In addition, noticing that

∑

F∈FI

‖h
1

2 ([[ph]] − [[ν∇huh]])‖2
0,F =

1

2

∑

K∈Th

‖h
1

2 ([[ph]] − [[ν∇huh]])‖2
0,∂K\Γ,

∑

F∈F

‖h−
1

2 [[uh]]‖2
0,F ≤

∑

K∈Th

‖h−
1

2 [[uh]]‖2
0,∂K , (13)

and

∑

F∈FI

‖h−
1

2 {{ξv}}‖
2
0,F ≤

1

2

∑

K∈Th

‖h−
1

2 ξv‖
2
0,∂K ,

∑

F∈F

‖h−
1

2 [[ξv]]‖2
0,F ≤ 2

∑

K∈Th

‖h−
1

2 ξv‖
2
0,∂K ,

leads to

|T | ≤

(
∑

K∈Th

ν−1h2
K‖f + ν∆uh −∇ph‖0,K + ν‖∇h · u‖2

0,K
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16 P. Houston, D. Schötzau, and T. Wihler

+
1

2
ν−1‖h

1

2 ([[ph]] − [[ν∇huh]])‖2
0,∂K\Γ

+(1 + 2CLγ−2)νγ2‖h−
1

2 [[uh]]‖2
0,∂K

) 1

2

×

(
∑

K∈Th

ν

(
h−2

K ‖ξv‖
2
0,K + ‖∇ξv‖

2
0,K +

5

2
‖h−

1

2 ξv‖
2
0,∂K

)

+2ν−1‖ξq‖
2
0,K

) 1

2

≤

(
5

2

(
1 + 2CLγ−2

)) 1

2

(
∑

K∈Th

η2
K

) 1

2

×

(
∑

K∈Th

ν
(
h−2

K ‖ξv‖
2
0,K + ‖∇ξv‖

2
0,K + ‖h−

1

2 ξv‖
2
0,∂K

)

+ν−1‖ξq‖
2
0,K

) 1

2

.

Making use of the approximation properties in (10) and (11) completes
the proof. 2

4.4. A Posteriori Error Estimation

In this section we complete the proof of Theorem 3.1. To this end, we
denote the error of the DG approximation by (eu, ep) = (u−uh, p−ph).
Furthermore, we decompose uh into uh = uc

h ⊕u⊥
h , in accordance with

the decomposition in Section 4.2 and Proposition 4.1. We then set
ec

u = u− uc
h.

Using the equivalence result in Proposition 4.1, the fact that [[uh]] =

[[u⊥
h ]] and the inequality (13), we have

|||(eu, ep)|||DG ≤ |||(ec
u, ep)|||DG + ν

1

2 max(1, γ
1

2 )‖u⊥
h ‖1,h

≤ |||(ec
u, ep)|||DG + CP max(1, γ

1

2 )

(
ν

∫

F
h−1|[[uh]]|2 ds

) 1

2

≤ |||(ec
u, ep)|||DG + CPγ−1 max(1, γ

1

2 )



∑

K∈Th

η2
K




1

2

.

To bound the term |||(ec
u, ep)|||DG, we invoke the stability result from

Lemma 4.3 which gives us a function (v, q) ∈ H1
0 (Ω)d × L2

0(Ω) such
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that

|||(ec
u, ep)|||DG ≤ Ah(ec

u, ep;v, q), |||(v, q)|||DG ≤ CS . (14)

Let (vh, qh) ∈ Vh × Qh be arbitrary. Elementary manipulations, com-
bined with the error equation (8), lead to

|||(ec
u, ep)|||DG ≤ Ah(ec

u, ep;v, q)

= Ah(eu, ep;v, q) + Ah(u⊥
h , 0;v, q)

= Ah(eu, ep;v − vh, q − qh) + Rh(u, p;vh, qh)

+Ah(u⊥
h , 0;v, q)

= Ah(u, p;v − vh, q − qh) −Ah(uh, ph;v − vh, q − qh)

+Rh(u, p;vh, qh) + Ah(u⊥
h , 0;v, q).

