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University of Leicester Università di Pavia University of British Columbia

Leicester, United Kingdom Pavia, Italy Vancouver, BC, Canada

Preprint number: PIMS-04-3

Received on January 20, 2004

houston-perugia-schotzau_20-01-04.tex; 28/01/2004; 10:31; p.1



houston-perugia-schotzau_20-01-04.tex; 28/01/2004; 10:31; p.2



Mixed Discontinuous Galerkin Approximation of the

Maxwell Operator: Non-Stabilized Formulation

Paul Houston (paul.houston@mcs.le.ac.uk) ∗

Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK

Ilaria Perugia (perugia@dimat.unipv.it)
Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia,
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Abstract. A non-stabilized mixed discontinuous Galerkin method for the dis-
cretization of the Maxwell operator on simplicial meshes is studied. In contrast to the
stabilized scheme introduced in [7], the proposed formulation contains no normal–
jump stabilization; instead, it is based on discontinuous mixed-order (P`)3 − P`+1

elements for the approximation of the unknowns. A priori error bounds in the energy
norm are derived that show convergence rates of the order O(h`) in the mesh size h.
The error analysis relies on suitable decompositions of discontinuous spaces and on
stability properties of the underlying conforming spaces. The formulation is tested
on a set of numerical examples in two space dimensions.
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1. Introduction

In this paper, we propose, analyze and numerically test a non-stabilized
mixed discontinuous Galerkin (DG) method on simplicial meshes for
the numerical approximation of the static Maxwell equations in the
mixed form

∇× (µ−1∇× u) − ε∇p = j in Ω, (1a)

∇ · (εu) = 0 in Ω, (1b)

n× u = 0 on Γ, (1c)

p = 0 on Γ. (1d)

Here, Ω is a bounded and simply-connected Lipschitz polyhedron in R3,
Γ = ∂Ω its boundary, which we assume to be connected, and n the
outward normal unit vector on Γ. The unknowns are the electric field u,
and the Lagrange multiplier p related to the divergence constraint; see,
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2 P. Houston, I. Perugia, and D. Schötzau

e.g., [5, 17]. The coefficients µ = µ(x) and ε = ε(x) are the magnetic
permeability and the electric permittivity of the medium, respectively;
they are assumed to be real functions which satisfy

0 < µ∗ ≤ µ(x) ≤ µ∗ <∞, 0 < ε∗ ≤ ε(x) ≤ ε∗ <∞, a.e. x ∈ Ω. (2)

For simplicity, we further assume that µ and ε are piecewise constant
with respect to a partition of the domain Ω into Lipschitz polyhedra.
The right-hand side j ∈ L2(Ω)3 is an external source field.

This paper is a continuation of a series of papers, [15], [8], [16],
and [7], devoted to the study of discontinuous Galerkin methods ap-
plied to the Maxwell equations. This study was initiated in [15] where
an hp-local discontinuous Galerkin method was presented for the low-
frequency approximation of the time-harmonic Maxwell equations in
heterogeneous media. The focus there, however, was on the problem
of how to discretize the curl-curl operator using discontinuous finite
element spaces. The numerical experiments presented in [8] have con-
firmed the expected hp-convergence rates for smooth solutions, and
indicate that DG methods can indeed be effective in a wide range of low-
frequency applications with coercive bilinear forms as they typically
arise in the case of conducting materials. In contrast, problem (1) is a
mixed, indefinite formulation of the low-frequency Maxwell equations
within insulating materials.

Later, in [16], a mixed discontinuous Galerkin formulation was pre-
sented to solve the high-frequency time-harmonic Maxwell equations
in mixed form, where the underlying elliptic operator is exactly of the
form (1). The mixed form of the equations was chosen to provide control
on the divergence of the electric field. For smooth material coefficients,
optimal convergence of the method was proved by employing a duality
approach, provided that appropriate stabilization terms were included
in the formulation. From a practical point of view, these stabilization
terms are very undesirable, as they tend to over–constrain the DG
method, and may lead to spurious (non-physical) oscillations in the
vicinity of singularities of the underlying analytical solution. Subse-
quent work has shown that most of the stabilization terms employed
in [16] are unnecessary; indeed, the amount of numerical stabilization
has been drastically reduced in the formulation presented in the suc-
ceeding work [7]. Apart from the standard interior penalty terms, a
normal-jump stabilization term is sufficient to render the mixed method
in [7] well-posed for problem (1); this stabilization is easily achieved by
a suitable (and locally conservative) choice of the numerical fluxes. The
unknowns u and p are then approximated by discontinuous equal-order
(P`)3−P` elements on tetrahedral meshes, or by (Q`)3−Q` elements on
hexahedral meshes. This choice results in a mixed DG method that is
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Mixed DG approximation of the Maxwell operator 3

optimally convergent in the DG-energy norm, with convergence rates
of the order O(h`) in the mesh size h. However, while this has been
confirmed in practice, numerical experiments have also indicated that,
on conforming meshes, the L2–norm of the error in the approximation
to u is sub-optimal by a full power of the mesh size.

In this paper, we study a non-stabilized variant of the approach in [7]
on simplicial meshes, that was recently presented in [9]. In this context,
the notion “non-stabilized” refers to the normal-jump stabilization.
Indeed, we show that such stabilization terms are not necessary if
mixed-order (P`)3 −P`+1 elements are employed for the approximation
of u and p. In fact, these elements can be viewed as a discontinuous
version of the conforming pairing that is given by using Nédélec el-
ements of the second type for the approximation of u, and standard
nodal P`+1 elements for p; see [14, 11]. The key advantages of this
approach are that, firstly no additional stabilization is necessary to
ensure that the underlying discretization is well–posed and optimally
accurate in the DG energy norm. Secondly, although this new method
leads to an increase in the number of degrees of freedom employed
for the numerical approximation of the variable p, in comparison to
the equal–order stabilized method introduced in [7] (about twice as
much, in the three–dimensional case), numerical experiments presented
in Section 7 indicate that the L2–norm of the error in the approximation
to u is now fully optimal. Thereby, given that p is only a scalar variable,
this increase in complexity is relatively small given that the order of
approximation is increased by a full power of the mesh size for each
component of the approximation to the vector variable u.

The numerical analysis of the non-stabilized method proposed in
this paper intrinsically differs from that in [7] for stabilized schemes,
although the main result is essentially the same. Let us point out some
of the main differences: in [7], the crucial stability result that gives
coercivity of the discrete curl-curl form on a suitable kernel is obtained
by using a duality approach. The control of all the terms then essentially
relies on the normal-jump stabilization. This is no longer possible for
the non-stabilized (P`)3−P`+1 method considered here. Instead, we use
an orthogonal decomposition of the discontinuous finite element space
Vh for the approximation of u into a direct sum of the form

Vh = Vc
h ⊕V⊥

h ,

where Vc
h is the H(curl)-conforming Nédélec finite element space of the

second type (see [14]), and V⊥
h is a suitable orthogonal complement. We

then make use of well-known stability results for conforming elements
to control error contributions in Vc

h, and employ the interior penalty
terms present in our formulation to control those in V⊥

h . This approach
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4 P. Houston, I. Perugia, and D. Schötzau

is very much in the spirit of the recent techniques developed in [4] for
the analysis of stabilized finite element methods. To control the non-
conformity of the method in the Lagrange multiplier p, we use a similar
decomposition of the related discrete space Qh, namely, Qh = Qc

h ⊕
Q⊥

h , where Qc
h is a standard H1-conforming finite element space; this

decomposition of Qh was also employed in [7]. Then, at the heart of our
analysis are norm-equivalence properties for the above decompositions
of discontinuous spaces which might be of interest on their own.

We remark that although the analysis presented in this paper is
restricted to the case of conforming finite element meshes, numerical
experiments have indicated that the proposed method also works on
grids containing hanging nodes (see, e.g., [9]). Furthermore, despite the
higher number of degrees of freedom of the DG method, in comparison
to its conforming counterpart based on employing Nédéléc elements,
the proposed method is easier to implement on nonconforming meshes
and for higher–order approximation degrees, and thus it is particularly
suited for hp–adaptivity. On the other hand, since most of the degrees
of freedom are in the interior of the elements, the increase in the total
number of degrees of freedom with respect to the corresponding con-
forming method is not dramatic. Moreover, for anisotropic materials,
where shape–irregular meshes must be employed, a large number of
transitional elements may need to be introduced within a conforming
finite element method, leading to unnecessary additional degrees of
freedom, in order to eliminate hanging nodes in the underlying mesh.

