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Abstract

The theory of anti-selfdual (ASD) Lagrangians developed in [8] allows a variational resolution for equations
of the form Λu+Au+∂ϕ(u)+f = 0 where ϕ is a convex lower-semi-continuous function on a reflexive Banach
space X , f ∈ X∗, A : D(A) ⊂ X → X∗ is a positive linear operator and where Λ : D(Λ) ⊂ X → X∗ is a non-
linear operator that satisfies suitable continuity and anti-symmetry properties. ASD Lagrangians on path
spaces also yield variational resolutions for nonlinear evolution equations of the form u̇(t)+Λu(t)+Au(t)+f ∈
−∂ϕ(u(t)) starting at u(0) = u0. In both stationary and dynamic cases, the equations associated to the
proposed variational principles are not derived from the fact they are critical points of the action functional,
but because they are also zeroes of the Lagrangian itself. For that we establish a general –and remarkably
encompassing– nonlinear variational principle which has many applications, in particular to Navier-Stokes
type equations. More applications, especially to the differential systems of magnetohydrodynamics and
thermohydraulics will be given in a forthcoming paper [9].
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1 Introduction

A new variational framework was developed in [8] where solutions of various equations, not normally of
Euler-Lagrange type, can still be obtained as minima of functionals of the form

I(u) = L(u,Au) + `(b1(x), b2(x)) or I(u) =
∫ T

0
L(t, u(t), u̇(t) +Au(t))dt+ `(u(0), u(T )).

The Lagrangians L (resp., `) must obey certain anti-selfdual (resp., selfdual) conditions, while the operators
A are essentially skew-adjoint modulo boundary terms represented by a pair of operators (b1, b2). For such
“anti-selfdual” (ASD) Lagrangians, the minimal value will always be zero and –just like the self (and antiself)
dual equations of quantum field theory (e.g. Yang-Mills and others)– the equations associated to such minima
are not derived from the fact they are critical points of the functional I , but because they are also zeroes of
the Lagrangian L itself. In other words, the solutions will satisfy

L(u,Au) + 〈u,Au〉 = 0 and L(t, u(t), u̇(t) +Atu(t)) + 〈u(t), u̇(t)〉 = 0.

It is also shown in [8] that ASD Lagrangians possess remarkable permanence properties making them more
prevalent than expected and quite easy to construct and/or identify. The variational game changes from the
analytical proofs of existence of extremals for general action functionals, to a more algebraic search of an
appropriate ASD Lagrangian for which the minimization problem is remarkably simple with value always
equal to zero. This makes them efficient new tools for proving –variationally– existence and uniqueness
results for a large array of differential equations.
In this paper, we tackle boundary value problems of the form:

{

−Λu−Au+ f ∈ ∂ϕ(u)
b1(u) = 0

(1)

as well as parabolic evolution equations of the form:







−u̇(t) − Λu(t) −Au(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ [0, T ]
b1(u(t)) = b1(u0) a.e t ∈ [0, T ]

u(0) = u0

(2)

where u0 is a given initial value. Here ϕ is a convex lower semicontinuous functional, Λ is a non-linear
“conservative” operator, A is a linear not necessarily bounded but essentially skew-adjoint operator modulo
the operators (b1, b2), a notion to be defined below.
As applications to the method, we provide a variational resolution to equations involving nonlinear operators
such as the Navier-Stokes equation for a fluid driven by its boundary:







(u · ∇)u+ f = ν∆u−∇p on Ω
divu = 0 on Ω

u = u0 on ∂Ω

where u0 ∈ H3/2(∂Ω) is such that
∫

∂Ω
u0 · n dσ = 0, ν > 0 and f ∈ Lp(Ω; R3).

We can also deal with the superposition of such non-linear operators with non self-adjoint first order operators
such as linear transport maps:







(u · ∇)u+ ~a · ∇u+ a0u+ |u|m−2u+ f = ν∆u−∇p on Ω
divu = 0 on Ω

u = 0 on ∂Ω

where ~a ∈ C∞(Ω̄) is a smooth vector field and a0 ∈ L∞ are such that a0 −
1
2div(a) ≥ 0.

