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1 Introduction

Incompressible magneto-hydrodynamics (MHD) describes the flow of a vis-
cous, incompressible and electrically conducting fluid. The governing partial
differential equations are obtained by coupling the incompressible Navier-
Stokes equations with Maxwell’s equations and arise in several engineering
applications such as, for example, liquid metals in magnetic pumps or alu-
minum electrolysis, see, e.g., [20]. In the stationary case, the resulting multi-
field problem is of the form: find the velocity field u = u(x), the hydrodynamic
pressure p = p(x), and the magnetic field b = b(x) that satisfy

−R−1
e ∆u + (u · ∇)u + ∇p+ S b × curl b = f in Ω,

R−1
m S curl(curl b) − S curl(u × b) = g in Ω,

div u = 0 in Ω,

div b = 0 in Ω,

supplemented with suitable boundary conditions on ∂Ω. Here, Ω is a bounded
domain in R3, and the functions f and g are given source terms, with g being
solenoidal. Furthermore, Re is the hydrodynamic Reynolds number, Rm the
magnetic Reynolds number, and S the coupling number. These numbers are
defined by

Re =
%U0L

η
, Rm = µσU0L, S =

B2
0

µ%U2
0

,

with B0 and U0 denoting the characteristic values of the magnetic field and the
velocity, respectively. The parameter L is the characteristic length scale of the
problem. The constants % and η represent the density and the viscosity of the
fluid, and µ and σ are the magnetic permeability and the electric conductivity,
respectively. In industrial applications, one typically has Re ≈ 102 − 105,
Rm ≈ 10−1 and S ≈ 1.

Over the last few years, several finite element methods (FEM) to numerically
solve the incompressible MHD equations and linearizations thereof have been
proposed that are based on nodal (i.e., H1(Ω)-conforming) finite elements for
the magnetic field b, combined with standard discretizations of the hydrody-
namic unknowns u and p. We mention here [1,13,16–18] and the references
cited therein. However, it has been known for some time that in non–convex
polyhedra of engineering practice the magnetic field components may have
regularity below H1(Ω) and that nodal FEM discretizations of the magnetic
operator, albeit stable, can converge quasi-optimally to a magnetic field that
misses certain singular solution components induced by reentrant vertices or
edges (for more details, see, e.g., [7] and the references cited therein). Con-
sequently, in non–convex domains, setting the magnetic components of the
incompressible MHD equations in H1(Ω) leads to a well-posed problem where
the magnetic field lacks certain singular (but physical) solution components.
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A possible way to overcome these difficulties was recently proposed in [24,25]
by the use of Nédélec’s elements for the magnetic field b and by the introduc-
tion of an additional Lagrange multiplier related to the constraint div b = 0.

In this paper, we propose a new mixed finite element approximation for in-
compressible MHD problems. Our method is also based on nodal elements for
the magnetic field b, and employs standard inf-sup stable elements for the un-
knowns u and p. However, as opposed to the approaches mentioned above, we
modify the magnetic bilinear form using the weighted regularization technique
recently developed by Costabel and Dauge in [7]. This allows us to account
for the possible low regularity of the magnetic field in non-convex domains.
We first discuss the well-posedness of this approach and show the existence
and uniqueness of weak solutions for small data. We then carry out an er-
ror analysis for the proposed finite element method and show that it leads to
quasi-optimal error bounds in the mesh-size. Finally, we show the convergence
of the approximate solutions in non-convex domains where the components of
the magnetic fields may have regularity below H1(Ω). Our theoretical results
are confirmed in a series of numerical experiments for a linear Oseen-type
MHD problem in two dimensions.

The outline of the paper is as follows. In Section 2, we introduce a weighted
regularization approach for incompressible MHD problems and show the well-
posedness of the underlying weak formulation. Our finite element approxi-
mation is proposed and analyzed in Section 3. A series of numerical results
for a two-dimensional MHD problem is presented in Section 4. We end our
presentation with concluding remarks in Section 5.

Throughout the paper, we use the following notation: For a Lipschitz domain
D ⊂ Rn, n = 2, 3, we denote by Lp(D), 1 ≤ p ≤ ∞, the Lebesgue space of
p-integrable functions, endowed with the norm ‖ · ‖Lp(D). We write Lp

loc(Ω) to
denote the space of functions that are locally p-integrable. We further make
use of the subspace L2

0(D) of L2(D) defined by

L2
0(D) = {q ∈ L2(D) |

∫

D
q dx = 0}.

For s ≥ 0, we denote by Hs(D) the standard L2-based Sobolev space of order s
and write ‖ · ‖Hs(D) for its norm. The closure of D(Ω) (smooth functions with
compact support) in Hs(D) is denoted by Hs

0(D). We write H−s(D) for the
dual space of Hs

0(D), equipped with the dual norm ‖ · ‖H−s(D). For a generic
function space X(D) we write X(D)n, n = 2, 3, to denote vector fields whose
components belong to X(D). Without further specification, these spaces are
equipped with the usual product norms which we simply denote in the same
way as the norms in X(D).
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2 Weighted Regularization of Incompressible MHD Problems

In this section, we introduce the governing equations of stationary incompress-
ible magneto-hydrodynamics, derive a weak formulation using the weighted
regularization technique of [7], and establish the existence and uniqueness of
weak solutions for small data.

2.1 Incompressible MHD Equations

Let Ω ⊂ R3 be a bounded Lipschitz polyhedron. We assume throughout that Ω
is simply-connected and that its boundary ∂Ω is connected. We consider sta-
tionary incompressible MHD problems of the following form: Given forcing
terms f and g in L2(Ω)3, find the velocity field u = (u1, u2, u3), the magnetic
field b = (b1, b2, b3) and the pressure p such that

−R−1
e ∆u + (u · ∇)u + ∇p + S b × curl b = f in Ω, (2.1)

R−1
m S curl(curl b) − S curl(u × b) = g in Ω, (2.2)

div u = 0 in Ω, (2.3)

div b = 0 in Ω, (2.4)

u = 0 on ∂Ω, (2.5)

n × b = 0 on ∂Ω. (2.6)

Here, n is the outward normal unit vector on ∂Ω. For simplicity, we have
imposed no-slip boundary conditions on the velocity field u and perfectly in-
sulating magnetic boundary conditions on b. We comment on inhomogeneous
boundary conditions in Remark 2.19 below.

By taking the divergence of equation (2.2), we see that the datum g has to be
solenoidal. Thus, we assume throughout that g ∈ H(div; Ω) and

div g = 0 in Ω,
∫

∂Ω
g · n ds = 0. (2.7)

Here, H(div; Ω) = {g ∈ L2(Ω)3 | div g ∈ L2(Ω)}, endowed with the norm

‖g‖2
div = ‖g‖2

L2(Ω) + ‖ div g‖2
L2(Ω).

Due to [14, Theorem I.3.4], there is a stream function Φ ∈ H1(Ω)3 such that
g = curlΦ.

Remark 2.1 We also consider the two-dimensional analogue of the MHD
problem (2.1)–(2.6). However, in two dimensions, the definition of the curl-
operators requires some care. For vector fields w = (w1, w2) and r = (r1, r2),
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we define the vector product w × r = w1r2 − w2r1 and the scalar-valued curl-
operator curlw = ∂x1

w2 − ∂x2
w1. Furthermore, for a scalar function c, we set

w × c = c(w2 , −w1 ). The vector-valued curl-operator is given by curl c =
( ∂x2

c , −∂x1
c ). The two-dimensional analogue of (2.1)–(2.6) then reads as

follows: Find the velocity field u = (u1, u2), the magnetic field b = (b1, b2) and
the pressure p such that

−R−1
e ∆u + (u · ∇)u + ∇p+ S b × curl b = f in Ω, (2.8)

R−1
m S curl(curlb) − S curl(u × b) = g in Ω, (2.9)

div u = 0 in Ω, (2.10)

div b = 0 in Ω, (2.11)

u = 0 on ∂Ω, (2.12)

n × b = b · t = 0 on ∂Ω. (2.13)

Here, we denote by t the counterclockwise oriented unit tangent vector on ∂Ω.

Note that, by identifying the two-dimensional vector field b = (b1, b2) with its
extension b̃ = (b1, b2, 0) in R3, it is easy to see that curl curlb = curl curl b̃.
Similarly, curl(u × b) = curl(ũ × b̃) and b × curlb = b̃ × curl b̃.

2.2 Weighted Spaces

To derive a weak formulation for (2.1)-(2.6) based on weighted regularization,
we need to introduce the weighted Sobolev spaces from [7].

To this end, we denote by C the set of all corners of the polyhedron Ω. For
c ∈ C, we set rc(x) = dist(x, c). At each corner c there is a ball B(c, Rc)
of radius Rc such that Vc = Ω ∩ B(c, Rc) is a cone which, in local spherical
coordinates, is of the form Vc = {(rc, θc) | 0 < rc < Rc, θc ∈ Gc}. Here, we
use the function rc as the radial coordinate while θc is the angular coordinate
with values in Gc, a spherical polygonal domain in the unit sphere S

2.