Finally, we point out that the techniques in this paper can be used
almost verbatim to analyze the well-posedness and convergence of the
analogous mixed DG method that is obtained by using discontinuous
Nédélec elements of the first type for the approximation of u (see [12,
13, 11]), and discontinuous P` elements for p; see also Remark 2 below.
This family can be easily extended to hexahedral meshes whereas the
discontinuous (P`)3−P`+1 pairing proposed in this paper does not seem
to have a natural extension to hexahedra; we note that this is also the
case for its conforming counterpart.

The outline of the paper is as follows. We begin by detailing the
notation for the function spaces that we use throughout the paper. In
Section 2, we present the non-stabilized mixed discontinuous Galerkin
approximation for (1) on tetrahedral meshes. In Section 3, we state our
main results, namely, optimal a priori error estimates for the approxi-
mate solution. Section 4 is concerned with a decomposition result that
is instrumental in our analysis; its proof is postponed to the Appendix.
In Section 5, we introduce an auxiliary mixed formulation and discuss
the stability properties of the involved forms. Then, the error bounds
are proved in Section 6. Finally, in Section 7, we test the performance
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Mixed DG approximation of the Maxwell operator 5

of the proposed method on a series of numerical experiments. The
presentation is ended with concluding remarks in Section 8.

Notation. Given a bounded domain D in R2 or R3, we denote by
Hs(D) the standard Sobolev space of functions with regularity expo-
nent s ≥ 0, and norm ‖ · ‖s,D. For s = 0, we write L2(D) in lieu
of H0(D). We also write ‖ · ‖s,D to denote the norm for the space
Hs(D)d, d = 2, 3. Given D ⊂ R3, H(curl;D) is the space of vector fields
u ∈ L2(D)3 with ∇ × u ∈ L2(D)3, endowed with the corresponding
graph norm. We denote by H1

0 (D) and H0(curl;D) the subspaces of
H1(D) and H(curl;D) of functions with zero trace and zero tangential
trace on ∂D, respectively.

2. Non-stabilized mixed DG discretization

In this section we introduce a non-stabilized mixed discontinuous Gal-
erkin discretization of problem (1).

2.1. Variational formulation

Set V = H0(curl; Ω) and Q = H1
0 (Ω). The standard variational form

of problem (1) consists in finding (u, p) ∈ V ×Q such that

a(u,v) + b(v, p) =
∫
Ω j · v dx,

b(u, q) = 0

for all (v, q) ∈ V×Q, where the forms a and b are defined, respectively,
by

a(u,v) =

∫

Ω
µ−1∇× u · ∇ × v dx,

b(v, p) = −
∫

Ω
εv · ∇p dx.

Well-posedness of the above formulation follows from the standard the-
ory of mixed problems [3], since a is bilinear, continuous and coercive
on the kernel of b, and b is linear and continuous, and satisfies the
inf-sup condition; see, e.g., [5, 17] for details.

2.2. Meshes, finite element spaces and traces

Throughout, we consider shape-regular conforming meshes Th that
partition the domain Ω into tetrahedra; we always assume that the
meshes are aligned with the discontinuities in the coefficients µ and ε.
Each element is affinely equivalent to the reference tetrahedron K̂ =
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6 P. Houston, I. Perugia, and D. Schötzau

{x̂1, x̂2, x̂3 > 0 : x̂1 + x̂2 + x̂3 < 1}. We denote by FI
h the set of all

interior faces of Th, by FB
h the set of all boundary faces of Th, and set

Fh = FI
h ∪ FB

h . Similarly, EI
h denotes the set of interior edges, EB

h the
set of boundary edges, and Eh = EI

h ∪ EB
h .

For an element K ∈ Th, we denote by P`(K), ` ≥ 0, the space of
polynomials of total degree at most ` on K. The generic discontinuous
finite element space of piecewise polynomials is given by

P `(Th) = {u ∈ L2(Ω) : u|K ∈ P`(K) ∀K ∈ Th}.
For piecewise smooth vector- and scalar-valued functions v and q,

we introduce the following trace operators. Let f ∈ F I
h be an interior

face shared by two elements K+ and K−, and write n± for the outward
normal unit vectors on the boundaries ∂K±, respectively. Denoting by
v± and q± the traces of v and q on ∂K± taken from within K±,
respectively, we define the jumps across f by

[[v]]T = n+ × v+ + n− × v−, [[q]]N = q+n+ + q−n−,

and the averages by {{v}} = (v+ + v−)/2 and {{q}} = (q+ + q−)/2. On
a boundary face f ∈ FB

h , we set [[v]]T = n × v, [[q]]N = q n, {{v}} = v

and {{q}} = q.

2.3. Discontinuous Galerkin discretization

For a given partition Th of Ω, and an approximation order ` ≥ 1, we
define the following finite element spaces:

Vh = P `(Th)3, Qh = P `+1(Th). (3)

With this notation, we consider the following discontinuous Galerkin
method: find (uh, ph) in Vh ×Qh such that

ah(uh,v) + bh(v, ph) =
∫
Ω j · v dx, (4a)

bh(uh, q) − ch(ph, q) = 0 (4b)

for all (v, q) ∈ Vh × Qh, where the discrete forms ah, bh and ch are
defined, respectively, by

ah(u,v) =

∫

Ω
µ−1∇h × u · ∇h × v dx −

∫

Fh

[[u]]T · {{µ−1∇h × v}} ds

−
∫

Fh

[[v]]T · {{µ−1∇h × u}} ds+

∫

Fh

a [[u]]T · [[v]]T ds,

bh(v, p) = −
∫

Ω
εv · ∇hp dx +

∫

Fh

{{εv}} · [[p]]N ds,

ch(p, q) =

∫

Fh

c[[p]]N · [[q]]N ds.
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Here, ∇h× and ∇h denote the elementwise curl and gradient operators,
respectively. Further, we have set

∫
Fh

ϕ(s) ds =
∑

f∈Fh

∫
f ϕ(s) ds.

The form ah corresponds to the interior penalty discretization of the
curl-curl operator [8, 16, 7]; notice that, unlike in [7], no normal-jump
stabilization has been introduced into this form. This is the reason why
we refer to (4) as a non-stabilized formulation. The form bh discretizes
the divergence operator in a DG fashion, and the form ch is the interior
penalty form that weakly enforces the continuity of ph. The parameters
a and c are the usual interior penalty parameters that will be chosen
later on, depending on the mesh size and the coefficients µ and ε.

REMARK 1. For inhomogeneous boundary conditions n×u = g on Γ,
where the datum g is a prescribed tangential trace belonging to L2(Γ)3,
the right-hand side in (4a) has to be replaced by the functional fh given
by

fh(v) =

∫

Ω
j · v dx−

∫

FB

h

g · µ−1∇h × v ds+

∫

FB

h

ag · (n × v) ds.

Here, the integral over FB
h is understood as the sum of the integrals

over all the boundary faces.

3. Main results

In this section, we consider the well–posedness and a priori error anal-
ysis of the mixed DG method (4).

3.1. Interior penalty parameters, DG-spaces and norms

In order to define the interior penalty parameters a and c arising in
the mixed DG method (4), we first need to introduce some notation.
To this end, we write hK to denote the diameter of element K ∈ Th;
the mesh size is then given by h = maxK∈Th

hK . On the faces in Fh,
we define the function h by

h(x) =

{
min{hK , hK′} if x is in the interior of ∂K ∩ ∂K ′,
hK if x is in the interior of ∂K ∩ Γ.

Similarly, we define the functions m and e by m(x) = min{µK , µK′}
and e(x) = max{εK , εK′}, if x is in the interior of ∂K ∩ ∂K ′, and
m(x) = µK and e(x) = εK , if x is in the interior of ∂K ∩ Γ, with
µK and εK denoting the restrictions of µ and ε, respectively, to the
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8 P. Houston, I. Perugia, and D. Schötzau

element K (recall that µ and ε are constant within each element). We
then choose the interior penalty functions a and c as follows:

a = α m−1h−1, c = γ eh−1, (5)

where α and γ are positive parameters independent of the mesh size
and the coefficients µ and ε.

