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1. Introduction

Physical dynamics interpolate naturally between the dissipative and conservative extremes,
in which friction either dominates or can be neglected. Gradient flows and Hamiltonian systems
represent the archetypal examples of these two extremes. The orbits of a Hamiltonian system
correspond to the critical paths of an action functional, but variational characterizations for the
trajectories of a gradient flow are less familiar. For steepest descent into a convex valley such
a characterization was formulated by Brezis-Ekeland [4], but their principle was not amenable
to deducing existence of solutions. Later, Auchmuty [2] used min-max methods to establish the
existence of solutions variationally, but under certain growth conditions on the convex potential.
Recently, Ghoussoub and Tzou [8] deduced the existence of semigroup flows in full generality
(for convex lower semicontinuous potentials) using a modified Brezis-Ekeland principle which is
invariant under Bolza duality [12]. For convex gradient flows, their method now provides a direct
alternative to proving existence by maximal monotone accretive operator theoretic semigroup
methods or by time-step approximation; recent references for the latter techniques include [3]
[7] [10] [1]. In a forthcoming paper [9], the first-named author develops further the scope of
the duality method and proposes a general framework for a variational formulation of many
equations which do not normally fit into standard Euler-Lagrange theory. This approach is
based on a concept of anti-self dual Lagrangians which seems to be inherent in many important
differential equations.

In the present article we streamline and broaden the scope of the Ghoussoub-Tzou approach
to gradient flows, showing how it can be adapted to characterize the path of steepest descent of a
non-convex potential as the global minimum of a convex action. This is achieved by dynamically
rescaling space, to convert the energy landscape on which our descent takes place from a static
but non-convex profile to a contracting convex one. This approach is inspired by the time-
dependent change of coordinates used to find similarity variables in nonlinear partial differential
equations, especially as employed by Otto to quantify long-time behaviour of porous medium
flows [11]. Although that descent takes place on the ‘Riemannian’ manifold of probability
measures metrized by Wasserstein distance, our present considerations will be restricted to the

more traditional setting of a Hilbert space H with norm |u| = 〈u, u〉1/2
.

Let [0, T ] be a fixed real interval (0 < T < +∞). Consider the Hilbert space L2
H :=

L2([0, T ]; H) of Bochner integrable functions from [0, T ] into H with norm denoted by ‖ · ‖L2

H
,
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and the Sobolev space

A2
H := {u : [0, T ] → H ; u̇ ∈ L2

H} =: AC2([0, T ]; H)

consisting of all absolutely continuous vector-valued arcs u : [0, T ] → H , equipped with the norm

‖u‖A2

H
=

(

|u(0)|2 +

∫ T

0

|u̇|2dt

)
1

2

.

Our main result is formulated under a semiconvexity assumption, which means that the energy
landscape differs from a convex valley by a smooth function. In particular, this assumption is
satisfied whenever the landscape is sufficiently smooth.

Theorem 1.1 (Least action descent in a non-convex landscape). Let W : H −→ R ∪ {+∞}

be semiconvex, meaning for some k ≥ 0 the function W (u) := W (u) + k|u|2/2 is strictly convex,
lower semicontinuous on H, and not identically infinity. Then V (t, v) := e−2ktW (ektv) is convex
at each instant in time so let

V ∗(t, u) := sup
v∈H

〈u, v〉 − V (t, v)

be its Legendre-Fenchel transform. For any u0 ∈ dom ∂W , consider the functional

(1) Φ[u] =
1

2
(|u(0)|2 + |u(T )|2) − 2〈u(0), u0〉 + |u0|

2 +

∫ T

0

[V (t, u(t)) + V ∗(t,−u̇(t))] dt

on the path space A2
H . Then there exists a unique v in A2

H such that

(2) Φ[v] = inf
u∈A2

H

Φ[u] = 0.

Moreover, the path w(t) := ektv(t) is the unique solution in A2
H to

(3)

{

−ẇ(t) ∈ ∂W (w(t)) a.e. on [0, T ]
w(0) = u0.

Here the set ∂W (u) is related to the subdifferential of W by ∂W (u) = ∂W (u) + ku, and
dom ∂W := {u ∈ H | W (u) < +∞ and ∂W (u) 6= ∅}. An alternate representation (9) of the
action Φ[ · ] shows why it is minimized by the evolution (3), but conceals the convexity manifest
in (1).