Furthermore, let E denote the set of all (open) edges of Ω. Then, for each
point x of an edge e, there is a ball B(x, Rx) of radius Rx such that Ve(x) =
Ω ∩B(x, Rx) is diffeomorphic to a wedge Γe(x)× R with Γe(x) being a plane
sector with opening angle ωe ∈ (0, 2π). This angle is intrinsic and is called the
opening angle of Ω at the edge e. We set re(y) = dist(y, e); re is equivalent to
the radial coordinate in Γe(x). Let c and c′ be the two endpoints of an edge e.
Then we define %e by re(x) = rc(x)rc′(x)%e(x). Note that %e is equivalent to
re/rc in Vc, to re/rc′ in Vc

′ , and to re outside of Vc ∪ Vc
′ .

Next, we introduce weight vectors γ which are collections of real numbers
{γc}c∈C ∪ {γe}e∈E . We set |γ| = max{{γc}c∈C, {γe}e∈E}. For two weight vec-
tors β and γ, we use the notation β ≤ γ to mean that βc ≤ γc and βe ≤ γe
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for all c ∈ C and e ∈ E . Similarly, β ± γ is the weight vector given by the
components βc±γc and βe±γe. For constants κ1 and κ2, we write κ1 ≤ γ ≤ κ2

to mean that κ1 ≤ γc ≤ κ2 and κ1 ≤ γe ≤ κ2 for all c ∈ C and e ∈ E .

With a weight vector γ we associate the weight function

ωγ(x) =

(
∏

c∈C

rγc

c

)(
∏

e∈E

rγe
e

)
. (2.14)

Moreover, we need the distance function d(x) = dist(x, C ∪E). For s ∈ N0, we
define the weighted space

V s
γ (Ω) = {v ∈ L2

loc(Ω) : ωγd
|α|−s∂αv ∈ L2(Ω), α ∈ N3

0 with |α| ≤ s}, (2.15)

equipped with the norm

‖ϕ‖2
s,γ =

∑

|α|≤s

‖ωγd
|α|−s∂αv‖2

L2(Ω).

A special role is played by the weight vector δdir given by

δdir
c

=
1

2
− λdir

c,1, c ∈ C, (2.16)

δdir
e = 1 − π

ωe
, e ∈ E . (2.17)

Here, following [7, Section 4.3], we have set

λdir
c,1 = −1

2
+

√

µdir
1 +

1

4
,

with µdir
1 > 0 denoting the smallest Dirichlet eigenvalue of the Laplace-

Beltrami operator in the cone Gc. Note that we always have λdir
c,1 > 0. Thus,

there holds

|δdir| < 1

2
− δdir

? , (2.18)

for a parameter δdir
? > 0. We remark that δdir

? approaches zero if one of the
opening angles of Ω approaches 2π.

The following result holds; see [7, Theorem 4.1].

Theorem 2.2 Let δdir be the weight vector in (2.16)–(2.17). Then for any
weight vector γ with

δdir < γ and 0 ≤ γ ≤ 1, (2.19)

the Laplacian with Dirichlet boundary conditions is an isomorphism from
V 2

γ (Ω) ∩H1
0 (Ω) onto V 0

γ (Ω).
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Remark 2.3 In a Lipschitz polygon Ω ⊂ R2 the definitions of ωγ and the
corresponding weighted spaces are easier as the edges do not need to be taken
into account. To define ωγ, let C be the set of all corners of Ω. The opening
angle at the corner c ∈ C is denoted by ωc, with ωc ∈ (0, 2π). Then, for a
weight vector γ = {γc}c∈C, the weight function ωγ is given by

ωγ(x) =
∏

c∈C

rc(x)γc, rc(x) = dist(x, c). (2.20)

Introducing the distance function d(x) by d(x) = dist(x, C), the spaces V s
γ (Ω)

are defined as in (2.15). In two dimensions, the critical weight vector δdir is

δdir
c

= 1 − π

ωc

, c ∈ C. (2.21)

The result of Theorem 2.2 then holds true, with δdir given in (2.21).

Next, we introduce the Sobolev spaces

H(curl; Ω) = {b ∈ L2(Ω)3 | curl b ∈ L2(Ω)3},

as well as

H0(curl; Ω) = {b ∈ H(curl; Ω) | n × b = 0 on ∂Ω},

and endow them with the norm

‖b‖2
curl = ‖b‖2

L2(Ω) + ‖ curl b‖2
L2(Ω).

For a weight vector γ, we further define the space

Xγ(Ω) = {b ∈ H0(curl; Ω) | div b ∈ V 0
γ (Ω)}, (2.22)

and equip it with the norm

‖b‖2
Xγ

= ‖ curl b‖2
L2(Ω) + ‖ div b‖2

0,γ + ‖b‖2
L2(Ω). (2.23)

Our finite element discretization will be based on the subspace Hγ(Ω) ⊂ Xγ(Ω)
given by

Hγ(Ω) = {b ∈ H1(Ω)3 | n × b = 0 on ∂Ω}, (2.24)

equipped with the norm ‖ · ‖Xγ .

The following result is crucial; see [7, Theorem 5.1].

Theorem 2.4 Let γ be a weight vector satisfying (2.19). Then the space
Hγ(Ω) is dense in Xγ(Ω).
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Remark 2.5 The same result holds true in polygons Ω ⊂ R2, with ωγ and δdir

defined as in (2.20) and (2.21), respectively.

Finally, let us show a Poincaré-type inequality that will be needed in our
analysis. We set

|b|2Xγ
= ‖ curl b‖2

L2(Ω) + ‖ div b‖2
0,γ,

and have the following result.

Proposition 2.6 Let γ be a weight vector satisfying (2.19). There holds:

(i) | · |Xγ is a norm on Xγ(Ω).

(ii) There exists a constant C > 0 only depending on Ω and γ such that

|b|Xγ ≥ C‖b‖Xγ ∀b ∈ Xγ(Ω).

Proof : To prove the first assertion, it is sufficient to show that |b|Xγ = 0 implies

b = 0. Indeed, if |b|Xγ = 0, we conclude that curl b = 0 and ωγ div b = 0.
Since ωγ > 0 in Ω, we also have div b = 0. By using that n × b = 0 on ∂Ω
and the Poincaré-type inequality from [12, Proposition 7.4], we obtain

‖b‖L2(Ω) ≤ C‖ curl b‖L2(Ω),

with a constant C > 0 only depending on Ω. Thus, b = 0, which shows the
first assertion.

For the second assertion let ϕ ∈ H1
0 (Ω) be the solution of ∆ϕ = div b in Ω,

ϕ = 0 on ∂Ω. Since div b ∈ V 0
γ (Ω) and the Laplacian is an isomorphism from

V 2
γ (Ω) ∩H1

0 (Ω) onto V 0
γ (Ω), see Theorem 2.2, we have ϕ ∈ V 2

γ (Ω) and

‖ϕ‖2,γ ≤ C‖ div b‖0,γ ≤ C|b|Xγ , (2.25)

for a constant C > 0 solely depending on Ω and γ.

By setting b0 = b − ∇ϕ, we have div b0 = 0 and curl b0 = curl b in Ω, as
well as n × b0 = 0 on ∂Ω. As before, the inequality in [12, Proposition 7.4]
yields

‖b0‖L2(Ω) ≤ C‖ curl b0‖L2(Ω) = C‖ curl b‖L2(Ω) ≤ C|b|Xγ , (2.26)

for a constant C > 0 only depending on Ω.

Referring to (2.25) and (2.26) gives

‖b‖L2(Ω) ≤ ‖b0‖L2(Ω) + ‖∇ϕ‖L2(Ω) ≤ ‖b0‖L2(Ω) + C‖ϕ‖2,γ ≤ C|b|Xγ , (2.27)
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for any b ∈ Xγ(Ω), with a constant C > 0 solely depending on Ω and γ.
Equation (2.27) implies the second assertion. 2

We point out that the results in Proposition 2.6 can be easily adapted to the
two-dimensional case.

2.3 Weak Formulation

For a weight vector 0 ≤ γ ≤ 1, we define the following weak form for the MHD
problem (2.1)–(2.6): Find u ∈ H1

0(Ω)3, b ∈ Xγ(Ω) and p ∈ L2
0(Ω) such that

as(u,v) + os(u;u,v) + bs(p,v) + c1(b;b,v)= (f ,v),

am(b, c) − c2(b;u, c)= (g, c), (2.28)

bs(q,u)= 0

for all v ∈ H1
0 (Ω)3, c ∈ Xγ(Ω) and q ∈ L2

0(Ω). Here, we use the following
forms:

as(u,v) = R−1
e

∫

Ω
∇u : ∇v dx, (2.29)

am(b, c) = R−1
m S

∫

Ω
curl b · curl c dx +D

∫

Ω
ωγ(x)2 div b div c dx,

(2.30)

bs(q,v) = −
∫

Ω
div v q dx, (2.31)

os(w;u,v) =
1

2

∫

Ω

[
(w · ∇)u

]
· v dx − 1

2

∫

Ω

[
(w · ∇)v

]
· u dx, (2.32)

c1(d;b,v) = S
∫

Ω
(d × curl b) · v dx, (2.33)

c2(d;u, c) = S
∫

Ω
(u × d) curl c dx. (2.34)

Here, we have incorporated the regularization term
∫
Ω ω2

γ div b div c dx into

the magnetic form am, following [7]. The parameter D is a positive constant
that can be used to dimensionalize the regularization term and to balance
it with the curl-curl term. Furthermore, we use the standard anti-symmetric
trilinear form os for the discretization of the non-linear convection term in
the Navier-Stokes operator; see, e.g., [27, Chapter II] for details. The trilinear
forms c1 and c2 arise due to the coupling terms in (2.1) and (2.2); we show in
Section 2.4 below that these forms are well-defined for suitable choices of γ.