We define the spaces

V(h) = V + Vh, Q(h) = Q+Qh,

endowed with the following seminorm and norms, respectively:

|v|2
V(h) = ‖µ− 1

2∇h × v‖2
0,Ω + ‖m− 1

2h−
1
2 [[v]]T ‖2

0,Fh
,

‖v‖2
V(h) = ‖ε 1

2 v‖2
0,Ω + |v|2

V(h),

‖q‖2
Q(h) = ‖ε 1

2∇hq‖2
0,Ω + ‖e 1

2h−
1
2 [[q]]N‖2

0,Fh
.

Here, we use the notation

‖ϕ‖2
0,Fh

:=
∑

f∈Fh

‖ϕ‖2
0,f .

Finally, for (v, q) in V(h) ×Q(h), we introduce the DG-norm

|||(v, q)|||DG = ‖v‖V(h) + ‖q‖Q(h).

3.2. Well-posedness of the discrete problem

The following ellipticity property of the form ah is essential for the
proof of the well-posedness of the DG-discrete problem.

PROPOSITION 1. There is a parameter α0 > 0 independent of the
mesh size and the coefficients µ and ε such that for parameters α in (5)
with α > α0 we have that

ah(v,v) ≥ C |v|2
V(h)

for all v ∈ Vh, where C is a positive constant, independent of the mesh
size and the coefficients µ and ε.

Proof. This result can be proved as in [2, 8, 16], taking into account
the definition of m. We note that the minimal value of α0, which guar-
antees the ellipticity property only depends on the shape regularity of
the mesh Th and on the polynomial approximation degree `. 2

Let us now show the existence and uniqueness of solutions to for-
mulation (4), provided that α is chosen sufficiently large.
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Mixed DG approximation of the Maxwell operator 9

PROPOSITION 2. For parameters α and γ in (5) with α > α0 and
γ > 0, the mixed DG method (4) possesses a unique solution.

Proof. Due to the linearity and finite-dimensionality of the problem,
it is enough to show that j = 0 implies uh = 0 and ph = 0. To this
end, we select v = uh in (4a) and q = ph in (4b), and subtract (4b)
from (4a). From Proposition 1, it follows that ∇h × uh = 0 on each
element in Th, and that [[uh]]T = 0 and [[ph]]N = 0 on each face in Fh.
Therefore, ph ∈ Qh ∩H1

0 (Ω) and uh is a curl-free function belonging to
the Nédélec finite element space of the second type, with zero tangential
trace on Γ. This implies that uh = ∇ψh, for some ψh ∈ Qh ∩ H1

0 (Ω)
(see [14, Theorem 7] and [11, p. 209]). Then, equation (4b) implies that
uh is actually zero. Equation (4a) then becomes

∫
Ω εv ·∇ph dx = 0, for

any v ∈ Vh; thereby ∇ph = 0. Employing this result, together with
ph = 0 on Γ, we deduce that ph = 0. 2

From now on, we assume that α > α0.

3.3. A priori error bound

To state our a priori error bounds, we introduce the broken Sobolev
space Hs(Th) = {v ∈ L2(Ω) : v|K ∈ Hs(K), K ∈ Th}, and endow it
with the norm ‖v‖2

s,Th
=

∑
K∈Th

‖v‖2
s,K . The main result of this paper

is stated in the following theorem.1

THEOREM 1. Given that the analytical solution (u, p) of (1) possesses
the following Sobolev regularity:

εu ∈ Hs(Th)3, µ−1∇× u ∈ Hs(Th)3 and p ∈ Hs+1(Th), (6)

for an exponent s > 1/2. Then, the mixed DG approximation (uh, ph)
defined by (4), with α > α0 and γ > 0, satisfies the following a priori
error bound

|||(u − uh, p− ph)|||DG

≤ C hmin{s,`}
[
‖εu‖s,Th

+ ‖µ−1∇× u‖s,Th
+ ‖p‖s+1,Th

]
,

where C is a positive constant, depending on the bounds (2) on the co-
efficients µ and ε, the shape-regularity of the mesh, the interior penalty
parameters α and γ, and the polynomial degree `, but independent of
the mesh size h.

1 We would like to express our gratitude to one of the referees of this article who
pointed out that this result holds assuming only regularity of the analytical solution
elementwise, rather than over the entire computational domain.
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10 P. Houston, I. Perugia, and D. Schötzau

REMARK 2. We note that the above theorem also holds when Vh

is replaced by the discontinuous version of Nédélec’s first family of
finite elements, see [12, 13], and Qh = P `(Th). While this space is less
convenient in a discontinuous Galerkin setting as the elemental spaces
are not full polynomial spaces, an analogous (discontinuous) pairing
can also be constructed on hexahedral meshes. On the other hand, as
for their conforming counterparts, the finite element spaces (3) do not
have a natural extension to hexahedra.

The next three sections are devoted to the proof of Theorem 1. We
begin in Section 4 by establishing a crucial decomposition result for
the discontinuous spaces. In Section 5, we introduce an auxiliary mixed
formulation and discuss its stability properties. Finally, in Section 6,
the detailed proof of the error bound in Theorem 1 is given.

4. Decomposition of the discontinuous spaces

In this section, we present an orthogonal decomposition of the spaces
Vh andQh and state crucial norm-equivalence properties. These results
allow us to employ the stability properties of the underlying conforming
spaces.

To this end, we decompose Vh and Qh into

Vh = Vc
h ⊕V⊥

h , Qh = Qc
h ⊕Q⊥

h , (7)

respectively. Here, Vc
h = Vh ∩H0(curl; Ω) is the Nédélec finite element

space of second type, with zero tangential trace prescribed on Γ, and
V⊥

h is its V(h)–orthogonal complement in Vh. Similarly, Qc
h = Qh ∩

H1
0 (Ω) is the space of continuous polynomials of degree `+1, with zero

trace prescribed on Γ, and Q⊥
h is its Q(h)–orthogonal complement in

Qh. We observe that the expressions

‖v‖
V⊥

h
= ‖m− 1

2h−
1
2 [[v]]T ‖0,Fh

, ‖q‖Q⊥

h
= ‖e 1

2h−
1
2 [[p]]N‖0,Fh

define norms on V⊥
h and Q⊥

h , respectively.
The following norm-equivalence result will form the basis of our

analysis.

THEOREM 2. There exist constants C1 and C2, independent of the
mesh size h, such that

C1‖v‖V(h) ≤ ‖v‖
V⊥

h
≤ ‖v‖V(h), (8)

C2‖q‖Q(h) ≤ ‖q‖Q⊥

h
≤ ‖q‖Q(h), (9)

for any v ∈ V⊥
h and any q ∈ Q⊥

h , respectively.

houston-perugia-schotzau_20-01-04.tex; 28/01/2004; 10:31; p.12



Mixed DG approximation of the Maxwell operator 11

The equivalence property (9) was proved in [7]. Its proof relies on
the same approximation result that was used in [10, Theorem 2.2 and
Theorem 2.3] to derive a-posteriori error bounds for DG discretizations
of diffusion problems. The proof of (8) can be developed along the same
lines and will be carried out in the Appendix.

5. Stability properties of an auxiliary formulation

For the purposes of the analysis, it is convenient to rewrite the dis-
continuous Galerkin method (4) in a non-consistent form, based on the
introduction of lifting functions (see [2]). The stability properties of the
forms arising in this auxiliary formulation will then be discussed.

5.1. Auxiliary mixed formulation

To rewrite the formulation (4) in a non-consistent form, for v ∈ V(h),
we define the lifted element L(v) ∈ Vh by

∫

Ω
L(v) · w dx =

∫

Fh

[[v]]T · {{w}} ds ∀w ∈ Vh.

For q in Q(h), we define M(q) ∈ Vh by

∫

Ω
M(q) · w dx =

∫

Fh

{{w}} · [[q]]N ds ∀w ∈ Vh.

Additionally, we introduce the perturbed forms

ãh(u,v) =

∫

Ω
µ−1∇h × u · ∇h × v dx −

∫

Ω
L(u) · (µ−1∇h × v) dx

−
∫

Ω
L(v) · (µ−1∇h × u) dx +

∫

Fh

a [[u]]T · [[v]]T ds,

b̃h(v, p) = −
∫

Ω
εv · [∇hp−M(p)] dx.