This theorem can of course be deduced from well-known existence results concerning semi-
group flows. Our purpose here is to give a simple variational proof which implies these existence
results. At the same time, we highlight the convex-analytic properties of our parabolic rescaling
of space: it commutes with both Legendre transformation and Yosida regularization.

2. Duality and gradient flow in an evolving landscape

The path space A2
H is also a Hilbert space that can be identified with the product space

H×L2
H , while its dual (A2

H)∗ can be identified with H×L2
H . The duality is given by the formula:

〈u, (a, p)〉A2

H
,H×L2

H
= 〈u(0), a〉H +

∫ T

0

〈u̇(t), p(t)〉dt.

Theorem 2.1 (Least action descent into an evolving valley). Let V : [0, T ]×H → R ∪ {+∞}
be a measurable function with respect to the σ-field in [0, T ] × H generated by the products of
Lebesgue sets in [0, T ] and Borel sets in H. Assume V satisfies the following conditions:

• For every t ∈ [0, T ], the function V (t, ·) is convex and lower semicontinuous on H.

•

∫ T

0

V ∗(t, 0)dt < ∞.

• There is α ∈ L∞[0, T ] such that:

(4) V (t, x) ≤ α(t)(1 + |x|2) for (t, x) ∈ [0, T ]× H.
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For any u0 ∈ H, the functional

(5) Φ[u] =
1

2
(|u(0)|2 + |u(T )|2) − 2〈u(0), u0〉 + |u0|

2 +

∫ T

0

[V (t, u(t)) + V ∗(t,−u̇(t))] dt

admits a unique minimizer v in A2
H and

(6) Φ[v] = inf
u∈A2

H

Φ[u] = 0.

Among paths in A2
H , v is the unique solution to

(7)

{

−v̇(t) ∈ ∂V (t, v(t)) a.e. on [0, T ]
v(0) = u0.

Proof. First, we notice that Φ[ · ] is convex and that:

(8) Φ[u] ≥ 0 for all u in A2
H .

Indeed, it is clear that

(9) Φ[u] = |u(0) − u0|
2 +

∫ T

0

[V (t, u(t)) + V ∗(t,−u̇(t)) + 〈u(t), u̇(t)〉] dt.

By the Fenchel-Young inequality, we have

(10) V (t, u(t)) + V ∗(t,−u̇(t)) ≥ 〈u(t),−u̇(t)〉 = −
1

2

d

dt
|u(t)|2 a.e. on [0, T ]

with equality holding if and only if −u̇(t) ∈ ∂V (t, u(t)).
This also yields that Φ[u] ≥ |u(0) − u0|2 ≥ 0, which means that (6) would automatically

imply (7).
The rest of the section deals with the reverse inequality and the existence of a minimum. We

follow the method of Ghoussoub-Tzou [8] by showing that Φ[ · ] “behaves lower semicontinuously”
with respect to certain perturbations. For that, we associate the following functional Ψ defined
on (A2

H)∗ = H × L2
H as:

Ψ[a, y] = inf
u∈A2

H

{

1
2 (|u(0) + a|2 + |u(T )|2) − 2〈u(0) + a, u0〉 + |u0|

2

+

∫ T

0

V (t, u(t) + y(t)) + V ∗(t,−u̇(t))dt

}

(11)

so that

(12) Ψ[0, 0] = inf
u∈A2

H

Φ[u].

The following lemma establishes a key duality-symmetry between the two functionals.

Lemma 2.2 (Self-duality). Defining Ψ[·, ·] by (11), the hypotheses of Theorem 2.1 imply

Ψ∗[v] = Φ[ − v] for all v ∈ A2
H ,

where Ψ∗ is the Legendre transform of Ψ in the duality (H × L2
H , A2

H ).

Proof of Lemma 2.2. For v ∈ A2
H , write:

Ψ∗[v] = sup
a∈H

sup
y∈L2

H

sup
u∈A2

H

{

〈a, v(0)〉 − 1
2 (|u(0) + a|2 + |u(T )|2) + 2〈u(0) + a, u0〉 − |u0|

2

+

∫ T

0

[〈y(t), v̇(t)〉 − V (t, u(t) + y(t)) − V ∗(t,−u̇(t)]dt

}

.