The regularization term ensures that the magnetic field is solenoidal.
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Proposition 2.7 Assume (2.19) and let (u,b, p) be a solution of (2.28). Then
we have div b = 0.

Proof : Since div b ∈ V 0
γ (Ω), the problem ∆ϕ = div b in Ω, ϕ = 0 on ∂Ω, is

well-posed and, as before, has a unique weak solution ϕ ∈ V 2
γ (Ω)∩H1

0 (Ω). By

construction, ∇ϕ ∈ Xγ(Ω). Choosing c = ∇ϕ as a test function in the second
equation of formulation (2.28) yields

∫

Ω
g · c dx=D

∫

Ω
ωγ(x)2 div b div∇ϕdx

=D
∫

Ω
ωγ(x)2 div b div b dx = D‖ divb‖2

0,γ .

Here, we have used that curl c = 0. Furthermore, by integration by parts,

∫

Ω
g · c dx =

∫

Ω
g · ∇ϕdx = −

∫

Ω
ϕ div g dx = 0,

since ϕ = 0 on ∂Ω and div g = 0, as assumed in (2.7). Thus, since ωγ(x) > 0
in Ω and D > 0, we have div b = 0. 2

For the purpose of our analysis, we rewrite the formulation (2.28) in the com-
pact form: Find (u,b, p) ∈ H1

0 (Ω)3 ×Xγ(Ω) × L2
0(Ω) such that

A(u,b;v, c) + O(u,b;u,b;v, c) + B(p;v, c) = (f ,v) + (g, c),

B(q;u,b) = 0
(2.35)

for all (v, c, q) ∈ H1
0 (Ω)3 ×Xγ(Ω) × L2

0(Ω). Here, we use the forms

A(u,b;v, c) = as(u,v) + am(b, c),

B(q;v, c) = bs(q,v),

O(w,d;u,b;v, c) = os(w;u,v) + c1(d;b,v) − c2(d;u, c).

The adaptation of the forms in (2.29)–(2.34) and the weak formulation (2.28)
to two-dimensional MHD problems of the form (2.8)–(2.13) is straightforward.

2.4 Well-Posedness

We show that the variational formulation (2.28) is well-posed and uniquely
solvable for small data. We begin by establishing the continuity of the forms.

Lemma 2.8 For any weight vector γ, the forms as, am, and bs satisfy the
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following continuity properties:

|as(u,v)| ≤ R−1
e ‖u‖H1(Ω)‖v‖H1(Ω), u,v ∈ H1

0 (Ω)3,

|am(b, c)| ≤ max{R−1
m S,D}‖b‖Xγ‖c‖Xγ , b, c ∈ Xγ(Ω),

|bs(q,v)| ≤
√

3‖q‖L2(Ω)‖v‖H1(Ω), q ∈ L2
0(Ω), v ∈ H1

0 (Ω)3.

Furthermore, there exists a constant Co only depending on Ω such that

|os(w;u,v)| ≤ Co‖w‖H1(Ω)‖u‖H1(Ω)‖v‖H1(Ω), w,u,v ∈ H1
0 (Ω)3.

Proof : The continuity properties of the forms as, am and bs follow straight-
forwardly using Cauchy-Schwarz inequalities and the fact that ‖ div v‖L2(Ω) ≤√

3‖v‖H1(Ω). The continuity property for os follows from the continuous em-
bedding H1(Ω) ↪→ L4(Ω) and Hölder’s inequality; see, e.g., [14, Chapter IV].2

To show the continuity of the forms c1 and c2, we make use of the following
embedding result, which is valid for suitable values of γ (see also Remark 2.11
below). For each corner c ∈ C, we write Ec for the set of all edges that contain
the corner c.

Lemma 2.9 Let the weight vector γ satisfy

0 ≤ γ < 1/2 and γe ≥ γc ∀e ∈ Ec. (2.36)

Then we have H |γ|(Ω) ⊂ V 0
−γ(Ω) and ‖v‖0,−γ ≤ C‖v‖

H
|γ|

(Ω)
for a constant

only depending on Ω and γ.

Proof : As described in [7, Section 4.1], we can decompose Ω into

Ω = V0 ∪
( ⋃

e∈E

V0
e

)
∪
(
⋃

c∈C

V0
c
∪
( ⋃

e∈Ec

Ve(c)
))

. (2.37)

Here, V0 is a subregion of Ω away from corners and edges, and V0
e is a subregion

of Ω such that V0
e does not contain any corners or parts of any other edge

than e. The subregion V0
c

is such that c ∈ V0
c

and e ∩ V0
c

= ∅ for any edge
e ∈ E . Finally, for any edge e ∈ Ec the subregion Ve(c) is such that Ve(c) only
contains c and parts of e. Note that this decomposition is not unique and that
the different subregions may be overlapping.

As in [7, Equation (4.9)], we define the distance functions

dC(x) = dist(x, C), dE(x) = dist(x, E).
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Furthermore, we can choose exponents γC and γE such that |γ| ≥ γC ≥ 0,
|γ| ≥ γE ≥ 0 and

γC(x) = γc, x ∈ Vc,

γE(x) = γe, x ∈ V0
e ∪

( ⋃

c∈e

Ve(c)
)
.

The weight w−γ is then equivalent to

w−γ ≈ d−γC+γE
C d−γE

E . (2.38)

Let γ be a weight vector satisfying (2.36) and let v be in H |γ|(Ω). We may
assume that 1/2 > |γ| > 0, the case |γ| = 0 being trivial. We obtain

∫

Ω
ω2
−γ v

2 dx≤C
∫

Ω
d−2γC+2γE
C d−2γE

E v2 dx

≤C
∫

Ω
d−2γE
E v2 dx

≤C
∫

Ω
dist(x, ∂Ω)−2γE v2 dx ≤ C

∫

Ω
dist(x, ∂Ω)−2|γ| v2 dx.

Here, we have used that γe ≥ γc for all c ∈ Ec, dist(x, ∂Ω) ≤ dE and γE ≤ |γ|.
Since 0 < |γ| < 1

2
, the continuous embedding in [15, Theorem 1.4.4.3] ensures

that ∫

Ω
dist(x, ∂Ω)−2|γ| v2 dx ≤ C‖v‖2

H
|γ|

(Ω)
,

which completes the proof. 2

Lemma 2.10 Let the weight vector γ satisfy (2.36). Then there is a con-
stant Cc depending on Ω and γ such that

|c1(d;b,v)| ≤ SCc‖d‖Xγ‖b‖Xγ‖v‖H1(Ω), d,b ∈ Xγ(Ω), v ∈ H1
0 (Ω)3,

|c2(d;u, c)| ≤ SCc‖d‖Xγ‖u‖H1(Ω)‖c‖Xγ , d, c ∈ Xγ(Ω), u ∈ H1
0 (Ω)3.

Proof : We start by noting that, from [7, Theorem 2.2] any field d ∈ Xγ(Ω)
can be decomposed as

d = d0 + ∇ϕ,
with d0 ∈ Hγ(Ω) and ϕ ∈ V 2

γ (Ω)∩H1
0 (Ω). Furthermore, there exists a constant

C > 0 only depending on Ω and γ, such that

‖d0‖H1(Ω) + ‖∆ϕ‖0,γ ≤ C‖d‖Xγ . (2.39)

Let us now establish the assertion for c1; the proof for c2 is completely analo-
gous. We write c1(d;b,v) as

c1(d;b,v) = c1(d0;b,v) + c1(∇ϕ;b,v). (2.40)
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We first bound c1(d0;b,v). By Hölder’s inequality, the continuous embedding
of H1(Ω) into L4(Ω), and the estimate (2.39), we have

|c1(d0;b,v)| ≤ S|
∫

Ω
(d0 × curl b) · v dx| ≤ S‖d0‖L4(Ω)‖ curl b‖L2(Ω)‖v‖L4(Ω)

≤ CS‖d0‖H1(Ω)‖b‖Xγ‖v‖H1(Ω) ≤ CS‖d‖Xγ‖b‖Xγ‖v‖H1(Ω),

(2.41)

with a constant C > 0 only depending on Ω and γ.