Note that ah = ãh in Vh ×Vh and bh = b̃h in Vh ×Qh, although this
is no longer true in V(h) ×V(h) and in V(h) ×Q(h), respectively.

With this notation, we now consider the following auxiliary mixed
formulation: find (uh, ph) in Vh ×Qh such that

ãh(uh,v) + b̃h(v, ph) =
∫
Ω j · v dx, (10a)

b̃h(uh, q) − ch(ph, q) = 0 (10b)

for all (v, q) ∈ Vh ×Qh.
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12 P. Houston, I. Perugia, and D. Schötzau

5.2. Continuity and stability properties

We begin by recalling the following continuity properties from [7, Sec-
tion 5.1].

PROPOSITION 3. The following results hold.

(i) The forms ãh : V(h) × V(h) → R and b̃h : V(h) × Q(h) → R

are continuous with continuity constants independent of the mesh
size and the coefficients µ and ε.

(ii) The linear functional on the right-hand side of (10a) satisfies
∣∣∣∣
∫

Ω
j · v dx

∣∣∣∣ ≤ ε
− 1

2
∗ ‖j‖0,Ω‖v‖V(h),

for any v ∈ Vh.

Next, let us state some stability properties of the forms ãh and b̃h on
the conforming spaces Vc

h and Qc
h in the decompositions defined in (7).

To this end, we need to define the discrete kernel

Zh = {v ∈ Vh : bh(v, q) = 0 ∀q ∈ Qc
h}. (11)

LEMMA 1. The following properties hold:

(i) There exists a positive constant C, independent of the mesh size,
such that ãh(v,v) ≥ C‖v‖2

V(h), for any v ∈ Vc
h ∩ Zh.

(ii) The inf-sup condition

inf
q∈Qc

h
\{0}

sup
v∈Vc

h

b̃h(v, q)

‖v‖V(h)‖q‖Q(h)
≥ C > 0 (12)

holds, with a constant C independent of the mesh size and the
coefficients µ and ε.

Proof. (i) The ellipticity property follows from Proposition 1 and
the discrete Poincaré-Friedrichs inequality ‖v‖0,Ω ≤ C ‖∇ × v‖0,Ω for
all v ∈ Vc

h ∩ Zh, with a positive constant C independent of the mesh
size and the coefficients µ and ε. This inequality can be proved using
an analogous argument to the one presented in [6, Theorem 4.7], where
the case of Nédéléc elements of the first type is considered; see also
Monk [11, Corollary 4.8].

(ii) To prove the inf-sup condition in (12), we fix q ∈ Qc
h. Then, we

choose v = −∇q and observe that v ∈ Vc
h. Thus,

b̃h(v, q) =

∫

Ω
ε|∇q|2 dx = ‖q‖2

Q(h).

houston-perugia-schotzau_20-01-04.tex; 28/01/2004; 10:31; p.14



Mixed DG approximation of the Maxwell operator 13

On the other hand, since ∇× v = 0 and [[v]]T = 0,

‖v‖2
V(h) = ‖ε 1

2∇q‖2
0,Ω = ‖q‖2

Q(h).

Thereby, (12) holds with the inf-sup constant C = 1. 2

REMARK 3. Since Vc
h ⊂ Vh, the inf-sup condition (12) remains valid

when Vc
h is replaced by Vh, with the same inf-sup constant.

6. Error estimates

In this section, we prove the error bound stated in Theorem 1. Our
analysis closely follows the outline of the classical error analysis for
conforming mixed methods (see, e.g., [3]), combined with ideas similar
to those in [4] that allow us to use the stability properties of the forms in
the conforming spaces Vc

h and Qc
h underlying Vh and Qh, respectively.

To this end, we use the decomposition results of Theorem 2 throughout
the proof.

6.1. Residuals

Recalling that (u, p) denotes the analytical solution of (1), we introduce
the residuals

R1(u, p;v) =
∫
Ω j · v dx − ãh(u,v) − b̃h(v, p), (13)

R2(u, p; q) ≡ R2(u; q) = b̃h(u, q), (14)

for any (v, q) ∈ Vh ×Qh.
Writing ΠVh

to denote the L2–projection onto Vh, we have the
following bounds on the residuals.

PROPOSITION 4. Assuming that the regularity assumptions stated
in (6) hold; then, for any δ > 0 there is a positive constant Cδ, inde-
pendent of the mesh size, such that

|R1(u, p;v)| ≤ δ−1‖v⊥‖2
V(h)

+Cδ

∑

K∈Th

hK‖µ−1∇× u −ΠVh
(µ−1∇× u)‖2

0,∂K ,

|R2(u; q)| ≤ δ−1‖q⊥‖2
Q(h) + Cδ

∑

K∈Th

hK‖εu −ΠVh
(εu)‖2

0,∂K ,

for any v ∈ Vh and q ∈ Qh.
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14 P. Houston, I. Perugia, and D. Schötzau

Proof. Assuming that the smoothness assumptions (6) hold, for v =
vc ⊕ v⊥ ∈ Vh and q = qc ⊕ q⊥ ∈ Qh, we have that

|R1(u, p;v)| =

∣∣∣∣
∫

Fh

{{µ−1∇× u −ΠVh
(µ−1∇× u)}} · [[v⊥]]T ds

∣∣∣∣ ,

|R2(u; q)| =

∣∣∣∣
∫

Fh

{{εu −ΠVh
(εu)}} · [[q⊥]]N ds

∣∣∣∣ ;

see [7, Proposition 6.2] for details. Employing the Cauchy-Schwarz in-
equality, the bounds in (2), the shape-regularity of the mesh, and the
norm-equivalence (8) in Theorem 2, we get

|R1(u, p;v)|

≤ C


 ∑

K∈Th

hK‖µ−1∇× u−ΠVh
(µ−1∇× u)‖2

0,∂K




1
2

×‖m− 1
2 h−

1
2 [[v⊥]]T ‖0,Fh

≤ C


 ∑

K∈Th

hK‖µ−1∇× u−ΠVh
(µ−1∇× u)‖2

0,∂K




1
2

‖v⊥‖V(h).

The arithmetic-geometric mean inequality completes the proof for R1;
the bound for R2 is obtained analogously. 2

6.2. A bound for ‖u⊥
h ‖V(h) and ‖p⊥h ‖Q(h)

We prove the following bound.

PROPOSITION 5. Assume that the regularity assumptions stated in
(6) hold. We let (uh, ph) be the solution of (4), with α > α0 and γ > 0,
and consider the decompositions uh = uc

h + u⊥
h and ph = pc

h + p⊥h ,
according to (7). Then for any δ > 0, there exists a positive constant Cδ,
independent of the mesh size, such that

‖u⊥
h ‖2

V(h) + ‖p⊥h ‖2
Q(h) ≤ δ−1‖u − uh‖2

V(h)

+Cδ

[
‖u − v‖2

V(h) + ‖p− q‖2
Q(h) + E(u)2

]
,

for any v ∈ Vc
h and any q ∈ Qc

h. Here,

E(u)2 =
∑

K∈Th

hK

[
‖µ−1∇× u−ΠVh

(µ−1∇× u)‖2
0,∂K

+‖εu −ΠVh
(εu)‖2

0,∂K

]
. (15)
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Mixed DG approximation of the Maxwell operator 15

Proof. We proceed in the following two steps.
Step 1. Let w ∈ Vc

h ∩Zh and q ∈ Qc
h, where Zh is the kernel defined

in (11). Using the norm-equivalence (8) of Theorem 2, the continuity
of the tangential component of uc

h and w at inter-element boundaries,
and the ellipticity of the form ãh in the seminorm | · |V(h) for discrete
functions (see Proposition 1), we deduce that

C1 ‖u⊥
h ‖2

V(h) ≤ ‖u⊥
h ‖2

V⊥

h

≤ |uh −w|2
V(h) ≤ C ãh(uh −w,uh −w).