Making a substitution
u(0) + a = ã ∈ H and u + y = ỹ ∈ L2

H ,

we obtain

Ψ∗[v] ≥ sup
ã∈H

sup
ỹ∈L2

H

sup
u∈A2

H

{

〈ã − u(0), v(0)〉 − 1
2 (|ã|2 + |u(T )|2) + 2〈ã, u0〉 − |u0|2

+

∫ T

0

[〈ỹ(t) − u(t), v̇(t)〉 − V (t, ỹ(t)) − V ∗(t,−u̇(t))]dt

}

.
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Since u̇ ∈ L2
H and u ∈ L2

H , we have:

∫ T

0

〈u, v̇〉 dt = 〈v(T ), u(T )〉 − 〈v(0), u(0)〉 −

∫ T

0

〈u̇, v〉 dt,

which implies

Ψ∗[v] ≥ sup
ã∈H

sup
ỹ∈L2

H

sup
u∈A2

H

{

〈ã, v(0)〉 − 1
2 (|ã|2 + |u(T )|2) + 2〈ã, u0〉 − |u0|2 − 〈u(T ), v(T )〉

+

∫ T

0

[〈ỹ, v̇〉 + 〈u̇, v〉 − V (t, ỹ(t)) − V ∗(t,−u̇(t))] dt

}

.

It is now convenient to identify A2
H with H × L2

H via the correspondence:

(c, x) ∈ H × L2
H 7→ u(t) = c +

∫ T

t

x(s) ds ∈ A2
H

u ∈ A2
H 7→

(

u(T ),−u̇(t)
)

∈ H × L2
H .

We finally obtain

Ψ∗[v] ≥ −|u0|
2 + sup

ã∈H
sup
c∈H

{

〈ã, v(0) + 2u0〉 + 〈−c, v(T )〉 −
1

2
(|ã|2 + |c|2)

}

+ sup
ỹ∈L2

H

sup
x∈L2

H

{
∫ T

0

(〈ỹ, v̇〉 + 〈x,−v〉 − V (t, ỹ(t)) − V ∗(t, x(t))dt

}

= −|u0|
2 +

1

2
(|v(0) + 2u0|

2 + |v(T )|2) +

∫ T

0

[V ∗(t, v̇(t)) + V (t,−v(t))] dt

=
1

2
(|v(0)|2 + |v(T )|2) + 2〈v(0), u0〉 + |u0|

2 +

∫ T

0

[V (t,−v(t)) + V ∗(t, v̇(t))] dt

= Φ[ − v].

Here we have used that V (t, ·)∗∗ = V (t, ·) and that for any L : [0, T ] × H × H → R ∪ {+∞}
convex and lower semicontinuous, we have:

∫ T

0

L∗(t, s(t), v(t))dt = sup
x,y∈L2

H

∫ T

0

[〈y(t), s(t)〉 + 〈x(t), v(t)〉 − L(t, y(t), x(t))]dt

where L∗ is the Legendre dual of L in both state variables. �

End of proof of Theorem 2.1. First we prove that the convex functional Ψ is subd-
ifferentiable at (0, 0). For that, it is sufficient to show that Ψ is bounded on neighborhoods of
zero in H × L2

H . Note that

Ψ[a, y] ≤ 2|u0| · |a| +
|a|2H

2
+ |u0|

2 +

∫ T

0

[V (t, y(t)) + V ∗(t, 0)]dt

≤ 2|u0| · |a| +
|a|2H

2
+ |u0|

2 +

∫ T

0

[

α(t)(|y(t)|2 + 1) + V ∗(t, 0)
]

dt

which means that Ψ is bounded in a neighborhood of (0, 0) in the space H × L2
H , hence it is

subdifferentiable at (0, 0).
Now take −v ∈ ∂Ψ[0, 0] ∈ A2

H . Then again by Young’s inequality,

Ψ[0, 0] + Ψ∗[ − v] = 0 = Φ[v] + inf
u∈A2

H

Φ[u]

It follows that:

− inf
A2

H

Φ = Φ[v] ≥ inf
A2

H

Φ

which means that infA2

H
Φ ≤ 0. In view of (8), we must have infA2

H
Φ = 0 = Φ[v]. Thus the

minimum is zero and is attained at v. �
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3. Yosida regularization and gradient flow of a semiconvex potential

Consider again a measurable function v : [0, T ]×H → R ∪ {+∞} such that V (t, ·) is convex
and lower semicontinuous on H for every t ∈ [0, T ], but without the bound (4) of Theorem 2.1,
which is quite restrictive and not satisfied by most potentials of interest. One way to remedy
this is to regularize V by using inf-convolution. That is, for each λ > 0 we define

Vλ(t, x) = inf{V (t, y) +
1

2λ
|x − y|2H ; y ∈ H},

so that

Vλ(t, x) ≤ V (t, 0) +
1

2λ
|x|2

while its conjugate is given by

(13) V ∗

λ (t, y) = V ∗(t, y) +
λ

2
|y|2.