Since (v, q) ∈ H1
0 (Ω)d ×L2

0(Ω), we note that, with the definition (7) of
Rh and the weak formulation of the Stokes problem,

Ah(u, p;v − vh, q − qh) = Ah(u, p;v, q) −Ah(u, p;vh, qh)

=

∫

Ω
f · (v − vh) dx −Rh(u, p;vh, qh).

Therefore,

|||(ec
u, ep)|||DG ≤

∫

Ω
f · (v − vh) dx −Ah(uh, ph;v − vh, q − qh)

+Ah(u⊥
h , 0;v, q).

Choosing vh and qh as in (10) and (11) yields

|||(ec
u, ep)|||DG ≤ |Ah(u⊥

h , 0;v, q)|

+

∣∣∣∣
∫

Ω
f · (v − vh) dx −Ah(uh, ph;v − vh, q − qh)

∣∣∣∣

≤ CCν
1

2 ‖u⊥
h ‖1,h|||(v, q)|||DG

+CA


 ∑

K∈Th

η2
K




1

2

|||(v, q)|||DG

≤ (CCCP + CA)


 ∑

K∈Th

η2
K




1

2

|||(v, q)|||DG.

Here, we have used the continuity of Ah from Lemma 4.2, the equiva-
lence result from Proposition 4.1 and the auxiliary result from Propo-
sition 4.2. Using the bound (14) for (v, q) gives

|||(ec
u, ep)|||DG ≤ CS(CCCP + CA)



∑

K∈Th

η2
K




1

2

,
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Figure 1. L–shaped domain Ω.

which completes the proof of Theorem 3.1.

5. Numerical Experiments

In this section we present a series of two-dimensional numerical exam-
ples to illustrate the practical performance of the proposed a posteriori
error estimator within an automatic adaptive refinement procedure.
In each of the examples shown below, we set the polynomial degree
k equal to 1. The DG solution of (3) is computed using the value
γ = 10. The adaptive meshes are constructed by employing the fixed
fraction strategy, with refinement and unrefinement fractions set to
25% and 10%, respectively. Here, the emphasis will be to demonstrate
that the proposed a posteriori error indicator converges to zero at
the same asymptotic rate as the energy norm of the actual error on
a sequence of non-uniform adaptively refined meshes. For simplicity,
we always choose γ = 1 to evaluate the local estimators and the energy
norm. Furthermore, as in Becker, Hansbo and Larson [3], we set the
constant CEST arising in Theorem 3.1 equal to one and ensure that
the corresponding effectivity indices are roughly constant on all of the
meshes employed; here, the effectivity index is defined as the ratio
of the a posteriori error bound and the energy norm of the actual
error. In general, to ensure the reliability of the error estimator, CEST

must be determined numerically for the underlying problem at hand,
cf. Eriksson, Estep, Hansbo and Johnson [9], for example.

5.1. Example 1

Here, we let Ω ⊂ R
2 be the L–shaped domain shown in Figure 1;

further, we select ν = 1, f = 0 and enforce appropriate inhomogeneous
boundary conditions for u on Γ so that the analytical solution to (1)
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(a) (b)

(c) (d)

Figure 2. Example 1. (a) Computational mesh with 4359 elements, after 10 adaptive
refinements. Numerical approximation to: (b) u1; (c) u2; (d) p.

is given by




u1

u2

p


 =




−ex(y cos(y) + sin(y))
exy sin(y)

2ex sin(y) − (2(1 − e)(cos(1) − 1))/3


 .

In Figure 2(a) we show the mesh generated using the proposed a poste-
riori error indicator after 10 adaptive refinement steps. Here, we see that
while the mesh has been largely uniformly refined throughout the en-
tire computational domain, additional refinement has been performed
where the gradient/curvature of the analytical solution is relativity
large; cf. Figures 2(b), (c) and (d), where we plot the isolines of the
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Figure 3. Example 1. (a) Comparison of the actual and estimated energy norm of
the error with respect to the number of degrees of freedom; (b) Effectivity Indices.

numerical approximation to u1, u2 and p, respectively, computed on
this mesh.