Next, we bound c1(∇ϕ;b,v). To do so, we first note that, since |γ| < 1/2,

we have H |γ|(Ω) = H
|γ|

0 (Ω); see [15, Corollary 1.4.4.5]. Thus, from Lemma 2.9
and duality we have that

V 0
γ (Ω) ⊂ H−|γ|(Ω) and ‖v‖

H
−|γ|

(Ω)
≤ C‖v‖0,γ ∀v ∈ V 0

γ (Ω),

with a constant only depending on Ω and γ. Hence, since ∆ϕ ∈ V 0
γ (Ω),

∆ϕ ∈ H−|γ|(Ω) and ‖∆ϕ‖
H−|γ|(Ω)

≤ C‖∆ϕ‖0,γ.

In view of |γ| < 1/2, the elliptic shift theorem for polyhedral domains implies
that

∇ϕ ∈ H1/2+ε(Ω) and ‖∇ϕ‖H1/2+ε(Ω) ≤ C‖∆ϕ‖
H−|γ|(Ω)

≤ C‖∆ϕ‖0,γ,

for a parameter ε > 0; see [8]. Further, we have that H1/2+ε(Ω) is continuously
embedded into Lq(Ω) for an exponent q > 3; see [14, Theorem I.1.3 and
Definition I.1.2]. We can then find a second exponent p < 6 such that 1/2 =
p−1 + q−1. Using Hölder’s inequality with these exponents and the continuous
embedding of H1(Ω) into Lp(Ω), we obtain

|c1(∇ϕ;b,v)| ≤ S|
∫

Ω
(∇ϕ× curl b) · v dx|

≤ S‖∇ϕ‖Lq(Ω)‖ curl b‖L2(Ω)‖v‖Lp(Ω)

≤ CS‖∇ϕ‖H1/2+ε(Ω)‖b‖Xγ‖v‖H1(Ω)

≤ CS‖∆ϕ‖0,γ‖b‖Xγ‖v‖H1(Ω).

This, together with (2.39)–(2.41), proves the assertion for c1. 2

Remark 2.11 The assumptions in (2.36) restrict the choice of γ to quite a
small range. In view of (2.18), this is particularly evident when we simultane-
ously seek to fulfill (2.36) and (2.19), that is,

0 ≤ γ, δdir < γ < 1/2 and γe ≥ γc ∀e ∈ Ec;

see also Theorem 2.17 below. The upper bound 1/2 shows up because of the use
of the embedding result in Lemma 2.9. Whether or not this upper bound can
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be improved with a different analysis technique remains an open question. We
also point out that for linear MHD problems no restrictions on γ are necessary.

Next, let us show that for the two-dimensional analogues of the forms c1 and c2
in (2.33)–(2.34) it is possible to obtain a result with less restrictions on γ.

Lemma 2.12 Let Ω be a polygon in R2 and let the two-dimensional weight
vector γ in (2.20) satisfy 0 ≤ γ < 1. Then there is a constant Cc depending
on Ω and γ such that the two-dimensional analogues of the forms c1 and c2
satisfy

|c1(d;b,v)| ≤ SCc‖d‖Xγ‖b‖Xγ‖v‖H1(Ω), d,b ∈ Xγ(Ω), v ∈ H1
0 (Ω)2,

|c2(d;u, c)| ≤ SCc‖d‖Xγ‖u‖H1(Ω)‖c‖Xγ , d, c ∈ Xγ(Ω), u ∈ H1
0 (Ω)2.

Proof : As in the proof of Lemma 2.10, we can write d = d0 + ∇ϕ, with
d0 ∈ Hγ(Ω) and ϕ ∈ V 2

γ (Ω)∩H1
0 (Ω). The contribution c1(d0;b,v) is bounded

as in Lemma 2.10. To bound c1(∇ϕ;b,v), we proceed as follows. First note
that ∇ϕ ∈ V 1

γ (Ω)2 and ‖∇ϕ‖1,γ ≤ C‖ϕ‖2,γ < ∞. From [26, Proposition 25],

we obtain

ωγ∇ϕ ∈ H1(Ω)2 and ‖ωγ∇ϕ‖H1(Ω) ≤ C‖∇ϕ‖1,γ ≤ C‖ϕ‖2,γ,

for a constant C > 0 solely depending on Ω and γ. Let p and q be parameters
with 2 < q ≤ p < ∞ and q−1 + p−1 = 1/2. By Hölder’s inequality, Rellich’s
embedding theorem and the above estimate, we obtain

|
∫

Ω
(∇ϕ× curlb) · v dx | = |

∫

Ω
(ωγ∇ϕ× curlb) · (ω−1

γ v) dx |
≤ ‖ωγ∇ϕ‖Lp(Ω)‖ curlb‖L2(Ω)‖ω−1

γ v‖Lq(Ω)

≤ C‖ωγ∇ϕ‖H1(Ω)‖b‖Xγ‖ω−1
γ v‖Lq(Ω)

≤ C‖ϕ‖2,γ‖b‖Xγ‖ω−1
γ v‖Lq(Ω),

(2.42)

with a constant C > 0 solely depending on Ω, γ, and the exponents p and q.
It remains to show that q can be chosen so that ‖ω−1

γ v‖Lq(Ω) ≤ C‖v‖H1(Ω).

To this end, let s and s′ be two other parameters with 1 < s′ ≤ s < ∞ and
s′−1 + s−1 = 1. We have

‖ω−1
γ v‖q

Lq(Ω) ≤ (
∫

Ω
|v|qs dx)1/s(

∫

Ω
|ω−1

γ |qs′ dx)1/s′ = ‖v‖q
Lqs(Ω)‖ω−1

γ ‖q

Lqs′ (Ω)
.

Let Vc be a small neighborhood of the corner c ∈ C. In local polar coordinates
(rc, φ) at the point c, there holds

∫

Vc

|ωγ|−qs′ dx ≤ C
∫

Vc

r−qs′γc+1
c

drc dφ <∞,
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provided that qs′γc < 2. The constant C only depends on Ω. Since we have
maxc∈C γc < 1, there is a parameter ε > 0 (depending on γ) such that the
condition qs′γc < 2 is fulfilled for q = 2 + ε and s′ = 1 + ε. With this choice,
we obtain

‖ω−1
γ ‖q

Lqs′ (Ω)
≤ C <∞, (2.43)

with a constant C > 0 depending on Ω and γ. Combining (2.42) and (2.43),
using Rellich’s embedding theorem and the estimate in (2.39), results in

|c1(∇ϕ;b,v)| ≤ SC ‖ϕ‖2,γ‖b‖Xγ‖v‖Lqs(Ω)

≤ SC ‖ϕ‖2,γ‖b‖Xγ‖v‖H1(Ω) ≤ SC‖d‖Xγ‖b‖Xγ‖v‖H1(Ω),

for a constant C > 0 depending on Ω and γ.

This yields the result for c1, the proof for c2 is analogous. 2

Remark 2.13 We point out that the proof in Lemma 2.12 is based on the
continuous embedding of H1(Ω) into Lq(Ω) for all q ≥ 1. Since in the three-
dimensional H1(Ω) is continuously embedded into Lq(Ω) only for q ∈ [1, 6], a
similar argument in three dimensions shows the continuity of c1 and c2 only
for polyhedral domains whose maximal opening angle is smaller than 2π/3.

Next, we address the coercivity of the forms as and am.

Lemma 2.14 Let γ be a weight vector satisfying (2.19). Then:

as(u,u) ≥ C1R
−1
e ‖u‖2

H1(Ω), u ∈ H1
0(Ω)3,

am(b,b) ≥ C2 min{R−1
m S,D}‖b‖2

Xγ
, b ∈ Xγ(Ω),

with a constant C1 > 0 only depending on Ω, and a constant C2 > 0 only
depending on Ω and γ.

Proof : The coercivity of as is a standard property and the coercivity of am

follows from the inequality in Proposition 2.6. 2

Finally, we recall the following inf-sup condition for the form bs; see, e.g., [14,
Section I.5.1].

Lemma 2.15 There is a constant β > 0, only depending on Ω, such that

inf
q∈L2

0
(Ω)

sup
v∈H1

0
(Ω)3

bs(q,v)

‖v‖H1(Ω)‖q‖L2(Ω)

≥ β.

For notational convenience, we introduce the space

Wγ(Ω) = H1
0 (Ω)3 × Xγ(Ω),
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and endow it with the norm

‖(v, c)‖2
Wγ

= ‖v‖2
H1(Ω) + ‖c‖2

Xγ
. (2.44)

We then have the following stability results for the forms in (2.35).

Proposition 2.16 Let γ be a weight vector satisfying (2.19). There holds:

(i) There are continuity constants CA, CB solely depending on the data and
on D such that

|A(u,b;v, c)| ≤ CA‖(u,b)‖Wγ‖(v, c)‖Wγ , (u,b), (v, c) ∈ Wγ(Ω),

|B(q;v, c)| ≤ CB‖q‖L2(Ω)‖(v, c)‖Wγ , q ∈ L2
0(Ω), (v, c) ∈ Wγ(Ω).