The methods extend to the dynamic case where typically we give a variational resolution to the Navier-Stokes
evolution















∂u
∂t + (u · ∇)u− f = ν∆u−∇p on [0, T ]× Ω

divu = 0 on [0, T ]× Ω
u(t, x) = 0 on [0, T ]× ∂Ω
u(0, x) = u0(x) on Ω.
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The key to our approach is again a minimization principle for functionals of the form I(x) = L(x,Λx)+〈x,Λx〉
where L is an anti-selfdual Lagrangian, however Λ is now a fairly general non-linear operator with suitable
continuity and symmetry properties.
The paper, though sufficiently self-contained, is better read in conjunction with [8]. It is organized as follows:
In section 2, we introduce the concept of anti-selfdual Hamiltonian which is the appropriate dual notion to
anti-selfdual Lagrangians. In section 3, we give the main non-linear variational principle, which is applied in
section 4 to obtain variational proofs for the existence of stationary solutions for various nonlinear equations.
In section 5, we deal with the dynamic case where we provide a variational resolution to several nonlinear
parabolic initial-value problems, including those appearing in the basic models of hydrodynamics. Further
applications will follow in the forthcoming paper [9].

2 Basic properties of Anti-selfdual Hamiltonians

Definition 2.1 Let X be a reflexive Banach space. Say that a functional H : X ×X → R∪ {+∞}∪{−∞}
is an anti-selfdual Hamiltonian if for each y ∈ X, the function x → −H(x, y) from X to R∪{+∞}∪{−∞}
is convex and the function x→ H(−y,−x) is its convex lower semi-continuous envelope.

It readily follows that for an ASD Hamiltonian H , the function y → H(x, y) is convex and lower semi-
continuous for each x ∈ X , and that the following inequality holds for every (x, y) ∈ X ×X ,

H(−y,−x) ≤ −H(x, y), (3)

In particular, we have for every x ∈ X ,
H(x,−x) ≤ 0. (4)

The class of anti-selfdual Hamiltonian on a space X , will be denoted by HAD(X). The most basic ASD
Hamiltonian is H(x, y) = ‖y‖2 − ‖x‖2 (Maxwell’s Hamiltonian) or more generally H(x, y) = ϕ(−y) − ϕ(x)
where ϕ is any finite convex lower semi-continuous function on X . More generally, if B : X → X∗ is a
skew-adjoint bounded linear operator, f ∈ X∗, and if ϕ : X → R ∪ {+∞} is proper convex and lower
semi-continuous, then

H(x, y) =

{

ϕ(−y) − ϕ(x) − 〈Bx, y〉 + 〈f, x+ y〉 if x ∈ Dom(ϕ)
−∞ if x /∈ Dom(ϕ)

(5)

is also an anti-selfdual Hamiltonian. We define the (partial) domain of H to be

Dom1(H) = {x ∈ X ;H(x, y) > −∞ for all y ∈ X}. (6)

Note that if ϕ is a convex lower semi-continuous function that is bounded below on X , and if H(x, y) =
ϕ(−y)−ϕ(x) is the anti-selfdual Hamiltonian associated to ϕ, then Dom1H = Domϕ. Note also that for any
z ∈ Dom1(H), we have that the function ϕz : x→ −H(x,−z) is convex and valued in R∪ {+∞}. Moreover
Dom1(H) ⊂ Dom(ϕz), hence for any z, y ∈ Dom1(H),

H(z,−y) = −H(y,−z) if and only if the function x → H(x,−z) is upper semi-continuous at y.

We can now introduce the following

Definition 2.2 Say that an Anti-selfdual Hamiltonian H : X × X → R is tempered if for every y ∈
Dom1(H), the function x → H(x,−y) is concave and upper semi-continuous from X to R ∪ {−∞}.

It then follows that
H(y, x) = −H(−x,−y) for all (x, y) ∈ X × Dom1(H). (7)

and therefore
H(x,−x) = 0 for all x ∈ Dom1(H). (8)

The class of tempered anti-selfdual Hamiltonian on a space X , will be denoted by HTAD(X).
The most basic tempered ASD Hamiltonian is H(x, y) = ϕ(y) − ϕ(−x) + 〈x,By〉 + 〈f, x + y〉 where ϕ is
any finite convex lower semi-continuous function on X , f ∈ X∗, and where B : X → X∗ is a skew-adjoint
bounded linear operator. Tempered ASD Hamiltonians satisfy some obvious permanence properties that we
summarize in the following proposition.
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Proposition 2.1 Let X be a reflexive Banach space, then the following holds:

1. If H and K are in HTAD(X) and λ > 0, then the Hamiltonians H + K (defined as −∞ if the first
variable is not in Dom1(H) ∩ Dom1(K)), and λ·H also belong to HTAD(X).

2. If Hi ∈ HTAD(Xi) where Xi is a reflexive Banach space for each i ∈ I, then the Hamiltonian H :=
Σi∈IHi defined by H((xi)i, (yi)i) = Σi∈IHi(xi, yi) is in HTAD(Πi∈IXi).