Thereby, using the norm equivalence (9), we get

‖u⊥
h ‖2

V(h) + ‖p⊥h ‖2
Q(h) ≤ C

[
ãh(uh −w,uh −w) + ch(p⊥h , p

⊥
h )

]

= C [ ãh(uh − u,uh −w) + ãh(u −w,uh −w)

+ch(p⊥h , p
⊥
h )

]
. (16)

Let us first deal with the term ãh(uh − u,uh − w). To this end, from
equation (10a) and the definition of the residual R1 in (13), we have

ãh(uh − u,uh −w) = R1(u, p;uh −w) + b̃h(uh −w, p− ph)

= R1(u, p;uh −w) + b̃h(uh −w, p− pc
h)

−b̃h(uh −w, p⊥h ). (17)

Since uh−w ∈ Zh, we have that b̃h(uh−w, p−pc
h) = b̃h(uh−w, p−q), for

any q ∈ Qc
h. Employing equation (10b), the definition of the residual R2

in (14), and the fact that the jumps in pc
h vanish, we obtain

−b̃h(uh −w, p⊥h ) = −b̃h(uh, p
⊥
h ) − b̃h(u−w, p⊥h ) + b̃h(u, p⊥h )

= −ch(p⊥h , p
⊥
h ) − b̃h(u −w, p⊥h ) + R2(u; p⊥h ).

Combining these identities with (16) gives

‖u⊥
h ‖2

V(h) + ‖p⊥h ‖2
Q(h) ≤ C

[
|ãh(u−w,uh −w)| + |b̃h(u −w, p⊥h )|

+|̃bh(uh −w, p− q)| + |R1(u, p;uh −w)| + |R2(u; p⊥h )|
]
.

We can choose the parameter δ in the residual estimates derived in
Proposition 4 in such a way that

‖u⊥
h ‖2

V(h) + ‖p⊥h ‖2
Q(h) ≤ C

[
|ãh(u−w,uh −w)| + |b̃h(u −w, p⊥h )|

+|̃bh(uh −w, p− q)| + E(u)2
]
+

1

2

[
‖u⊥

h ‖2
V(h) + ‖p⊥h ‖2

Q(h)

]
.

Therefore,

‖u⊥
h ‖2

V(h) + ‖p⊥h ‖2
Q(h) ≤ C

[
|ãh(u −w,uh −w)| + |b̃h(u −w, p⊥h )|

+|̃bh(uh −w, p− q)| + E(u)2
]
.
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16 P. Houston, I. Perugia, and D. Schötzau

Employing the continuity of the forms ãh and b̃h stated in Proposition 3,
the triangle inequality ‖uh−w‖V(h) ≤ ‖u−uh‖V(h) +‖u−w‖V(h), and
the arithmetic-geometric mean inequality, we deduce that, for δ > 0,

‖u⊥
h ‖2

V(h) + ‖p⊥h ‖2
Q(h)

≤ C
[
‖u−w‖V(h)‖uh −w‖V(h) + ‖u −w‖V(h)‖p⊥h ‖Q(h)

+‖uh −w‖V(h)‖p− q‖Q(h) + E(u)2
]

≤ C
[
‖u−w‖V(h)‖u − uh‖V(h) + ‖u −w‖2

V(h)

+‖u−w‖V(h)‖p⊥h ‖Q(h) + ‖u− uh‖V(h)‖p− q‖Q(h)

+‖u−w‖V(h)‖p− q‖Q(h) + E(u)2
]

≤ 1

2δ
‖u − uh‖2

V(h) + Cδ‖u −w‖2
V(h) + Cδ‖p− q‖2

Q(h)

+
1

2
‖p⊥h ‖2

Q(h) + C E(u)2.

Subtracting 1
2‖p⊥h ‖2

Q(h) from both sides and multiplying by a factor 2,

we conclude that

‖u⊥
h ‖2

V(h) + ‖p⊥h ‖2
Q(h)

≤ δ−1‖u − uh‖2
V(h) +Cδ

[
‖u−w‖2

V(h) + ‖p− q‖2
Q(h) + E(u)2

]
,(18)

for any w ∈ Vc
h ∩Zh, and any q ∈ Qc

h.
Step 2. We now show that w ∈ Vc

h ∩ Zh can be replaced by any
v ∈ Vc

h in (18). To this end, we let v ∈ Vc
h and choose r ∈ Vc

h such
that

b̃h(r, s) = b̃h(u− v, s) ∀s ∈ Qc
h,

‖r‖V(h) ≤ C ‖u − v‖V(h).

The inf-sup condition for Vc
h × Qc

h in Lemma 1 guarantees that this
problem admits at least one solution r ∈ Vc

h. Then, we can set w =

r + v; note, by construction, that w ∈ Vc
h ∩ Zh, since b̃h(u, s) = 0 for

any s ∈ Qc
h. Inserting w in (18) gives

‖u⊥
h ‖2

V(h) + ‖p⊥h ‖2
Q(h)

≤ δ−1‖u − uh‖2
V(h) + Cδ

[
‖u − v‖2

V(h) + ‖r‖2
V(h)

+‖p− q‖2
Q(h) + E(u)2

]

≤ δ−1‖u − uh‖2
V(h) + Cδ

[
‖u − v‖2

V(h) + ‖p− q‖2
Q(h) + E(u)2

]
,
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Mixed DG approximation of the Maxwell operator 17

which completes the proof. 2

6.3. Error in u

We are now ready to prove the following bound for the error in the
approximation to the vector-valued variable u.

PROPOSITION 6. Suppose that the analytical solution (u, p) of (1)
satisfies (6). Then, the DG approximation (uh, ph) defined in (4), with
α > α0 and γ > 0, satisfies the error bound

‖u − uh‖2
V(h) ≤ C

[
‖u − v‖2

V(h) + ‖p− q‖2
Q(h) + E(u)2

]
,

for any v ∈ Vc
h and q ∈ Qc

h, where C is a positive constant, independent
of the the mesh size h, and E(u) is the expression defined in (15).

Proof. We proceed in the following two steps.
Step 1: We decompose the discrete solution uh as uh = uc

h + u⊥
h ,

according to (7); then, using the triangle inequality, we have

‖u − uh‖2
V(h) ≤ C

[
‖u − uc

h‖2
V(h) + ‖u⊥

h ‖2
V(h)

]
. (19)

We start by estimating the first term on the right-hand side of (19).

Since b̃h(uh, s) = 0, for any s ∈ Qc
h, we have that b̃h(uc

h, s) =

−b̃h(u⊥
h , s), for any s ∈ Qc

h. Let w ∈ Vc
h be such that

b̃h(w, s) = −b̃h(u⊥
h , s) ∀s ∈ Qc

h. (20)

The inf-sup condition for Vc
h ×Qc

h in Lemma 1 guarantees that prob-
lem (20) admits at least one solution w ∈ Vc

h. It follows that uc
h − w

belongs to Vc
h∩Zh. Then, owing to the coercivity property in Lemma 1

and the identity uh = uc
h + u⊥

h , we have

C ‖uc
h −w‖2

V(h) ≤ ãh(uc
h −w,uc

h −w)

= ãh(uc
h −w,u −w) + ãh(uc

h −w,uh − u)

−ãh(uc
h −w,u⊥

h ).

Using equation (10a) and the definition of the residual R1 in (13), we
obtain

ãh(uc
h −w,uh − u) = R1(u, p;u

c
h −w) + b̃h(uc

h −w, p− pc
h)

−b̃h(uc
h −w, p⊥h ),
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18 P. Houston, I. Perugia, and D. Schötzau

cf. (17). Since uc
h −w is in H0(curl; Ω), we have R1(u, p;u

c
h −w) = 0;

see the proof of Proposition 4. Recalling that uc
h − w ∈ Vc

h ∩ Zh, we
have

ãh(uc
h −w,uh − u) = b̃h(uc

h −w, p− q) − b̃h(uc
h −w, p⊥h ),

for any q ∈ Qc
h. Consequently, using the results stated in Proposition 3,

we get

‖uc
h−w‖V(h)≤C

[
‖u −w‖V(h) + ‖p− q‖Q(h) + ‖u⊥

h ‖V(h) + ‖p⊥h ‖Q(h)

]
,

for any q ∈ Qc
h. Employing the triangle inequality

‖u − uc
h‖V(h) ≤ ‖u−w‖V(h) + ‖uc

h −w‖V(h),

together with the above inequality gives

‖u−uc
h‖2

V(h) ≤ C
[
‖u −w‖2

V(h) + ‖p− q‖2
Q(h) + ‖u⊥

h ‖2
V(h) + ‖p⊥h ‖2

Q(h)

]
.