If we additionally assume (2.36) to hold, then there is a constant CC

depending on the data, the domain, and the weight γ such that

|O(w,d;u,b;v, c)| ≤ CC‖(w,d)‖Wγ‖(u,b)‖Wγ‖(v, c)‖Wγ ,

for any (w,d) ∈ Wγ(Ω), (u,b) ∈ Wγ(Ω), and (v, c) ∈ Wγ(Ω).
(ii) There is a coercivity constant α > 0, depending on the data, the parame-

ter D, the domain, and γ, such that

A(u,b;u,b) ≥ α‖(u,b)‖2
Wγ
, (u,b) ∈ Wγ(Ω).

(iii) Let L := (‖f‖2
L2(Ω) + ‖g‖2

L2(Ω))
1/2. We have

|(f ,v) + (g, c)| ≤ L‖(v, c)‖Wγ , (v, c) ∈ Wγ(Ω).

(iv) We have the skew-symmetry property

O(w,d;u,b;u,b) = 0, (w,d), (u,b) ∈ Wγ(Ω).

(v) There holds, for the same constant β as in Lemma 2.15 and independently
of γ,

inf
q∈L2

0
(Ω)

sup
(v,c)∈Wγ(Ω)

B(q;v, c)

‖(v, c)‖Wγ‖q‖L2(Ω)

≥ β.

Proof : The continuity and coercivity in (i) and (ii) are immediate consequences
of Lemma 2.8, Lemma 2.10 and Lemma 2.14, respectively. The continuity
property in (iii) holds since

|(f ,v) + (g, c)|≤ ‖f‖L2(Ω)‖v‖H1(Ω) + ‖g‖L2(Ω)‖c‖Xγ

≤ (‖f‖2
L2(Ω) + ‖g‖2

L2(Ω))
1/2 (‖v‖2

H1(Ω) + ‖c‖2
Xγ

)1/2.
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To see the skew-symmetry property of O in (iv), it is enough to note that
os(w;u,u) = 0 and c1(d;b,u) = c2(d;u,b). The latter identity follows since
(d × curl b) · u = (u × d) curl b.

It only remains to establish the inf-sup condition in (v) for the form B. To see
this, fix q ∈ L2

0(Ω). From Lemma 2.15, there is an element v ∈ H1
0 (Ω)3 such

that

bs(q,v) ≥ β‖q‖2
L2(Ω), ‖v‖H1(Ω) ≤ ‖q‖L2(Ω).

We obtain

B(q;v, 0) ≥ β‖q‖2
L2(Ω), ‖(v, 0)‖Xγ ≤ ‖q‖L2(Ω),

and the inf-sup condition for B follows. 2

Proceeding as in the proof of [23, Theorem 10.1.1], we obtain from Proposi-
tion 2.16 the following existence and uniqueness result for small data.

Theorem 2.17 Let γ be a weight vector satisfying (2.19) and (2.36). Assume
further that

CCL

α2
< 1. (2.45)

Then the weak formulation in (2.28) has a unique solution (u,b, p) ∈ H 1
0 (Ω)3×

Xγ(Ω) × L2
0(Ω) and we have the stability bounds

‖(u,b)‖Wγ ≤ α−1L,

‖p‖L2(Ω) ≤ β−1L (1 + α−1CA + α−2CCL),

with α, β, CA, CB, CC , and L denoting the stability constants from Proposi-
tion 2.16.

Remark 2.18 As has been pointed out in Remark 2.11, the restrictions on γ
in (2.36) are most likely suboptimal. For the two-dimensional MHD problem
in (2.8)–(2.13), on the other hand, the continuity result in Lemma 2.12 can be
invoked and the result of Theorem 2.17 is obtained for any weight γ satisfying

δdir < γ < 1, with δdir defined in (2.21).

Remark 2.19 The extension of the result in Theorem 2.17 to MHD prob-
lems with inhomogeneous boundary conditions is not straightforward. While
it is easily possible to lift inhomogeneous boundary data in a divergence-free
fashion into the domain, see [14, Lemma IV.2.3] for the velocity field and [22,
Proposition A.1] for the magnetic field, these liftings affect the size of the
data for which existence and uniqueness of solutions can be proved; see [14,
Section IV.2.1]. For velocity boundary data, this effect can be minimized and
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controlled by using the so-called Hopf construction which yields a divergence-
free lifting u0 ∈ H1(Ω)3 such that | ∫Ω [(v · ∇)u0] · v dx| is arbitrarily small
relative to ‖∇v‖2

L2(Ω), for all v ∈ H1
0 (Ω)3; see [14, Lemma IV.2.3]. However,

analogous Hopf-type liftings for magnetic boundary data seem not to be avail-
able in the literature and remain to be constructed.

3 Finite Element Approximation

In this section, we introduce and analyze the finite element approximation
of the mixed formulation in (2.28). We derive quasi-optimal error bounds in
the energy norm and show that the weighted regularization technique ensures
convergence of the approximation in possibly non-convex domains.

3.1 Galerkin Approximation

We choose conforming finite element spaces V h ⊂ H1
0 (Ω)3, Xh

γ ⊂ Xγ(Ω), and

Lh ⊂ L2
0(Ω), and endow them with the norms ‖ · ‖H1(Ω), ‖ · ‖Xγ , and ‖ · ‖L2(Ω),

respectively. Here, we use the index h to denote the discretization parameter.
We generically refer to it as the mesh-size.

Throughout, we assume that the pair V h × Lh gives rise to an inf-sup stable
Stokes discretization, that is, we assume that there is a constant βh > 0
independent of the mesh-size h, such that

inf
q∈Lh

sup
v∈V h

bs(q,v)

‖v‖H1(Ω)‖q‖L2(Ω)

≥ βh. (3.1)

A wide variety of spaces V h and Lh fulfilling (3.1) have been proposed in
the literature; we refer to [5, Chapter IV], [14, Chapter II] and the references
cited therein. A specific choice of finite element spaces based on Hood-Taylor
elements will be discussed in Section 3.2 below.

Given a weight vector γ, the finite element approximation of (2.28) is: Find
(uh,bh, ph) ∈ V h ×Xh

γ × Lh such that

as(uh,v) + os(uh;uh,v) + bs(ph,v) + c1(bh;bh,v)= (f ,v),

am(bh, c) − c2(bh;uh, c)= (g, c), (3.2)

bs(q,uh) = 0

for all v ∈ V h, c ∈ Xh
γ and q ∈ Lh. As before, problem (3.2) is equivalent to:
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Find (uh,bh, ph) ∈ V h ×Xh
γ × Lh such that

A(uh,bh;v, c) + O(uh,bh;uh,bh;v, c) + B(ph;v, c) = (f ,v) + (g, c),

B(q;uh,bh) = 0

(3.3)

for all (v, c, q) ∈ V h ×Xh
γ × Lh.

Introducing the space W h
γ = V h × Xh

γ , endowed with the norm ‖ · ‖Wγ , we

have the following discrete inf-sup condition for the form B

inf
q∈Lh

sup
(v,c)∈W h

γ

B(q;v, c)

‖(v, c)‖Wγ‖q‖L2(Ω)

≥ βh, (3.4)

with the same inf-sup constant βh > 0 as in (3.1). Condition (3.4) can be
proved by using arguments that are completely analogous to those on the
continuous level.

The discrete version of Theorem 2.17 is then an immediate consequence.

Corollary 3.1 Let γ be a weight vector satisfying (2.19) and (2.36). Let the
smallness assumption (2.45) be satisfied. Then the finite element formulation
in (3.2) has a unique solution (uh,bh, ph) ∈ V h × Xh

γ × Lh and we have the

stability bounds

‖(u,b)‖Wγ ≤ α−1L,

‖p‖L2(Ω) ≤ β−1
h L (1 + α−1CA + α−2CCL),

with α, CA, CB, CC , and L denoting the stability constants from Proposi-
tion 2.16, and with βh denoting the discrete inf-sup constant from (3.1).

As before, in the two-dimensional case, this result holds for weight vectors γ

with δdir < γ < 1.

Remark 3.2 The solution (uh,bh, ph) ∈ Xh
γ × V h × Lh of the finite ele-

ment formulation (3.2) can be found by the following Picard iteration: Given
(un

h,b
n
h, p

n
h) ∈ V h × Xh

γ × Lh, let (un+1
h ,bn+1

h , pn+1
h ) ∈ V h × Xh

γ × Lh be the

solution of the linearized problem

as(u
n+1
h ,v) + os(u

n
h;un+1

h ,v) + bs(p
n+1
h ,v) + c1(b

n
h;bn+1

h ,v)= (f ,v),

am(bn+1
h , c) − c2(b

n
h;un+1

h , c)= (g, c),

bs(q,u
n+1
h )= 0

for all v ∈ V h, c ∈ Xh
γ and q ∈ Lh. Under the smallness assumption in (2.45),

the sequence {(un
h,b

n
h, p

n
h)}n≥1 converges to the solution (uh,bh, ph) of (3.2).
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Other procedures based on Newton’s method are possible as well; cf. [18].
We point out that, if the linearized problems above are strongly convection-
dominated, it might be necessary for their efficient solution to include addi-
tional stabilization terms along the lines of [13]. As our analysis is mainly
concerned with the incorporation of the divergence constraint div b = 0 via the
weighted regularization approach, this point is not further investigated in this
paper.