3. If H ∈ HTAD(X) and B : X → X∗ is a skew-adjoint bounded linear operator then the Hamiltonian
HB defined by HB(x, y) = H(x, y) + 〈Bx, y〉 is also in HTAD(X).

4. If H ∈ HTAD(X) and K ∈ HTAD(Y ), then for any bounded linear operator A : X → Y ∗, the Hamilto-
nian H +A K defined by

(H +A K)((x, y), (z, w)) = H(x, z) +K(y, w) + 〈A∗y, z〉 − 〈Ax,w〉

belongs to HTAD(X × Y ).

5. If ϕ is a proper convex lower semi-continuous function on X×Y and A is any bounded linear operator
A : X → Y ∗, then the Hamiltonian Hϕ,A defined by

Hϕ,A((x, y), (z, w)) = ϕ(−z,−w) − ϕ(x, y) + 〈A∗y, z〉 − 〈Ax,w〉

also belongs to HTAD(X × Y )

This notion is in a certain sense dual to the notion of anti-selfdual Lagrangian introduced and developed
in [8]. Indeed, let L(X) be the class of convex Lagrangians on a reflexive Banach space X . These are all
functions L : X × X∗ → R ∪ {+∞} which are convex and lower semi-continuous (in both variables) and
which are not identically +∞. The (partial) domain of the Lagrangian L is defined as

Dom1(L) = {x ∈ X ;L(x, p) < +∞ for some p ∈ X∗}. (9)

To each Lagrangian L on X × X∗, we can associate its Hamiltonian on X × X defined as the Legendre
transform in the second variable, i.e.,

HL(x, y) := sup{〈p, y〉 − L(x, p); p ∈ X∗}.

It is clear that Dom1(L) = Dom1(HL).
The Legendre-Fenchel dual (in both variables) of L is defined at any pair (q, y) ∈ X∗ ×X by:

L∗(q, y) = sup{〈q, x〉 + 〈y, p〉 − L(x, p); x ∈ X, p ∈ X∗}.

We recall the notion of anti-selfdual Lagrangians developed in [8].

Definition 2.3 Let L be a Lagrangian in L(X). We say that
(1) L is an anti-self dual Lagrangian on X ×X∗, if

L∗(p, x) = L(−x,−p) for all (p, x) ∈ X∗ ×X. (10)

(2) L is anti-self dual on the graph of Λ, the latter being a map from a subset D ⊂ X into X∗, if

L∗(Λx, x) = L(−x,−Λx) for all x ∈ D. (11)

We denote by LAD(X) the class of ASD-Lagrangians. We now procced to identify the class of Hamiltonians
associated to ASD-Lagrangians. We denote by K∗

2 (resp., K∗
1 ) the Legendre dual of a functional K(x, y)

with respect to the second variable (resp., the first variable), we have the following

Proposition 2.2 Let L be an ASD Lagrangian on a reflexive Banach space X, then its corresponding
Hamiltonian H = HL is anti-selfdual.
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Proof: Since a Lagrangian L ∈ L(X) is convex in both variables, its corresponding Hamiltoninan HL is
always concave in the first variable. Also note that the Legendre transform of −HL(·, y) with respect to the
first variable is related to the Legendre transform in both variables of its Lagrangian in the following way.

(−HL)∗1(p, y) = sup{〈p, x〉 +HL(x, y);x ∈ X}

= sup{〈p, x〉 + sup{〈y, q〉 − L(x, q); q ∈ X∗};x ∈ X}

= L∗(p, y).

If now L is an ASD Lagrangian, then the convex lower semi-continuous envelope of the function x →
−HL(x, y) (i.e., the largest convex lower semi-continuous function below the function x→ −HL(x, y)) is

(−HL)∗∗1 (x, y) = sup{〈p, x〉 − (−HL)∗1(p, y); p ∈ X∗}

= sup{〈p, x〉 − L∗(p, y); p ∈ X∗}

= sup{〈p, x〉 − L(−y,−p); p ∈ X∗}

= HL(−y,−x).

Note that a characterization of anti-selfdual Hamiltonian that correspond to an ASD Lagrangian (i.e., H =
HL for some L ∈ LAD(X)) is that

H∗
2 (−x,−p) = (−H)∗1(p, x),

for each (x, p) ∈ X × X∗. In this case, the corresponding ASD Lagrangian is nothing else but L(x, p) :=
H∗

2 (x, p) = (H)∗1(−p,−x).