Then, inserting this result into (19), we obtain

‖u−uh‖2
V(h) ≤ C

[
‖u −w‖2

V(h) + ‖p− q‖2
Q(h) + ‖u⊥

h ‖2
V(h) + ‖p⊥h ‖2

Q(h)

]
,

(21)
for any w ∈ Vc

h that satisfies (20), and any q ∈ Qc
h.

Step 2: Now, let v ∈ V c
h be arbitrary and r ∈ Vc

h be such that

b̃h(r, s) = b̃h(u− v − u⊥
h , s) ∀s ∈ Qc

h,

‖r‖2
V(h) ≤ C

(
‖u − v‖2

V(h) + ‖u⊥
h ‖2

V(h)

)
.

The inf-sup condition for Vc
h × Qc

h in Lemma 1 guarantees that this
problem admits at least one solution r ∈ Vc

h. Defining w = r + v,

we have that w ∈ Vc
h; moreover w satisfies (20). Since b̃h(w, s) =

b̃h(r + v, s) = b̃h(u−u⊥
h , s) = −b̃h(u⊥

h , s), because b̃h(u, s) = 0 for any
s ∈ Qc

h. Therefore, w = r + v can be inserted in (21) and we get

‖u − uh‖2
V(h)

≤ C
[
‖u− v‖2

V(h) + ‖r‖2
V(h) + ‖p− q‖2

Q(h) + ‖u⊥
h ‖2

V⊥

h

+ ‖p⊥h ‖2
Q(h)

]

≤ C
[
‖u− v‖2

V(h) + ‖p− q‖2
Q(h) + ‖u⊥

h ‖2
V(h) + ‖p⊥h ‖2

Q(h)

]
,

for any q ∈ Qc
h. Employing the result of Proposition 5, with δ = 2C,

we obtain

‖u−uh‖2
V(h) ≤ C

[
‖u − v‖2

V(h) + ‖p− q‖2
Q(h) + E(u)2

]
+

1

2
‖u−uh‖2

V(h).
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Mixed DG approximation of the Maxwell operator 19

Subtracting 1
2‖u − uh‖2

V(h) from both sides of the above equation

completes the proof of Proposition 6. 2

6.4. Error in p

The proof of the error bound for the approximation to p is now a
straightforward extension of the analogous one for conforming mixed
methods.

PROPOSITION 7. Suppose that the analytical solution (u, p) of (1)
satisfies (6). Then, the DG approximation (uh, ph) defined in (4), with
α > α0 and γ > 0, satisfies the error bound

‖p− ph‖2
Q(h) ≤ C

[
‖u − v‖2

V(h) + ‖p− q‖2
Q(h) + E(u)2

]
,

for any v ∈ Vc
h and q ∈ Qc

h, where C is a positive constant, independent
of the the mesh size h, and E(u) is the expression defined in (15).

Proof. Letting q ∈ Qc
h, we note that

‖p− ph‖2
Q(h) ≤ C

[
‖p− q‖2

Q(h) + ‖q − pc
h‖2

Q(h) + ‖p⊥h ‖2
Q(h)

]
. (22)

First, we estimate ‖q−pc
h‖Q(h); from the inf-sup condition in Lemma 1,

we have

C‖q − pc
h‖Q(h) ≤ sup

v∈Vc
h

b̃h(v, q − pc
h)

‖v‖V(h)

= sup
v∈Vc

h

b̃h(v, q − p) + b̃h(v, p− ph) + b̃(v, p⊥h )

‖v‖V(h)
.

From (10a), we have b̃h(v, p− ph) = −R1(u, p;v)− ãh(u−uh,v), with

the residual R1 defined in (13); thereby, b̃h(v, p−ph) = −ãh(u−uh,v),
since R1(u, p;v) = 0 for all v ∈ Vc

h. Exploiting the continuity of the

forms ãh and b̃h, cf. Proposition 3, we obtain

‖q − pc
h‖2

Q(h) ≤ C
[
‖u − uh‖2

V(h) + ‖p− q‖2
Q(h) + ‖p⊥h ‖2

Q(h)

]
.

Substituting the above expression into inequality (22) and using Propo-
sition 5 yields

‖p−ph‖2
Q(h) ≤ C

[
‖u − uh‖2

V(h) + ‖u − v‖2
V(h) + ‖p− q‖2

Q(h) + E(u)2
]
.

Employing Proposition 6 completes the proof. 2
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6.5. Proof of Theorem 1

To complete the proof of Theorem 1, we first note that standard ap-
proximation properties for Vc

h and Qc
h show that

inf
v∈Vc

h

‖u − v‖V(h) + inf
q∈Qc

h

‖p− q‖V(h)

≤ C hmin{s,`}
[
‖εu‖s,Th

+ ‖µ−1∇× u‖s,Th
+ ‖p‖s+1,Th

]
;

see, e.g., [11, Theorems 8.15 and 5.41, and Remark 5.42] for details.
Here, we also used the bounds in (2) on the coefficients ε and µ. Finally,
the approximation properties for the L2–projection yield

E(u) ≤ C hmin{s,`}
[
‖εu‖s,Th

+ ‖µ−1∇× u‖s,Th

]
.

Substituting these inequalities into the error bounds derived in Propo-
sitions 6 and 7 completes the proof of Theorem 1.

7. Numerical results

In this section we present a series of numerical experiments to high-
light the practical performance of the mixed DG method introduced
in this article for the numerical approximation of the model prob-
lem (1). For simplicity, we restrict ourselves to two-dimensional model
problems with constant coefficients µ ≡ ε ≡ 1. Additionally, we note
that throughout this section we select the constants appearing in the
stabilization parameters defined in (5) as follows:

α = 10 `2 and γ = 1.

We remark that the dependence of α on the polynomial degree ` has
been formally chosen in order to guarantee the ellipticity property of
the form ah in Proposition 1 independently of `, cf. [8], for example.

7.1. Example 1

In this first example we select Ω ⊂ R2 to be the L–shaped domain with
vertices (1, 0), (1, 1), (−1, 1), (−1,−1), (0,−1) and (0, 0). Furthermore,
we choose j (and suitable non-homogeneous boundary conditions for u)
so that the analytical solution to the two-dimensional analogue of (1)
with µ ≡ ε ≡ 1 is given by



u1

u2

p


 =




− exp(x)(y cos(y) + sin(y))
exp(x)y sin(y)

sin(π(x− 1)/2) sin(π(y − 1)/2)


 ;
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Figure 1. Example 1. Convergence of ‖u − uh‖V(h).
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Figure 2. Example 1. Convergence of ‖p − ph‖Q(h).

cf. [7]. Here, we investigate the asymptotic convergence of the mixed
DG method (4) on a sequence of successively finer uniform and quasi-
uniform unstructured triangular meshes for ` = 1, 2, 3, 4. In each case
the uniform meshes are constructed from a uniform square mesh by
connecting the north east vertex with the south west one within each
mesh square.

In Figures 1 and 2 we plot the norms ‖ · ‖V(h) and ‖ · ‖Q(h) of the
errors u−uh and p−ph, respectively, with respect to the square root of
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Figure 3. Example 1. Convergence of ‖u − uh‖0,Ω.

the number of degrees of freedom in the finite element space Vh ×Qh.
Here, we observe that ‖u − uh‖V(h) converges to zero, for each fixed

`, at the optimal rate O(h`), as the mesh is refined, in accordance
with Theorem 1. On the other hand, for this mixed-order method,
‖p−ph‖Q(h) converges at the rate O(h`+1), for each `, as h tends to zero;
this rate is indeed optimal, though this is not reflected by Theorem 1.
Additionally, from Figures 1 and 2 we observe that the accuracy of the
proposed DG method is comparable on each of the two types of meshes
employed here.