The Vλ now satisfy the hypothesis of Theorem 2.1 (as long as
∫ T

0
V (t, 0) + V ∗(t, 0)dt < ∞) and

therefore the corresponding evolution equations

(14)

{

v̇(t) + ∂Vλ(t, v(t)) = 0 a.e. on [0, T ]
v(0) = u0

have unique solutions vλ(t) in A2
H that minimize

(15) Φλ[v] := |v(0) − u0|
2 +

∫ T

0

[Vλ(t, v(t)) + Vλ
∗(t,−v̇(t)) + 〈v(t), v̇(t)〉] dt.

Now we need to argue that (vλ)λ converges as λ → 0 to a solution of the original problem. This
analysis is reminiscent of the approach via the resolvent theory of Hille-Yosida, but is much
easier here since the variational argument does not require uniform convergence of (vλ)λ or their
time-derivatives.

One still needs an upper bound on the L2-norm of (u̇λ(t))λ however. This is straightforward
when V is a time-independent convex potential (as shown for example in [8]), but not always
possible for general time-dependent potentials. However, we shall be able to provide such an esti-
mate in the special case when the time-dependent potential is of the form V (t, x) = e−2ktW (ektx)
with W being an appropriate convex function.

Let us summarize the properties of infimal convolution recapitulated from Evans [7, §9.6.1].

Lemma 3.1. Let W : H −→ R ∪ {+∞} be convex lower semicontinuous, W (u0) < ∞, and
λ > 0. Then

(16) W λ(w) := inf{W (u) +
1

2λ
|w − u|2H ; u ∈ H},

is convex on H and bounded by

(17) W λ(w) ≤ W (u0) +
1

2λ
|w − u0|

2.

There exist Lipschitz maps ∇W λ : H −→ H and Jλ : H −→ dom ∂W such that for each w ∈ H:
(i) (differentiability): ∂W λ(w) = {∇W λ(w)};
(ii) (nonlinear resolvent): the infimum (16) is uniquely attained at u = Jλ(w);
(iii) (first order condition):

(18) ∇W λ(w) =
w − Jλ(w)

λ
∈ ∂W (Jλ(w));

(iv) (uniform gradient bound):

(19) |∇W λ(w)| ≤ inf
u∈∂W (w)

|u|;

(v) (Lipschitz contractions): both Jλ and ∇(λW λ/2) are contractions on H.

We shall call W λ the Yosida λ-regularization of W . Now we note the following useful
property which says that the Yosida regularization actually commutes with our rescaling of
space.
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Lemma 3.2 (Rescaling commutes with dualization and Yosida regularization). Let W (u) be
a lower semicontinuous convex function on H and consider the time dependent convex potential
V (t, v) := e−2ktW (ektv) and its Legendre-Fenchel transform V ∗(t, u) for each time t. Then

(20) V ∗(t, u) = e−2kt(W )∗(ektu)

where (W )∗ is the Legendre-Fenchel dual of W . Moreover, if Vλ(t, v) denotes the Yosida λ-
regularization of V (t, v) for each time t, and if Jλ(t, v) is the corresponding attainment map,
then

(21) Vλ(t, v) := e−2ktW λ(ektv) and Jλ(t, v) = e−ktJ̃λ(ektv)

where W λ is the Yosida λ-regularization of W and J̃λ its corresponding attainment map.

Proof. Note

V ∗(t, v) = sup{〈v, x〉 − e−2ktW (ektx); x ∈ H}

= e−2kt sup{〈ektv, ektx〉 − W (ektx); x ∈ H}

= e−2kt sup{〈ektv, w〉 − W (w); w ∈ H}

= e−2kt(W )∗(ektv).

which proves (20). On the other hand,

(Vλ)∗(t, x) = V ∗(t, x) +
λ

2
|x|2

= e−2kt(W )∗(ektx) +
λ

2
|x|2

= e−2kt

(

(W )∗(ektx) +
λ

2
|ektx|2

)

= e−2kt(W λ)∗(ektx).

Use now (20) with (W λ)∗ instead of W to conclude that

(22) Vλ(t, v) := e−2ktW λ(ektv)

which means Yosida regularization commutes with our rescaling of space. �

Next we establish the required a priori estimate.