As mentioned above since a Lagrangian L ∈ L(X) is convex in both variables, then its corresponding Hamil-
toninan HL is always concave in the first variable. However, HL is not necessarily upper semi-continuous in
the first variable, even if L is an anti-selfdual Lagrangian. This leads to the following notion.

Definition 2.4 A Lagrangian L ∈ L(X) will be called tempered if for each y ∈ Dom1(H), the map x →
H(x,−y) from X to R ∪ {−∞} is upper semi-continuous.

A typical tempered Lagrangian (resp., tempered ASD-Lagrangian) is L(x, p) = ϕ(x)+ψ∗(p) (resp., L(x, p) =
ϕ(x) +ϕ∗(−p)) where ϕ and ψ are convex and lower semi-continuous on X . We let L

T
(X) denote the class

of tempered Lagrangians and L
T AD

(X) the class of tempered ASD Lagrangians on X .
We now recall from [8] a few of the operations defined on the class of Lagrangians L(X) and study the
permanence properties of the class LTAD(X) of tempered ASD Lagrangians.

• Addition: If L,M ∈ L(X), define the Lagrangian L⊕M on X ×X∗ by:

(L⊕M)(x, p) = inf{L(x, r) +M(x, p− r); r ∈ X∗}

• Convolution: If L,M ∈ L(X), define the Lagrangian L ?M on X ×X∗ by:

(L ?M)(x, p) = inf{L(z, p) +M(x− z, p); z ∈ X}

• Right operator shift: If L ∈ L(X) and B : X → X∗ is a bounded linear operator, define the Lagrangian
LB on X ×X∗ by

LB(x, p) := L(x,Bx+ p).

Lemma 2.5 Let X be a reflexive Banach space, then the following hold:

1. If L and M are two Lagrangians in L(X), then HL⊕M (x, y) = HL(x, y) + HM (x, y), where HL and
HM denote the corresponding Hamiltonians.

2. If L and M are in LAD(X), then L∗ ⊕M∗(q, y) = L ?M(−y,−q) for every (y, q) ∈ X ×X∗.

3. If L is an ASD Lagrangian and M is of the form M(x, p) = ϕ(x) + ϕ∗(−p) for some convex l.s.c.
function ϕ, then (L⊕M)∗ = L∗ ?M∗ and (L ?M)∗ = L∗ ⊕M∗.
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Proof: (1) and (2) are straightforward, while (3) was established in [8]. It follows that the λ-regularization

of an ASD Lagrangian L, that is Lλ := L ? Tλ where Tλ(x, p) = λ2‖x‖2

2 + ‖p‖2

2λ2 , is also an ASD Lagrangian.

We shall see later that not all ASD Lagrangians are automatically tempered. This lemma shows that it is
the case under certain coercivity conditions.

Proposition 2.3 Let L be an ASD Lagrangian on a reflexive Banach space X. If for some p0 ∈ X and
α > 1, we have that L(x, p0) ≤ C(1 + ‖x‖α) for all x ∈ X, then L belongs to L

T AD
(X).

Proof: Note that in this case, we readily have that Dom1(L) = Dom1(HL) = X.

Assume first that lim
‖x‖+‖p‖→+∞

L(x,p)
‖x‖+‖p‖ = ∞, and write

HL(x, y) = sup{〈p, y〉 − L(x, p); p ∈ X∗}

= sup{〈p, y〉 − L∗(−p,−x); p ∈ X∗}

= sup{〈p, y〉 − sup{〈−p, z〉+ 〈−x, q〉 − L(z, q); z ∈ X, q ∈ X∗}; p ∈ X∗}

= sup{〈p, y〉 + inf{〈p, z〉+ 〈x, q〉 + L(z, q); z ∈ X, q ∈ X∗}; p ∈ X∗}

= sup
p∈X∗

inf
(z,q)∈X×X∗

{〈p, y〉 + 〈p, z〉 + 〈x, q〉 + L(z, q)}.

The function S defined on the product space (X ×X∗) ×X∗) as

S((z, q), p) = 〈p, y + z〉 + 〈x, q〉 + L(z, q)

is convex and lower semi-continuous in the first variable (z, q) and concave and upper semi-continuous in the
second variable p, hence in view of the coercivity condition, Von-Neuman’s min-max theorem applies and
we get:

H(x, y) = sup
p∈X∗

inf
(z,q)∈X×X∗

{〈p, y + z〉 + 〈x, q〉 + L(z, q)}

= inf
(z,q)∈X×X∗

sup
p∈X∗

{〈p, y + z〉 + 〈x, q〉 + L(z, q)}

= inf
q∈X∗

{〈x, q〉 + L(−y, q)}

= −HL(−y,−x).