Finally, in Figure 3(a) we present a comparison of the actual and
estimated energy norm of the error versus the number of degrees of
freedom in the finite element space Vh×Qh, on the sequence of meshes
generated by our adaptive algorithm. Here, we observe that the error
bound over-estimates the true error by a consistent factor; indeed, from
Figure 3(b), we see that the computed effectivity indices lie in the range
between 3–4.

5.2. Example 2

In this section, we consider the example of the singular solution to (1)
proposed in Verfürth [23, p. 113]. To this end, we again let Ω be the
L–shaped domain shown in Figure 1, and select f = 0 and ν = 1. Then,
writing (r, ϕ) to denote the system of polar coordinates, we impose an
appropriate inhomogeneous boundary condition for u so that

u(r, ϕ) = rλ

(
(1 + λ) sin(ϕ)Ψ(ϕ) + cos(ϕ)Ψ′(ϕ)
sin(ϕ)Ψ′(ϕ) − (1 + λ) cos(ϕ)Ψ(ϕ)

)
,

p = −rλ−1[(1 + λ)2Ψ′(ϕ) + Ψ′′′(ϕ)]/(1 − λ),

where

Ψ(ϕ) = sin((1 + λ)ϕ) cos(λω)/(1 + λ) − cos((1 + λ)ϕ)

− sin((1 − λ)ϕ) cos(λω)/(1 − λ) + cos((1 − λ)ϕ),

ω =
3π

2
.
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(a) (b)

(c) (d)

Figure 4. Example 2. (a) Computational mesh with 3009 elements, after 8 adaptive
refinements. Numerical approximation to: (b) u1; (c) u2; (d) p.

The exponent λ is the smallest positive solution of

sin(λω) + λ sin(ω) = 0;

thereby, λ ≈ 0.54448373678246.
We emphasize that (u, p) is analytic in Ω \ {0}, but both ∇u and

p are singular at the origin; indeed, here u 6∈ H2(Ω)2 and p 6∈ H1(Ω).
This example reflects the typical (singular) behavior that solutions of
the two-dimensional Stokes problem exhibit in the vicinity of reentrant
corners in the computational domain.

In Figure 4(a) we show the mesh generated using the local error
indicators ηK after 8 adaptive refinement steps. Here, we see that the
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Figure 5. Example 2. (a) Comparison of the actual and estimated energy norm of
the error with respect to the number of degrees of freedom; (b) Effectivity Indices.

mesh has been largely refined in the vicinity of the re-entrant corner
located at the origin, as well as in the region adjacent to this singular
point; indeed, away from the origin, we see that the mesh is (almost)
symmetric about the line y = −x. The isolines of the numerical approx-
imation (uh, ph) computed on this mesh are shown in Figures 4(b), (c)
and (d), respectively. Finally, Figure 5 shows the history of the actual
and estimated energy norm of the error on each of the meshes generated
by our adaptive algorithm, together with their corresponding effectivity
indices. As in the previous example, we observe that the a posteriori
bound over-estimates the true error by a consistent factor between 3–4,
though here we do see that for this non-smooth example, the effectivity
indices do grow very slightly as the mesh is refined; asymptotically they
seem to be tending towards a constant value of approximately 4.

6. Concluding Remarks

In this paper, we have derived a residual–based energy norm a posteriori
error bound for mixed DG approximations of the Stokes equations. The
analysis is based on employing a non-consistent reformulation of the DG
scheme, together with a decomposition result for the underlying discon-
tinuous space. Numerical experiments presented in this article clearly
demonstrate that the proposed a posteriori estimator converges to zero
at the same asymptotic rate as the energy norm of the actual error on
sequences of adaptively refined meshes. Future work will be devoted
to the extension of our analysis to hp-adaptive discontinuous Galerkin
approximations of more complicated incompressible flow models.
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