Proposition 3.3 (Uniform speed limit). Let W (u) be a lower semicontinuous convex func-
tion on H with u0 ∈ dom ∂W . Let Wλ be its Yosida regularization for each λ > 0 and define
the time dependent potential Vλ(v, t) := e−2ktW λ(ektv) and its corresponding energy functional
Φλ[ · ] as in (15). If vλ ∈ A2

H satisfies Φλ[vλ] = 0, then for a.e. t ∈ [0, T ], we have

(23) |v̇λ(t)| ≤ C0 := 2(k|u0| + inf
u∈∂W (u0)

|u|).

Proof. Suppose vλ ∈ A2
H satisfies Φλ[vλ] = 0. As in Theorem (2.1) we conclude that:

(24)

{

−v̇λ(t) = ∇Vλ(vλ(t), t) for a.e. t ∈ [0, T ]
vλ(0) = u0.

To obtain the desired estimate, it is convenient to exploit our dynamical rescaling of space to find
an autonomous gradient flow equivalent to (24). Indeed, note that if W̃ (w) := W λ(w)−k|w|2/2,
then vλ(t) = e−ktwλ(t) satisfies (24) if and only if

(25)

{

−ẇλ(t) = ∇W̃ (wλ(t)) for a.e. t ∈ [0, T ]
wλ(0) = u0.

Next we establish that if wλ ∈ A2
H satisfies (25) then

(26) |ẇλ(t)| ≤ ekt|∇W̃ (u0)| a.e. on [0, T ].
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Indeed, consider f(t) = |∇W̃ (wλ(t))|2/2 which is absolutely continuous on [0, T ]. Using D2W̃ ≥
−kI (assuming W̃ is C2), we compute

f ′(t) = 〈∇W̃ (wλ(t)), D2W̃ (wλ(t))ẇλ(t)〉

= − 〈∇W̃ (wλ(t)), D2W̃ (wλ(t))∇W̃ (wλ(t))〉

≤ 2kf(t).

Gronwall’s inequality yields f(t) ≤ e2ktf(0) whence |∇W̃ (wλ(t))| ≤ ekt|∇W̃ (wλ(0))|. This
establishes (26) in light of (25).

Finally, we can address our main claim (23). Let vλ ∈ A2
H satisfy (24) so that wλ(t) :=

ektvλ(t) satisfies (26). Integrating that estimate yields

|wλ(t) − wλ(0)| ≤

∫ t

0

|ẇλ(τ)|dτ(27)

≤
ekt − 1

k
|∇W̃ (u0)|.(28)

Applying (26) and (28) to v̇λ(t) = e−kt(ẇλ(t) − kwλ(t)) gives:

|v̇λ(t)| ≤ e−kt(ekt|∇W̃ (u0)| + k|wλ(0)| + (ekt − 1)|∇W̃ (u0)|)

= (2 − e−kt)|∇W̃ (u0)| + ke−kt|u0|

≤ 2|∇Wλ(u0)| + 2k|u0|

=: Cλ(u0),

where ∇W̃ (u0) = ∇W λ(u0) − ku0 has been used. Finally, the constants Cλ(u0) ≤ C0 are
bounded independently of λ by Lemma 3.1(iv), completing the proposition. �

Proof of Theorem 1.1. Start with W : H −→ R ∪ {+∞} semiconvex, meaning that for

some k ≥ 0 the function W (u) := W (u)+ k|u|2/2 is strictly convex, lower semicontinuous on H ,
and not identically infinity. Taking k larger if necessary ensures W (u) grows quadratically and
hence attains its minimum. Set V (t, v) := e−2ktW (ektv) and let V ∗(t, u) denote its Legendre-
Fenchel transform for each time t. For any u0 ∈ dom ∂W , consider the functional

Φ[u] =
1

2
(|u(0)|2 + |u(T )|2) − 2〈u(0), u0〉 + |u0|

2 +

∫ T

0

[V (t, u(t)) + V ∗(t,−u̇(t))] dt

on the space of curves A2
H . We need to show that there exists v in A2

H such that:

Φ[v] = inf
u∈A2

H

Φ[u] = 0.

Uniqueness of v then follows from strict convexity of Φ[ · ], and it is easy to see that the path
w(t) := ektv(t) satisfies

{

ẇ(t) + ∂W (w(t)) = 0 a.e. on [0, T ]
w(0) = u0

from the equality conditions in Young’s inequality (10).