It follows that L is tempered under the coercivity assumption.
Suppose now L(x, p0) ≤ C(1 + ‖x‖α), and consider the λ-regularization of its conjugate L∗, that is Mλ =

L∗ ? T ∗
λ where T ∗

λ (x, p) = ‖x‖2

2λ2 + λ2‖p‖2

2 . Since obviously L∗ is ASD on X∗, we get from Lemma 2.5.3 that
Mλ is ASD on X∗. Moreover,

Mλ(p, x) = inf{L∗(q, x)+
‖p− q‖2

2λ2
+
λ2‖x‖2

2
; q ∈ X∗} ≤ L(x, p0)+

1

2λ2
‖p−p0‖

2+
λ2‖x‖2

2
≤ C1+C2‖x‖

β+C3‖p‖
2

which means that its dual M∗
λ is an ASD Lagrangian on X that is coercive in both variables. By the first part

of the proof, HM∗
λ

is a tempered ASD Hamiltonian on X . But in view of Lemma 2.5.1, we have M ∗
λ = L⊕Tλ

and therefore HM∗
λ

= HL + HTλ
. Consequently x → HL(x, y) is upper semi-continuous and L itself is a

tempered ASD Lagrangian.

By exploiting the duality between tempered ASD Lagrangians and ASD Hamiltonians, we get the following

Proposition 2.4 The class L
T AD

(X) possesses the following permanence properties.

1. If L and M are in L
T AD

(X) and λ > 0, then the Lagrangians L⊕M , and λ·L also belong to L
T AD

(X).

2. If L is an ASD Lagrangian, then its λ-regularization Lλ ∈ L
T AD

(X).

3. If L ∈ L
T AD

(X) and B : X → X∗ is a skew-adjoint operator, then LB is also in L
T AD

(X).
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Proof: They all follow from Proposition 2.1, Lemma 2.5 and Proposition 2.3. Note also that

HLB
(x, y) = HL(x, y) − 〈Bx, y〉.

Let now B be a linear –not necessarily bounded- map from its domain D(B) ⊂ X into X∗ such that D(B)
is dense in X , we consider the domain of its adjoint B∗ which is defined as:

D(B∗) = {x ∈ X ; sup{〈x,By〉; y ∈ D(B), ‖y‖X ≤ 1} < +∞}.

Definition 2.6 Say that

1. B is antisymmetric if D(B) ⊂ D(B∗) and if B∗ = −B on D(B).

2. B is skew-adjoint if it is antisymmetric and if D(B) = D(B∗).

We then have the following easy lemma (See also [10]).

Lemma 2.7 Let L : X × X∗ → R be an ASD Lagrangian on a reflexive Banach space X and let B be a
linear skew-adjoint map from its domain D(B) ⊂ X into X∗ such that the function x → L(x, 0) is bounded
on the unit ball of X. The Lagrangian LB defined by

LB(x, p) =

{

L(x,Bx+ p) if x ∈ D(B)
+∞ if x /∈ D(B)

is then itself anti-selfdual on X. Moreover, if L is tempered then so is LB whose Hamiltonian is given by

HB(x, y) =

{

HL(x, y) − 〈Bx, y〉 if x ∈ D(B)
−∞ if x /∈ D(B)

We shall also deal with situations where operators are skew-adjoint provided one takes into account certain
boundary terms. We consider the following notion introduced in [10].

Definition 2.8 Let B be a linear map from its domain D(B) in a reflexive Banach space X into X∗ and
consider (b1, b2) to be a pair of linear maps from its domain D(b1, b2) in X into the product of two Hilbert
spaces H1 ×H2. Associate the set

D∗(B, b1, b2) =

{

y ∈ X ; sup{〈y,Bx〉 −
1

2
(‖b1(x)‖

2
H1

+ ‖b2(x)‖
2
H2

);x ∈ S, ‖x‖X < 1} <∞

}

.

• Say that B is anti-symmetric modulo the boundary operators (b1, b2) if the following properties are satisfied:

1. The set S = D(B) ∩D(b1, b2) is dense in X .

2. The space X0 := Ker(b1, b2) ∩D(B) is dense in X .

3. The image of S by (b1, b2) is dense in H1 ×H2.

4. For every x, y ∈ S, we have 〈y,Bx〉 = −〈By, x〉 + 〈b2(x), b2(y)〉H2 − 〈b1(x), b1(y)〉H1 .

• Say that B is skew-adjoint modulo the boundary operators (b1, b2) if it is anti-symmetric modulo the
boundary operators (b1, b2) and if in addition D∗(B, b1, b2) = D(B) ∩D(b1, b2).