We derive quasi-optimal error bounds for the proposed finite element approx-
imation. To this end, we introduce on Wγ(Ω) × L2

0(Ω) the norm ||| (·, ·, ·) |||γ
given by

||| (v, c, q) |||2γ = ‖(v, c)‖2
Wγ

+ ‖q‖2
L2(Ω).

The following theorem holds.

Theorem 3.3 Let γ be a weight vector satisfying (2.19) and (2.36). Assume
further that

CCL

α2
≤ 1

2
. (3.5)

Let (u,b, p) be the (unique) solution of (2.28), and let (uh,bh, ph) its finite
element approximition obtained by (3.2). Then we have the quasi-optimal error
bound

||| (u − uh,b − bh, p− ph) |||γ ≤ C inf
(v,c,q)∈V h×Xh

γ ×Lh
||| (u − v,b − c, p− q) |||γ,

with a constant C > 0 independent of the mesh-size h.

Proof : We proceed in several steps.

Step 1: We first note that we have the error equation

A(u − uh,b − bh;v, c) +O(u− uh;b − bh;u,b;v, c)

+O(uh,bh;u − uh,b − bh;v, c) +B(p− ph;v, c) = 0,

for any (v, c) ∈ W h
γ .

Step 2: Set kerBh = {(v, c) ∈ W h
γ | B(q;v, c) = 0 ∀q ∈ Lh}. We claim that

‖(u − uh,b − bh)‖Wγ ≤ C

[
‖(u − v,b− c)‖Wγ + ‖p− q‖L2(Ω)

]
, (3.6)

for any (v, c) ∈ kerBh and q ∈ Lh, with a constant C > 0 that is independent
of the mesh-size.

To see (3.6), fix (v, c) ∈ kerBh and q ∈ Lh. Clearly, v − uh ∈ kerBh. Using

20



the error equation in Step 1, it can be easily seen that

A(v − uh, c − bh;v − uh, c− bh) +O(v − uh, c− bh;u,b;v − uh, c − bh)

= A(v − u, c − b;v − uh, c − bh) +O(v − u, c − b;u,b;v − uh, c − bh)

+O(uh,bh;v − u, c − b;v − uh, c − bh) − B(p− ph;v − uh, c− bh).

(3.7)

We first estimate the left-hand side of (3.7) from below. To this end, we use the
coercivity and continuity properties in Proposition 2.16, the stability bound
in Theorem 2.17, and the smallness assumption in (3.5), and obtain

l.h.s. of (3.7) = A(v − uh, c− bh;v − uh, c − bh)

+O(v − uh, c− bh;u,b;v − uh, c − bh)

≥
[
α− CC‖(u,b)‖Wγ

]
‖(v − uh, c − bh)‖2

Wγ

≥
[
1 − CCL

α2

]
α ‖(v − uh, c − bh)‖2

Wγ

≥ 1

2
α‖(v − uh, c − bh)‖2

Wγ
.

(3.8)

To bound the right-hand side of (3.7) from above, we first note that, because
v − uh ∈ kerBh, we have

B(p− ph;v − uh, c − bh) = B(p− q;v − uh, c − bh).

Using the continuity properties in Proposition 2.16 and the bounds in Theo-
rem 2.17 and Corollary 3.1 we get

r.h.s. of (3.7) ≤
(
CA + CC‖(u,b)‖Wγ + CC‖(uh,bh)‖Wγ

)

× ‖(v − u, c − b)‖Wγ‖(v − uh, c − bh)‖Wγ

+ CB‖p− q‖L2(Ω)‖(v − uh, c − bh)‖Wγ

≤ (CA + 2CCLα
−1)‖(v − u, c − b)‖Wγ‖(v − uh, c− bh)‖Wγ

+ CB‖p− q‖L2(Ω)‖(v − uh, c − bh)‖Wγ .

(3.9)

Combining (3.8) and (3.9) results in

‖(v − uh, c − bh)‖Wγ ≤ C‖(u − v,b − c)‖Wγ + C‖p− q‖L2(Ω).

Since

‖(u − uh,b − bh)‖Wγ ≤ ‖(u − v,b − c)‖Wγ + ‖(v − uh, c − bh)‖Wγ ,

the assertion (3.6) follows.
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Step 3: It is well-known that we can use the discrete inf-sup condition in (3.4)
in order to establish the approximation result (3.6) for any (v, c) ∈ W h

γ ; see,

e.g., [5,14]. This proves the quasi-optimality of the error ‖(u−uh,b−bh)‖Wγ .

Step 4: It remains to bound the error in the pressure. To do so, let q ∈ Lh.
The inf-sup condition (3.4) yields

βh‖q − ph‖L2(Ω) ≤ sup
(v,c)∈W h

γ

B(q − ph;v, c)

‖(v, c)‖Wγ

= sup
(v,c)∈W h

γ

B(q − p;v, c) +B(p− ph;v, c)

‖(v, c)‖Wγ

≤ sup
(v,c)∈W h

γ

B(q − p;v, c)

‖(v, c)‖Wγ

+ sup
(v,c)∈W h

γ

B(p− ph;v, c)

‖v, c‖Wγ

.

Using the error equation from Step 1, the continuity properties in Prop-
erty 2.16, and the stability bounds in Theorem 2.17 and Corollary 3.1, we
have

B(p− ph;v, c)

‖(v, c)‖Wγ

≤
(
CA + CC‖(u,b)‖Wγ + CC‖(uh,bh)‖Wγ

)

×‖(u − uh,b − bh)‖Wγ

≤
(
CA + 2CCLα

−1
)
‖(u − uh,b − bh)‖Wγ .

Thus,
B(p− ph;v, c)

‖(v, c)‖Wγ

≤ C‖(u − uh,b − bh)‖Wγ .

Moreover, employing the continuity of B,

B(q − p;v, c)

‖(v, c)‖Wγ

≤ CB‖p− q‖L2(Ω).

We obtain

‖p− ph‖L2(Ω) ≤‖p− q‖L2(Ω) + ‖q − ph‖L2(Ω)

≤C

[
‖p− q‖L2(Ω) + ‖(u − uh,b − bh)‖Wγ

]
.

The estimate and the assertion follows then with the bounds of Step 3. 2

Let now {V h}h, {Xh
γ }h, and {Lh}h be sequences of finite element spaces,

22



chosen such that

∀u ∈ H1
0 (Ω)3 : inf

v∈V h
‖u − v‖H1(Ω) → 0, h → 0,

∀b ∈ Xγ(Ω) : inf
c∈Xh

γ

‖b − c‖Xγ → 0, h → 0,

∀ p ∈ L2
0(Ω) : inf

q∈Lh
‖p− q‖L2(Ω) → 0, h → 0.

Note that due to Theorem 2.4 and the density of C∞(Ω) functions with van-
ishing trace on ∂Ω in V 2

γ (Ω)∩H1
0 (Ω), see [7, Proposition 3.2 and Theorem 4.1],

the density assumption for b is justified, provided that the weight vector γ
satisfies (2.19).

Corollary 3.4 Assume (3.5) and that the weight vector γ satisfies (2.19)
and (2.36). Then, we have for the above sequence of spaces

lim
h→0

||| (u − uh,b − bh, p− ph) |||γ = 0.

In two dimensions, the same result holds for weights γ satisfying δdir < γ < 1,

with δdir given in (2.21).

Theorem 3.3 ensures convergence of the finite element approximation in non-
convex polyhedra as h→ 0, provided that the weight vector is properly chosen.
The choice γc = 0 and γe = 0 for all c ∈ C and e ∈ E (no weighted regulariza-
tion), for example, does not lead to convergent FEM solutions in non-convex
polygons. This is due to the fact that, without weighted regularization, the
space Hγ(Ω) is known to be a closed subspace of Xγ(Ω) and the strongest
magnetic singularities lie in the complement Xγ(Ω) \Hγ(Ω); see [7]. Hence, it
is impossible to correctly capture the magnetic fields. This behavior is clearly
confirmed in our numerical results in Section 4, demonstrating that weighted
regularization is indispensable in non-convex domains.

3.2 Convergence Rates for Hood-Taylor Elements

In this section, we present a specific finite element family based on Hood-
Taylor elements for the unknowns u and p, and discuss the corresponding
convergence rates.

To this end, let Th = {K} be a regular and shape-regular partition of Ω
into hexahedral elements {K}. We assume that each element K is affinely
equivalent to the reference cube K̂ = (0, 1)3. We denote by hK the diameter
of element K and set h = maxK∈Th

{hK}. For an approximation order k ≥ 2,
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we introduce the following finite element spaces

V h = {v ∈ H1
0 (Ω)3 | v|K ∈ Q3

k(K), ∀K ∈ Th},
Xh

γ = {c ∈ Hγ(Ω) | c|K ∈ Q3
k(K), ∀K ∈ Th},

Lh = {q ∈ H1(Ω) ∩ L2
0(Ω) | q|K ∈ Qk−1(K), ∀K ∈ Th}.