Let W λ be the Yosida regularization of W for each λ > 0 and its associated map J̃λ from
Lemma 3.1. We know from Lemma 3.2 that the λ-regularization of V satisfies Vλ(v, t) :=

e−2ktW λ(ektv) and that its corresponding attainment map Jλ(t, v) = e−ktJ̃λ(ektv) where J̃λ is
the attainment map for Wλ. If Φλ denotes the energy functional (15), then Theorem 2.1 yields
vλ ∈ A2

H such that Φλ[vλ] = 0 for each λ > 0. That is

(29)

{

−v̇λ(t) = ∇Vλ(t, vλ(t)) for a.e. t ∈ [0, T ]
vλ(0) = u0.

By Proposition 3.3, we have for a.e. t ∈ [0, T ], the estimate

(30) |v̇λ(t)| ≤ C0 := 2(k|u0| + inf
u∈∂W (u0)

|u|).

It follows that a subsequence (vλj
)j is converging weakly in A2

H to a path v. The projection

of this path onto any vector in H lies in the real Sobolev space A2
R

⊂ L2[0, T ] of Hölder-1/2



8 GHOUSSOUB AND MCCANN

functions, hence converges pointwise. For each t ∈ [0, T ], it follows that vλj
(t) → v(t) weakly in

H as λj → 0. From Lemma 3.1, we have for any λ > 0 and any t ≥ 0,

|vλ(t) − Jλ(t, vλ(t))| = λ|∇Vλ(t, vλ)| = λ|v̇λ(t)| ≤ λC0,

thus Jλj
(t, vλj

(t)) → v(t) weakly in H for every t ∈ [0, T ].
Now V (t, ·) and V ∗(t, ·) are weakly lower semi-continuous on H , and V (t, ·) is bounded below

by infH W (u) > −∞. Using Fatou’s lemma one easily deduces:
∫ T

0

V (t, v(t))dt ≤ lim
j

∫ T

0

V (t, Jλj
(t, vλj

(t)))dt,

∫ T

0

V ∗(t,−v̇(t))dt ≤ lim
j

∫ T

0

V ∗(t,−v̇λj
(t))dt,(31)

where (u0, p0) ∈ ∂W , (20), convexity of V ∗(t, ·), and the bound

V ∗(t,−v̇(t)) ≥ e−2kt[(W )∗(p0) + 〈u0,−ektv̇(t) − p0〉]

≥ −|(W )∗(p0) − 〈u0, p0〉| − C0|u0|

have been used to establish strong and hence weak lower semicontinuity (31). Moreover,

|v(0)|2 ≤ lim
j

|vλj
(0)|2 and |v(T )|2 ≤ lim

j
|vλj

(T )|2,

∫ T

0

|vλj
(t) − Jλj

(t, vλj
(t))|2

λj
→ 0,

and
∫ T

0

λj |v̇λj
(t)|2dt ≤ C2

0Tλj → 0.

Since for every t ∈ [0, T ] and any λ > 0 and any v, x ∈ H , we have:

V (t, Jλ(t, v(t))) = Vλ(t, v(t)) +
|v(t) − Jλ(t, v(t))|2

2λ

and

V ∗

λ (t, x) = V ∗(t, x) +
λ

2
|x|2,

it follows that

Φ[v] =
1

2
(|v(0)|2 + |v(T )|2) − 2〈v(0), u0〉 + |u0|

2 +

∫ T

0

[V (t, v(t)) + V ∗(t,−v̇(t))] dt

≤ |u0|
2 + lim

j

1

2
(|vλj

(0)|2 + |vλj
(T )|2) − 2〈vλj

(0), u0〉

+ lim
j

∫ T

0

(
|vλj

(t) − Jλj
(t, vλj

(t))|2

2λj
+

λj

2
|v̇λj

(t)|2)dt

+ lim
j

∫ T

0

V (t, Jλj
(t, vλj

(t)))dt + lim
j

∫ T

0

V ∗(t,−v̇λj
(t))dt

≤ |u0|
2 + lim

j

1

2
(|vλj

(0)|2 + |vλj
(T )|2) − 2〈vλj

(0), u0〉

+ lim
j

∫ T

0

Vλj
(t, vλj

(t)) + (Vλj
)∗(t,−v̇λj

(t))dt

≤ lim
j

(

1

2
(|vλj

(0)|2 + |vλj
(T )|2) − 2〈vλj

(0), u0〉 + |u0|
2

+

∫ T

0

Vλj
(t, vλj

(t)) + V ∗

λj
(t,−v̇λj

(t))dt

)

= 0

From (9) we have the opposite inequality Φ[ · ] ≥ 0 so the theorem is proved. �
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