It is clear that if b1, b2 are identically zero, then our definition coincides with the notions in Definition 2.5.
For problems involving boundaries, we may start with an ASD Lagrangian L, but if the linear operator B
is skew-adjoint modulo a term involving the boundary, the Lagrangian LB is not ASD but we may recover
anti-selfduality by adding a correcting term via a “Boundary Lagrangian” `.

Definition 2.9 We say that ` : H1 ×H2 → R ∪ {+∞} is a self-dual boundary Lagrangian if

`∗(−h1, h2) = `(h1, h2) for all (h1, h2) ∈ H1 ×H2. (12)
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It is easy to see that such a boundary Lagrangian will always satisfy the inequality

`(r, s) ≥ 1
2 (‖s‖2 − ‖r‖2) for all (r, s) ∈ H1 ×H2. (13)

The basic example of a self dual boundary Lagrangian is given by a function ` on H1 × H2, of the form
`(x, p) = ψ1(x) +ψ2(p), with ψ∗

1(x) = ψ1(−x) and ψ∗
2(p) = ψ2(p). Here the choices for ψ1 and ψ2 are rather

limited and the typical sample is:

ψ1(x) =
1

2
‖x‖2 − 2〈a, x〉 + ‖a‖2, and ψ2(p) = 1

2‖p‖
2.

where a is given in H1. Boundary operators and Lagrangians allow us to build new ASD Lagrangians. Here
is the situation when the skew-adjoint operators are not necessarily bounded. Most of it was established in
[10], but we include here a proof for completness.

Proposition 2.5 Let ` : H1 ×H2 → R ∪ {+∞} be a self-dual boundary Lagrangian on the product of two
Hilbert spaces H1 × H2, and let L : X × X∗ → R be an ASD Lagrangian on a reflexive Banach space X
such that for every p ∈ X∗, the function x→ L(x, p) is bounded on the bounded sets of X. Let B be a linear
map from its domain D(B) ⊂ X into X∗, and let (b1, b2) : D(b1, b2) ⊂ X → H1 × H2 be linear boundary
operators. Assume one of the following two conditions:

1. B is antisymmetric modulo the boundary operators (b1, b2), and 0 ∈ Dom1(L) ⊂ D(B) ∩D(b1, b2).

2. B is skew-adjoint modulo the boundary operators (b1, b2) and `(r, s) ≤ C(1 + ‖r‖2 + ‖s‖2) for all
(r, s) ∈ H1 ×H2.

Then the Lagrangian defined by

LB,`(x, p) =

{

L(x,Bx+ p) + `(b1(x), b2(x)) if x ∈ D(B) ∩D(b1, b2)
+∞ if x /∈ D(B) ∩D(b1, b2)

is anti-self dual on X. Its Hamiltonian is then given by

HB,`(x, y) =

{

HL(x, y) − 〈Bx, y〉 − `(b1(x), b2(x)) if x ∈ D(B) ∩D(b1, b2)
−∞ if x /∈ D(B) ∩D(b1, b2)

Proof: Before we proceed with the proof, we note that while HB,`(−x,−y) ≤ −HB,`(y, x) for every
(x, y) ∈ X × X and consequently HB,`(x,−x) ≤ 0, we almost never have equality. In other words LB,`

is never tempered even when L is. This is due to the fact that with the above assumptions on the density
of their kernel, the operators b1, b2 can never be continuous.

Assume now that B is antisymmetric modulo the boundary operators (b1, b2), and that for every p ∈ X∗,
the function x → L(x, p) is continuous on X . We shall prove that L∗

B,`(p̃, x̃) = LB,`(−x̃,−p̃) if x̃ ∈
D(B) ∩D(b1, b2). Indeed, fix x̃ ∈ S := D(B) ∩D(b1, b2), and write

L∗
B,`(p̃, x̃) = sup {〈x̃, p〉 + 〈x, p̃〉 − L(x,Bx+ p) − `(b1(x), b2(x));x ∈ S, p ∈ X∗}

Substituting q = Bx+ p, and since for x̃ ∈ S, we have 〈x̃, Bx〉 = −〈x,Bx̃〉 − 〈b1(x), b1(x̃)〉 + 〈b2(x), b2(x̃)〉,
we obtain