Secondly, we highlight the optimality of the proposed mixed method
when the error in the computed vector field uh is measured in terms
of the L2(Ω)-norm. We recall that the equal–order mixed DG method
introduced and analyzed in [7] is suboptimal in this case by a full
order of h; indeed, it was demonstrated numerically in [7] that when
conforming meshes are employed, the L2(Ω)-norm of the error behaves
like O(h`), for each `, as h tends to zero. On the other hand, Fig-
ure 3 demonstrates that the mixed-order method introduced in this
article yields an optimal convergence rate for the above quantity as
the mesh is refined. Analogous behavior is also observed when the
L2(Ω)–norm of the error in the approximation to the (elementwise)
divergence of u is computed. Indeed, from Figure 4, we observe that
‖h∇h ·(u−uh)‖0,Ω = (

∑
K∈Th

h2
K‖∇·(u−uh)‖2

0,K)1/2 converges to zero

at the optimal rate O(h`+1) as h tends to zero, when both uniform and
quasi-uniform triangular meshes are employed. We should point out
that the DG method proposed in this article leads to an increase in
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Figure 4. Example 1. Convergence of ‖h∇h · (u − uh)‖0,Ω.

the number of degrees of freedom employed for the numerical approx-
imation of the variable p in comparison to the equal–order stabilized
method introduced in [7]. However, this increase in complexity is rela-
tively small, since p is only a scalar variable; moreover, given that the
resulting mixed–order method yields optimal convergence rates for the
approximation to the vector variable u, when the error is measured in
the L2(Ω)-norm, this increase seems more than justified.

Finally, we remark that analogous results also hold on quadrilateral
meshes when the discontinuous version of the first family of Nédélec’s
elements, cf. [12], are employed. For brevity, these numerics have been
omitted; we refer, instead, to the recent article [9], where computa-
tional comparisons between triangular and square meshes have been
performed.

7.2. Example 2

In this second example, we investigate the performance of the mixed
DG method (4) for a problem in which the precise regularity of the
analytical solution u is known. To this end, we again let Ω be the L-
shaped domain employed in Example 1 above; here, we set j = 0 and
select the boundary condition g so that the analytical solution u to the
two-dimensional analogue of (1) with µ ≡ ε ≡ 1 is given, in terms of
the polar coordinates (r, ϑ), by

u(x, y) = ∇S(r, ϑ), where S(r, ϑ) = r2n/3 sin(2nϑ/3), (23)
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Table I. Example 2. Convergence of |||(eu, ep)|||DG on uniform triangular meshes
with n = 1.

` = 1 ` = 2 ` = 3

Elements |||(eu, ep)|||DG k |||(eu, ep)|||DG k |||(eu, ep)|||DG k

24 2.677 - 3.704 - 4.348 -

96 2.439 0.13 2.907 0.35 3.254 0.42

384 1.799 0.44 2.002 0.54 2.196 0.57

1536 1.196 0.59 1.300 0.62 1.417 0.63

6144 0.765 0.65 0.826 0.65 0.8989 0.66

Table II. Example 2. Convergence of |||(eu, ep)|||DG on uniform triangular meshes
with n = 2.

` = 1 ` = 2 ` = 3

Elements |||(eu, ep)|||DG k |||(eu, ep)|||DG k |||(eu, ep)|||DG k

24 5.751e-1 - 3.730e-1 - 2.841e-1 -

96 2.583e-1 1.15 1.534e-1 1.28 1.149e-1 1.31

384 1.062e-1 1.28 6.146e-2 1.32 4.583e-2 1.33

1536 4.257e-2 1.32 2.445e-2 1.33 1.821e-2 1.33

6144 1.694e-2 1.33 9.708e-3 1.33 7.228e-3 1.33

and n ≥ 1 is a parameter; in this case p ≡ 0. The analytical solution
given by (23) contains a singularity at the re-entrant corner located at
the origin of Ω; here, we have u ∈ H2n/3−ε(Ω)2, ε > 0.

In this example, we confine ourselves to uniform (structured) tri-
angular meshes; analogous results also hold on unstructured meshes
consisting of triangles, but for the sake of brevity, these results have
been omitted. Before we proceed, let us first introduce some notation:
we write eu to denote the error u − uh in the vector variable and ep

to denote the error p − ph in the scalar field. In Tables I, II and III
we present a comparison of the DG-norm of the error in the approx-
imation to both u and p for n = 1, 2, 3, respectively, with the mesh
function h on a sequence of uniform triangular meshes for 1 ≤ ` ≤ 3.
In each case we show the number of elements in the computational
mesh, the corresponding DG-norm of the error and the computed rate
of convergence k. Here, we observe that (asymptotically) |||(eu, ep)|||DG
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Table III. Example 2. Convergence of |||(eu, ep)|||DG on uniform triangular meshes
with n = 3.

` = 1 ` = 2 ` = 3

Elements |||(eu, ep)|||DG k |||(eu, ep)|||DG k |||(eu, ep)|||DG k

24 1.532 - 8.253e-2 - 2.296e-2 -

96 4.119e-1 1.90 1.360e-2 2.60 3.700e-3 2.63

384 1.012e-1 2.03 2.183e-3 2.64 5.862e-4 2.66

1536 2.486e-2 2.03 3.470e-4 2.65 9.246e-5 2.66

6144 6.262e-3 1.99 5.494e-5 2.66 1.457e-5 2.67

converges to zero at the optimal rate O(hmin(2n/3−ε,`)), for each fixed
n, as h tends to zero, as predicted by Theorem 1. One exception to this
is when n = 2 and ` = 1, cf. Table II, where the error actually tends to
zero at the superior rate of O(h4/3) as h tends to zero.

8. Conclusions

In this paper we have studied a new mixed discontinuous Galerkin
finite element method for the discretization of the Maxwell operator on
simplicial meshes. In contrast to the stabilized method introduced and
analyzed in [7], the proposed scheme is based on employing mixed–
order finite element spaces for the approximation of the unknowns;
this choice of spaces eliminates the need to penalize the normal jumps
in the approximation to the vector unknown u. Our error analysis
and numerical results show that the proposed method is optimally
convergent in the energy norm for both smooth as well as singular
solutions. Moreover, in contrast to the equal–order method proposed
in [7], numerical experiments presented in this article have indicated
that this new mixed–order scheme is also optimally convergent when
the error is measured in terms of the L2(Ω)-norm.

Appendix

To prove the norm-equivalence (8) in Theorem 2, we proceed in several
steps. The key ingredient is the approximation result in Step 5; for
scalar diffusion problems an analogous approximation result has been
shown in [10, Theorem 2.2].
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Step 1 (Preliminaries). We begin by introducing some definitions.
Recall that each element K ∈ Th is the image of the reference element
K̂ under an affine mapping FK ; that is, K = FK(K̂) for all K ∈ Th,
where FK(x̂) = BKx̂ + bK and BK ∈ R3×3, bK ∈ R3. Without loss of
generality, we assume that detBK > 0. We define

D`(K) = {q : q ◦ FK =
1

detBK
BKq̂, q̂ ∈ P`−1(K̂)3 ⊕ P̃`−1(K̂) x̂ },

where P̃`−1(K̂) denotes the space of homogeneous polynomials of total

degree exactly `− 1 in x̂ = (x̂1, x̂2, x̂3) on K̂. A polynomial q ∈ D`(K)
can be represented as q(x) = r(x) + s̃(x)x, with r ∈ P`−1(K)3 and

s̃ ∈ P̃`−1(K).
Next, we assign to each face f ∈ Fh a unit normal nf . Then there is

a unique element K ∈ Th such that f ⊂ ∂K and f is the image of the
corresponding reference face f̂ on K̂ under the elemental mapping FK ,
and such that nf = B−T

K n̂
f̂
/|B−T

K n̂
f̂
|, where n̂

f̂
is the outward unit

normal to f̂ ; cf. [11, Equation (5.21)]. We set

D`(f) = {q|f : q ◦ FK = BK q̂, q ∈ D`(K̂), q̂ · n̂
f̂

= 0 }.

In local coordinates x on the face f , a function q|f ∈ D`(f) is given

by q|f (x) = r(x) + s̃(x)x, where r ∈ P`−1(f)2 and s̃ ∈ P̃`−1(f). Notice
that q|f is tangential to f .

Finally, we assign to each edge e a unit vector te in the direction of
e, and denote by P`(e) the polynomials of degree ` on the edge e.

Step 2 (Moments for Nédélec’s elements of the second type). We
introduce a basis of P`(K)3 that is based on the moments that define
Nédélec’s second family of elements introduced in [14]. Following [11],

we use the following moments that are identical on K and K̂, up to
sign changes, under the transformation v ◦ FK = B−T

K v̂ (this can be
easily seen as in [11, Lemma 5.34 and Section 8]).