(3.10)

Here, Qk(K) denotes the space of polynomials of degree ≤ k in each variable
on K. The velocity-pressure pair V h × Lh is referred to as ”Hood-Taylor”
elements. It is well-known that the spaces V h and Lh satisfy the discrete inf-
sup condition in (3.1); see [4].

For this family, let us discuss the convergence rates that can be expected
from Theorem 3.3. We first consider the case of a smooth solution (u,b, p).
Standard approximation properties then give straightforwardly the following
optimal convergence rates.

Corollary 3.5 Let the exact solution (u,b, p) of (2.1)–(2.6) satisfy

(u,b, p) ∈ Hk+1(Ω)3 ×Hk+1(Ω)3 ×Hk(Ω).

Under the assumptions of Theorem 3.3, there holds

||| (u − uh,b − bh, p− ph) |||γ ≤ Chk(‖u‖Hk+1(Ω) + ‖b‖Hk+1(Ω) + ‖p‖Hk(Ω)),

with a constant C > 0 independent of the mesh-size h.

Next, we show that positive convergence rates are still possible for solutions
that exhibit singularities at the corners of the domain Ω. To this end, we
consider a model situation where we assume that the exact solution (u,b, p)
can be decomposed into a regular and a singular part, according to

(u,b, p) = (ureg,breg, preg) + (using,bsing, psing).

Such decompositions can be found in, e.g., [9,21,19,6,7] in the context of
the Navier-Stokes equations, linearizations thereof, and Maxwell’s equations.
Analogous results then hold for linear MHD problems, as the one considered
in Section 4 below. However, for the nonlinear MHD problems under consider-
ation, decompositions of the above type do not seem to be available in detail.
Thus, here we assume that the regular part is smooth and satisfies

ureg ∈ H2(Ω)3, breg ∈ H2(Ω)3, preg ∈ H1(Ω).

It is then clear that there is an interpolant (vreg, creg, qreg) ∈ V h ×Xh
γ ×Lh so

that
||| (ureg − vreg,breg − creg, preg − qreg) |||γ ≤ Ch.

The part (using,bsing, psing) consists of the singular functions. These functions
have a low global regularity, but are typically smooth in the interior of the
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domain. This behavior can be described best in terms of the following limits
of weighted spaces

K∞
β (Ω) =

⋂

γ>β

(
⋂

m∈N

V m
γ+m(Ω)

)
.

We then assume that the velocity-pressure singularities belong to

using ∈ K∞
δdir−2(Ω)3 ∩H1

0 (Ω)3, psing ∈ K∞
δdir−1(Ω).

Note that using 6∈ H2(Ω)3 and psing 6∈ H1(Ω). With arguments similar to those
in, e. g., [26] and the references therein, an interpolant (vsing, qsing) ∈ V h ×Lh

can be constructed such that

‖using − vsing‖H1(Ω) + ‖psing − qsing‖L2(Ω) ≤ Chτ1 ,

for an exponent τ1 > 0 depending on δdir.

Concerning the magnetic field bsing, we assume, in agreement with [6,7], that
it consists of Neumann singularities of the Laplace operator and singularities
that are gradients of Dirichlet singularities of the Laplacian. That is,

bsing = bN +∇ϕ, bN ∈ K∞
δneu−2(Ω)2∩H1(Ω)3, ϕ ∈ K∞

δdir−2(Ω)∩H1
0 (Ω).

(3.11)
Here, similarly to (2.16)–(2.17), δneu are the minimal singularity exponents
for the Laplacian with Neumann boundary conditions; see [7, Section 6]. Note
that bsing 6∈ H1(Ω)3.

As in [7, Section 7 and Section 8], it is possible to construct an approximation
csing ∈ Xh

γ such that

‖bsing − csing‖Xγ ≤ Chτ2 ,

for a parameter τ2 ∈ (0, 1), provided that we have k ≥ k0 for a sufficiently large
threshold value k0. The restrictions on the polynomial degree k are due to the
proof in [7, Section 7] where it is necessary to construct H2-conforming inter-
polants of the gradient components of the magnetic singularities. However, our
numerical results in two dimensions indicate that positive convergence rates
are already achieved for k ≥ 2 on rectangular grids.

In the model situation described above, we have the following result.

Corollary 3.6 Under the above assumptions and those in Theorem 3.3, there
holds

||| (u − uh,b − bh, p− ph) |||γ ≤ Chmin{τ1,τ2}.

The constant C > 0 is independent of the mesh-size h.

Similar convergence results are obtained in the two-dimensional case.
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4 Numerical Results

In this section, we present several numerical experiments for the linear two-
dimensional Oseen-type MHD problem

−R−1
e ∆u + (w · ∇)u + ∇p+ S d × curlb = f in Ω ⊂ R

2, (4.1)

R−1
m S curl(curlb) − S curl(u × d) = g in Ω, (4.2)

div u = 0 in Ω, (4.3)

div b = 0 in Ω, (4.4)

where d is a given smooth magnetic field and w a smooth flow field. Problems
of this type arise in each step of the Picard iteration in Remark 3.2. On non-
convex domains, problem (4.1)–(4.4) already exhibits magnetic singularities
with regularity below H1(Ω)2. Hence, it is well suited to test the performance
of the proposed finite element method.

We approximate (4.1)–(4.4) using the two-dimensional analogue of the Taylor-
Hood family (3.10) on square meshes. Our implementation is based on the
finite element library deal.II; see [3,2]. It provides powerful C++ classes for
handling meshes and degrees of freedom, and for solving the resulting linear
systems of equations. In our experiments, we have solved these systems by
BICGSTAB, using a simple Jacobi preconditioner. While this worked well in
our examples, we point out that the systematic design and analysis of effi-
cient solvers for the weighted regularization approach proposed in this paper
remain open issues. For comprehensive discussions of efficient preconditioning
and solution techniques for incompressible Navier-Stokes discretizations in the
absence of electro-magnetic effects, we refer the reader to, e.g., [11,10,28] and
the references therein.
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Fig. 1. L-shaped domain Ω.

Throughout, we consider the L-shaped domain Ω with opening angle 3π/2
shown in Figure 1. We always set Re = Rm = S = 1 in (4.1)–(4.4), and
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prescribe the right-hand sides f , g, as well as the field d and w. Furthermore,
we allow for non-homogeneous Dirichlet boundary conditions for u and b ·t on
the boundary ∂Ω of Ω. These conditions are taken into account in the usual
fashion by interpolating the boundary data at the corresponding nodal degrees
of freedom. We always take D = 1 and choose the weight function ωγ in the
bilinear form am as ωγ(x) = |x|γ, with a parameter 0 ≤ γ ≤ 1 that we are
varying in our experiments. We point out that, for the linear MHD problem
in (4.1)–(4.4), the theoretical results of the previous sections hold without any
restrictions on γ.

4.1 Smooth Solution

In our first experiment, we validate the a priori error bounds in Corollary 3.5
for a smooth solution. We solve the problem (4.1)–(4.4) with w = d = (1, 1),
and with f , g and the boundary data chosen so that the exact solution
(u,b, p) = (u1, u2, b1, b2, p) is given by

u1(x1, x2) = −ex1(x2 cos (x2) + sin (x2)),

u2(x1, x2) = ex1x2 sin (x2),

b1(x1, x2) = −ex1(x2 cos (x2) + sin (x2)),

b2(x1, x2) = ex1x2 sin (x2),

p(x1, x2) = 2ex1 sin (x2).

(4.5)

Note that u, b, and the corresponding right-hand side g are solenoidal.

We compute finite element approximations to this MHD solution using two-
dimensional Q2

2−Q2
2−Q1 Hood-Taylor elements on a sequence of successively

refined square meshes {Ti}i≥1, referring to the index i as cycle i. The number
of elements in the mesh Ti is proportional to 22i; the mesh-size hi of Ti is
thus proportional to 2−i. If ei denotes the error in some component of the
approximation on cycle i (in a suitable norm), the corresponding numerical
rate of convergence is given by

ri =
log(ei/ei−1)

log(hi/hi−1)
.

In Table 1 and Table 2, we show the errors in the indicated norms for the
hydrodynamic variables (u, p) and the magnetic field b, respectively, obtained
with exponents γ = 0, γ = 0.5, and γ = 1. We also list the number of degrees
of freedom (dofs) for each of the solution components. For all choices of γ,
the rates in the H1-error in u, the L2-error in p, and in the Xγ-error in b are
of order two, in full agreement with the results of Corollary 3.5. As can be
expected, the convergence rates in the L2-errors of u and b are of one order
higher and of optimal third order. The difference in the results with respect
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to the different values of γ is minimal and almost negligible, indicating that
the weighted regularization term has no influence on the performance of the
proposed method if the solution is smooth.