L∗
B,`(p̃, x̃) = sup

x∈S

q∈X∗

{〈x̃, q −Bx〉 + 〈x, p̃〉 − L(x, q) − `(b1(x), b2(x))}

= sup
x∈S

q∈X∗

{

〈x,Bx̃〉 + 〈b1(x), b1(x̃)〉 − 〈b2(x), b2(x̃)〉 + 〈x̃, q〉 + 〈x, p̃〉 − L(x, q) − `(b1(x), b2(x))

}

= sup

{

〈x,Bx̃ + p̃〉 + 〈b1(x+ x0), b1(x̃)〉 − 〈b2(x+ x0), b2(x̃)〉 + 〈x̃, q〉 − L(x, q)

−`(b1(x+ x0), b2(x+ x0));x ∈ S, q ∈ X∗, x0 ∈ Ker(b1, b2) ∩D(B)

}
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Since S is a linear space, we may set w = x+ x0 and write

L∗
B,`(p̃, x̃) = sup

{

〈w − x0, Bx̃+ p̃〉 + 〈b1(w), b1(x̃)〉 − 〈b2(w), b2(x̃)〉 + 〈x̃, q〉 − L(w − x0, q)

−`(b1(w), b2(w));w ∈ S, q ∈ X∗, x0 ∈ Ker (b1, b2) ∩D(B)

}

Now, for each fixed w ∈ S and q ∈ X∗, the supremum over x0 ∈ Ker(b1, b2) ∩ D(B) can be taken as a
supremum over x0 ∈ X since Ker(b1, b2) ∩ D(B) is dense in X and all terms involving x0 are continuous
in that variable. Furthermore, for each fixed w ∈ S and q ∈ X∗, the supremum over x0 ∈ X of the terms
w − x0 can be written as supremum over v ∈ X where v = w − x0. So setting v = w − x0 we get

L∗
B,`(p̃, x̃) = sup

{

〈v,Bx̃ + p̃〉 + 〈b1(w), b1(x̃)〉 − 〈b2(w), b2(x̃)〉 + 〈x̃, q〉 − L(v, q)

− `(b1(w), b2(w)); v ∈ X, q ∈ X∗, w ∈ S}

= sup
v∈X

sup
q∈X∗

{〈v,Bx̃+ p̃〉 + 〈x̃, q〉 − L(v, q)}

+ sup
w∈S

{〈b1(w), b1(x̃)〉 + 〈b2(w),−b2(x̃)〉 − `(b1(w), b2(w))}

Since the range of (b1, b2) : S → H1 × H2 is dense in the H1 × H2 topology, the boundary term can be
written as

sup
a∈H1

sup
b∈H2

{〈a, b1(x̃)〉 + 〈b,−b2(x̃)〉 − `(a, b)} = `∗(b1(x̃),−b2(x̃)) = `(−b1(x̃),−b2(x̃)).

while the main term is clearly equal to L∗(Bx̃ + p̃, x̃) = L(−x̃,−Bx̃ − p̃) in such a way that L∗
B,`(p, x̃) =

LB,`(−x̃,−p̃) if x̃ ∈ D(B) ∩D(b1, b2).

Now assume x̃ /∈ S = D(B) ∩D(b1, b2), then −x̃ /∈ S. and we distinguish the two cases:
Case 1: Under condition 1, we have that −x̃ /∈ Dom1(L), hence −HL(−x̃, 0) = +∞. Now the boundedness
condition on L implies by Proposition 2.3 that it is a tempered ASD Lagrangian, which means since 0 ∈
Dom1(L), that HL(0, x̃) = −HL(−x̃, 0). It follows that

L∗
B,`(p̃, x̃) = sup

x∈Dom1(L)

p∈X∗

{

〈x̃, p−Bx〉 + 〈x, p̃〉 − L(x, p) −
‖b1(x)‖

2
H1

2
−

‖b2(x)‖
2
H2

2

}

≥ sup
p∈X∗

{〈x̃, p〉 − L(0, p)}

= HL(0, x̃) = −HL(−x̃, 0) = +∞ = LB,`(−x̃,−p̃)

Case 2: Under condition 2, write

L∗
B,`(p̃, x̃) = sup

x∈S

q∈X∗

{

〈x̃, q −Bx〉 + 〈x, p̃〉 − L(x, q) −
‖b1(x)‖

2
H1

2
−

‖b2(x)‖
2
H2

2

}

≥ sup
x∈S

‖x‖X<1

{

〈−x̃, Bx〉 + 〈x, p̃〉 − L(x, 0) −
‖b1(x)‖

2
H1

2
−

‖b2(x)‖
2
H2

2
.