For an edge e, let {qi
e}Ne

i=1 denote a basis of P`(e). Similarly, let

{qi
f}

Nf

i=1 be a basis of D`−1(f) for a face f , and {qi
K}Nb

i=1 a basis of

D`−2(K) for element K. Fix K ∈ Th and let v ∈ P`(K)3. We introduce
the following moments:

M e
K(v) =

{∫

e
(v · te)q

i
e ds : i = 1, . . . , Ne

}
, for any edge e of K,

Mf
K(v) =

{
1

area(f)

∫

f
v · qi

f ds : i = 1, . . . , Nf

}
, for any face f of K,

M b
K(v) =

{∫

K
v · qi

K dx : i = 1, . . . , Nb

}
.
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It is well-known that the above moments uniquely define the polyno-
mial v ∈ P`(K)3; see [14, 11]. For a face f of K, the tangential trace

nf × v is uniquely determined by the moments M f
K and the moments

{M e
K}e∈E(f), where E(f) is the set of the edges of f ; see [14, Section 3.1]

or [11, Lemma 8.11]. Hence, any v ∈ P`(K)3 can be written in the form

v =
∑

e∈E(K)

Ne∑

i=1

vi
K,eϕ

i
K,e +

∑

f∈F(K)

Nf∑

i=1

vi
K,fϕ

i
K,f +

Nb∑

i=1

vi
K,bϕ

i
K,b. (24)

Here, we use E(K) and F(K) to denote the sets of edges and faces of K,
respectively. The functions {ϕi

K,e}, {ϕi
K,f}, and {ϕi

K,b} are Lagrange

basis functions on P`(K)3 with respect to the moments given above.
Step 3 (Bound of the elemental H(curl)–norm). Let v ∈ P`(K)3 be

represented as in (24). We prove the following elemental bound on the
H(curl)–norm in terms of the moments in Step 2: there exists a positive
constant C, independent of the mesh size, such that

‖v‖2
0,K + ‖∇ × v‖2

0,K

≤ Ch−1
K


 ∑

e∈E(K)

Ne∑

i=1

(vi
K,e)

2 +
∑

f∈F(K)

Nf∑

i=1

(vi
K,f )2 +

Nb∑

i=1

(vi
K,b)

2


 .(25)

On the reference element, this follows from the representation (24) and
the Cauchy-Schwarz inequality. On a general element K, we note that
since the transformation v ◦ FK = B−T

K v̂ preserves the moments in
Step 2, and that

‖v‖2
0,K ≤ ChK‖v̂‖2

0,K , ‖∇ × v‖2
0,K ≤ Ch−1

K ‖∇̂ × v̂‖2
0,K ,

with a constant independent of the mesh size (see, e.g., [1, Lemma 5.2]),
the bound in (25) is obtained.

Step 4 (Bound of the tangential jumps). Let f be an interior face
shared by two elements K1 and K2. Denote by E(f) the edges of f . Let
v1 ∈ P`(K1)

3 and v2 ∈ P`(K2)
3. We prove that, using the representa-

tion in (24), there exist positive constants C1 and C2, independent of
the mesh size, such that

C1

∫

f
|nf × (v1−v2)|2ds ≤

Nf∑

i=1

(vi
K1,f−vi

K2,f )2+
∑

e∈E(f)

Ne∑

i=1

(vi
K1,e−vi

K2,e)
2

≤ C2

∫

f
|nf × (v1 − v2)|2 ds. (26)

To see this, we first consider the case where K1 and K2 are of reference
size. Since the moments on f and on the edges e ∈ E(f) uniquely de-
termine the jump nf ×(v1−v2), the claim follows from the equivalence
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of norms in finite dimensional spaces. For general elements K1 and K2,
the claim is obtained from a scaling argument taking into account that
the transformation v ◦ FK = B−T

K v̂ preserves tangential components
and the moments in Step 2, modulo sign changes.

The analogous bound holds on the boundary. Let K be the element
containing the boundary face f and v ∈ P`(K)3. Using the representa-
tion in (24), there exist positive constants C1 and C2, independent of
the mesh size, such that

C1

∫

f
|nf ×v|2 ds ≤

Nf∑

i=1

(vi
K,f)2 +

∑

e∈E(f)

Ne∑

i=1

(vi
K,e)

2 ≤ C2

∫

f
|nf ×v|2 ds.

Step 5 (Approximation property). For v ∈ Vh, we have

inf
v∈Vc

h

[
‖ε 1

2 (v − v)‖2
0,Ω + ‖µ− 1

2∇× (v − v)‖2
0,Ω

]
≤ C‖m−1h−1|[[v]]T |‖2

Fh
,

(27)
with a positive constant C, independent of the mesh size.

To prove (27), let {vi
K,e}, {vi

K,f} and {vi
K,b} denote the moments

of v, according to (24). Denote by N(e) the set of all elements that
share the edge e, and by N(f) the set of all elements that share the
face f . The cardinality of these sets are denoted by |N(e)| and |N(f)|,
respectively. Due to the shape-regularity of the meshes Th, we have
that 1 ≤ |N(e)| ≤ N , uniformly in the mesh size. Furthermore, 1 ≤
|N(f)| ≤ 2. Let v ∈ Vc

h be the unique function whose edge moments
are

vi
K,e =





1
|N(e)|

∑
K′∈N(e) v

i
K′,e if e ∈ EI

h ,

0 if e ∈ EB
h ,

i = 1, . . . , Ne, whose face moments are

vi
K,f =





1
|N(f)|

∑
K′∈N(f) v

i
K′,f if f ∈ FI

h ,

0 if f ∈ FB
h ,

i = 1, . . . , Nf , and whose remaining moments are

vi
K,b = vi

K,b, i = 1, . . . , Nb.

Obviously, the function v defined by the above moments belongs to
H0(curl; Ω).

From the bound in (25) in Step 3 and the assumption (2) on the
coefficients, we have

‖ε
1
2
K(v − v)‖2

0,K + ‖µ−
1
2

K ∇× (v − v)‖2
0,K
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≤ Cµ−1
K h−1

K


 ∑

e∈E(K)

Ne∑

i=1

(vi
K,e − vi

K,e)
2 +

∑

f∈F(K)

Nf∑

i=1

(vi
K,f − vi

K,f )2


 .

Let e first be an interior edge in E(K) and denote by F(e) the faces
sharing the edge e. For f ∈ F(e), we denote by Kf andK ′

f the elements

that share f . Employing the definition of ui
K,e, the Cauchy-Schwarz in-

equality, bound (26) from Step 4, and the shape-regularity assumption
gives

Ne∑

i=1

(vi
K,e − vi

K,e)
2 ≤ C

∑

K′∈N(e)

Ne∑

i=1

(vi
K,e − vi

K′,e)
2

≤ C
∑

f∈F(e)

Ne∑

i=1

(vi
Kf ,e − vi

K′

f
,e)

2

≤ C
∑

f∈F(e)

∫

f
|[[v]]T |2 ds.

An analogous result holds for a boundary edge e.
Similarly, for an interior face f ∈ F(K), we have

Nf∑

i=1

(vi
K,f − vi

K,f)2 ≤ C
∑

K′∈N(f)

Nf∑

i=1

(vi
K,f − vi

K′,f )2 ≤ C

∫

f
|[[v]]T |2 ds,

where we have again used the bound (26) from Step 4. An analogous
results holds for boundary faces.

Combining the above estimates yields

‖ε
1
2
K(v − v)‖2

0,K + ‖µ−
1
2

K ∇× (v − v)‖2
0,K

≤ Cµ−1
K h−1

K


 ∑

e∈E(K)

∑

f∈F(e)

∫

f
|[[v]]T |2 ds+

∑

f∈F(K)

∫

f
|[[v]]T |2 ds


.

Summing over all elements, taking into account the shape-regularity of
the mesh and the definition of m, proves (27).

Step 6 (Conclusion). We are now ready to prove (8). First, we note
that the inequality on the right-hand side of (8) is trivial. To prove
the left-hand side bound, we let Ph : Vh → V⊥

h denote the V(h)–
orthogonal projection. For v ∈ Vh, we have

‖Phv‖V(h) = inf
v∈Vc

h

‖v − v‖V(h) ≤ C‖Phv‖V⊥

h
.

Here, we have used properties of orthogonal projections, the approxi-
mation result (27) from Step 5, the fact that [[v]]T = [[Phv]]T , and the
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definition of the norm ‖ · ‖
V⊥

h
. Since Ph is surjective, this completes

the proof of (8) in Theorem 2.
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