γ cycle dofs in u/p L2-error in u H1-error in u L2-error in p

1 130/21 5.77e-03 - 7.33e-02 - 3.06e-02 -

2 450/65 7.07e-04 3.03 1.82e-02 2.01 8.02e-03 1.93

0 3 1666/225 8.70e-05 3.01 4.55e-03 2.00 2.13e-03 1.91

4 6402/833 1.10e-05 3.00 1.15e-03 2.00 5.50e-04 1.96

5 25090/3201 1.37e-06 3.00 2.84e-04 2.00 1.40e-04 1.98

1 130/21 5.79e-03 - 7.32e-02 - 3.34e-02 -

2 450/65 7.08e-04 3.03 1.82e-02 2.01 8.49e-03 1.98

0.5 3 1666/225 8.79e-05 3.01 4.55e-03 2.00 2.19e-03 1.95

4 6402/833 1.10e-05 3.00 1.14e-03 2.00 5.55e-04 1.98

5 25090/3201 1.37e-06 3.00 2.84e-04 2.00 1.40e-04 1.99

1 130/21 5.77e-03 - 7.33e-02 - 3.05e-02 -

2 450/65 7.07e-04 3.03 1.82e-02 2.01 8.02e-03 1.93

1 3 1666/225 8.79e-05 3.01 4.55e-03 2.00 2.14e-03 1.91

4 6402/833 1.10e-05 3.00 1.14e-03 2.00 5.50e-04 1.96

5 25090/3201 1.37e-06 3.00 2.85e-04 2.00 1.39e-04 2.00

Table 1
Smooth solution: Errors and convergence rates in (u, p).

4.2 Non-Smooth Solution

Next, we consider the MHD problem (4.1)–(4.4) where all the solution com-
ponents have corner singularities at the origin. We set again w = d = (1, 1),
and choose the data so that the magnetic field b is given by the strongest
singularity of the curl-curl operator for the L-shaped domain in Figure 1,
namely

b(x) = ∇(r2/3 sin (2φ/3)), (4.6)

with (r, φ) denoting the standard polar coordinates. Evidently, curlb = 0 and
div b = 0. We also point out that b 6∈ H1(Ω)2. The hydrodynamic pair (u, p)
is taken to be the strongest corner singularity of the Stokes operator for the
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γ cycle dofs in b L2-error in b Xγ -error in b

1 130 5.69e-03 - 7.10e-02 -

2 450 7.04e-04 3.01 1.81e-02 1.99

0 3 1666 8.79e-05 3.00 4.53e-03 2.00

4 6402 1.10e-05 3.00 1.13e-03 2.00

5 25090 1.49e-06 2.89 2.84e-04 2.00

1 130 5.89e-03 - 7.14e-02 -

2 450 7.23e-04 3.03 1.79e-02 1.99

0.5 3 1666 8.92e-05 3.02 4.51e-03 1.99

4 6402 1.11e-05 3.01 1.13e-03 2.00

5 25090 1.38e-06 3.01 2.83e-04 2.00

1 130 5.89e-03 - 7.14e-02 -

2 450 7.23e-04 3.03 1.79e-02 1.99

1 3 1666 8.92e-05 3.02 4.51e-03 1.99

4 6402 1.11e-05 3.01 1.13e-03 2.00

5 25090 1.89e-06 2.55 2.83e-04 2.00

Table 2
Smooth solution: Errors and convergence rates in b.

L-shaped domain in Figure 1. This singularity is given by

u1(x1, x2) = rλ((1 + λ) sin(φ)ψ(φ) + cos(φ)ψ′(φ)),

u2(x1, x2) = rλ(−(1 + λ) cos(φ)ψ(φ) + sin(φ)ψ′(φ)),

p(x1, x2) = − rλ−1((1 + λ)2ψ′(φ) + ψ′′′(φ))/(1 − λ),

(4.7)

with

ψ(φ) = sin((1 + λ)φ) cos(λw)/(1 + λ) − cos((1 + λ)φ)

− sin((1 − λ)φ) cos(λw)/(1 − λ) + cos((1 − λ)φ).

The exponent λ is the smallest positive solution of sin(λ3π/2)+λ sin(3π/2) =
0, which is λ ≈ 0.54448373678246. Note that u is solenoidal, and that (u, p) ∈
H1+λ(Ω)2×Hλ(Ω). We consider the same sequence of meshes as in Section 4.1.

The performance of the proposed method is shown in Table 3 and Table 4;
it now strongly depends on the choice of the exponent γ. The choice γ = 0
(no regularization) does not lead to convergent FEM solutions and the errors
in the field b do not decrease at all. This is due to the fact that for γ = 0
the space Hγ(Ω) is known to be a closed subspace of Xγ(Ω) and that the

29



singular solution (4.6) lies in the complement Xγ(Ω) \Hγ(Ω); see [7]. Hence,
for γ = 0 it is impossible to correctly capture the singular magnetic field. The
tables clearly show convergence of the method for γ = 0.5 and γ = 1 when
the weighted regularization is switched on, hereby confirming the results of
Corollary 3.4 and Corollary 3.6. The convergence rates in the H 1-norm for u

and the L2-norm for p are of the expected order λ. The L2-norm in u converges
with twice that order. In contrast to the restrictions on the polynomial degree
in the theoretical results, good convergence rates for b are already obtained
for quadratic elements. For γ close to one, this order is close to the order 2/3;
cf. the discussion in [7].

We point out that the errors are only slightly better with increased approx-
imation order k, and that the rates remain comparable. In all our tests we
started to observe convergence as soon as γ > 1/3, the lower critical bound
in (2.21) that is required for convergence. However, the best results in the
Xγ-norm and L2-norm were always obtained with the upper bound γ = 1.

It is evident that the weighted regularization term is needed to correctly cap-
ture the singular behavior of the solution.

γ cycle dofs in u/p L2-error in u H1-error in u L2-error in p

1 130/21 1.54e-01 - 1.55e+00 - 2.71e+00 -

2 450/65 6.55e-02 1.23 1.11e+00 0.49 1.50e+00 0.85

0 3 1666/225 2.89e-02 1.18 7.65e-01 0.53 1.12e+00 0.43

4 6402/833 1.52e-02 0.92 5.27e-01 0.54 9.25e-01 0.27

5 25090/3201 1.02e-02 0.57 3.62e-01 0.54 8.34e-01 0.15

1 130/21 1.51e-01 - 1.55e+00 - 2.84e+00 -

2 450/65 6.31e-02 1.26 1.09e+00 0.49 1.51e+00 0.90

0.5 3 1666/225 2.60e-02 1.28 7.58e-01 0.53 1.01e+00 0.58

4 6402/833 1.15e-02 1.18 5.21e-01 0.54 6.97e-01 0.54

5 25090/3201 5.63e-03 1.03 3.58e-01 0.54 4.90e-01 0.51

1 130/21 1.49e-01 - 1.53e+00 - 2.95e+00 -

2 450/65 6.15e-02 1.28 1.00e+00 0.49 1.58e+00 0.90

1 3 1666/225 2.46e-02 1.32 7.53e-01 0.53 1.04e+00 0.61

4 6402/833 1.01e-02 1.28 5.19e-01 0.54 6.96e-01 0.57

5 25090/3201 4.34e-03 1.22 3.56e-01 0.54 4.73e-01 0.56

Table 3
Non-smooth solution: Errors and convergence rates in (u, p).
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γ cycle dofs in b L2-error in b Xγ -error in b

1 130 7.31e-01 - 1.06e+00 -

2 450 7.07e-01 0.05 1.04e+00 0.03

0 3 1666 6.96e-01 0.02 1.04e+00 0.01

4 6402 6.90e-01 0.01 1.03e+00 0.01

5 25090 6.86e-01 0.01 1.03e+00 0.00

1 130 5.00e-01 - 8.34e-01 -

2 450 4.08e-01 0.29 7.37e-01 0.18

0.5 3 1666 3.37e-01 0.28 6.61e-01 0.16

4 6402 2.79e-01 0.27 5.95e-01 0.15

5 25090 2.30e-01 0.28 5.36e-01 0.15

1 130 4.30e-01 - 5.88e-01 -

2 450 3.35e-01 0.36 4.16e-01 0.50

1 3 1666 2.56e-01 0.39 2.93e-01 0.51

4 6402 1.85e-01 0.47 1.97e-01 0.57

5 25090 1.26e-01 0.56 1.28e-01 0.62

Table 4
Non-smooth solution: Errors and convergence rates in b.

5 Conclusions

In this paper, we have introduced and analyzed a new finite element method
for incompressible MHD problems in polygonal and polyhedral domains. The
method employs nodal elements for the discretization of the magnetic fields
and standard inf-sup elements for the hydrodynamic variables. In order to ac-
count for singular solution behavior, the magnetic bilinear form has been mod-
ified using the weighted regularization technique recently developed in [7]. The
analysis in this paper shows that this approach leads to convergent schemes in
non-convex domains. Our two-dimensional numerical results on an L-shaped
domain confirm that the weighted regularization approach is indispensable
for the numerical resolution of singular solution components in the magnetic
fields.

We finally point out that this paper is mainly concerned with the discretization
of the elliptic operator underlying the MHD problems under consideration. For
strongly convection-dominated problems, additional stabilization techniques
might be necessary to ensure the robustness of the schemes; see, e.g., [13] and
the references therein.
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[25] D. Schötzau, Mixed finite element methods for stationary incompressible

magneto-hydrodynamics, Numer. Math. 96 (2004), 771-800.
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