}

Since by assumption L(x, 0) < K whenever ‖x‖X < 1, and `(r, s) ≤ C(1+‖r‖2+‖s‖2) for all (r, s) ∈ H1×H2,
we obtain that

L∗
B,`(p̃, x̃) ≥ sup

x∈S

‖x‖X<1

{

〈−x̃, Bx〉 + 〈x, p̃〉 − C −K −
‖b(x)‖

2
H2

2
−

‖b2(x)‖
2
H2

2

}

= +∞ = LB,`(−x̃,−p̃)

since x̃ /∈ S as soon as −x̃ /∈ S. Therefore L∗
B,`(p̃, x̃) = LB,`(−x̃,−p̃) for all (x̃, p̃) ∈ X ×X∗ and LB,` is an

anti-selfdual Lagrangian.
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3 A nonlinear variational principle for ASD Lagrangians

Definition 3.1 (A) Say that a –non necessarily linear– map Λ : D(Λ) ⊂ X → X∗ is a regular map if

u→ Λu is weak-to-weak continuous, (14)

and
u→ 〈Λu, u〉 is weakly lower semi-continuous on D(Λ). (15)

(B) Say that Λ : D(Λ) ⊂ X → X∗ is a regular conservative map if it satisfies (14) and

〈Λu, u〉 = 0 for all u in its domain D(Λ). (16)

It is clear that positive bounded linear operators are necessarily regular maps and that regular conservative
maps (which include skew-symmetric bounded linear operators) are also regular maps. However, there are
also plenty of nonlinear regular maps many of them appearing in the basic equations of hydrodynamics and
magnetohydrodynamics (see below, [9] and [11]).
Now recall that ASD Lagrangians readily satisfy L(x, p) ≥ −〈x, p〉 for every (x, p) ∈ X ×X∗, which means
that we always have the following inequality:

L(x,Λx) + 〈x,Λx〉 ≥ 0 for all x ∈ D(Λ). (17)

What is remarkable is that, just like in the case of linear skew-adjoint operators [8], the infimum will often
be zero as long as Λ is a regular map, a fact that will allow us to derive variationally several nonlinear PDEs
without using Euler-Lagrange theory. Here is our basic result.

Theorem 3.2 Let L be an anti-self dual Lagrangian on a reflexive Banach space X and let Λ : D(Λ) ⊂
X → X∗ be a regular map such that Dom1(L) ⊂ D(Λ). Assume that

lim
‖x‖→+∞

HL(0, x) + 〈Λx, x〉 = +∞

where HL is the Hamiltonian associated to L. Then there exists x̄ ∈ Dom1(L) such that:

L(x̄,Λx̄) + 〈Λx̄, x̄〉 = inf
x∈X

L(x,Λx) + 〈Λx, x〉 = 0 (18)

(−Λx̄,−x̄) ∈ ∂L(x̄,Λx̄). (19)

This is a corollary of the following much more general result.

Theorem 3.3 Let L : X ×X∗ → R∪ {+∞} be an anti-selfdual Lagrangian on a reflexive Banach space X
and let ` : H1 ×H2 → R ∪ {+∞} be a self-dual boundary Lagrangian on the product of two Hilbert spaces
H1 ×H2. Consider B : D(B) ⊂ X → X∗ and (b1, b2) : D(b1, b2) ⊂ X → H1 ×H2 to be linear operators such
that

〈x,Bx〉 = 1
2 (‖b2x‖

2 − ‖b1x‖
2) for all x ∈ D(B) ∩D(b1, b2), (20)

and let Λ : D(Λ) ⊂ X → X∗ be a regular operator such that the Lagrangian LB,` is anti-selfdual on the graph
of Λ and Dom1(L) ∩D(B) ∩D(b1, b2) ⊂ D(Λ). Assuming that

lim
‖x‖→+∞

HL(0, x) + 〈Λx, x〉 = +∞,

then, there exists x̄ ∈ Dom1(L) ∩D(B) ∩D(b1, b2) such that:

L(x̄, Bx̄+ Λx̄) + 〈Λx̄, x̄〉 + `(b1x̄, b2x̄) = inf
x∈X

{L(x,Bx+ Λx) + 〈Λx, x〉 + `(b1x, b2x)} = 0 (21)

(−Λx̄−Bx̄,−x̄) ∈ ∂L(x̄, Bx̄+ Λx̄) (22)

`(b1(x̄), b2(x̄)) =
1

2
(‖b2(x̄)‖

2 − ‖b1(x̄)‖
2). (23)
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We shall deduce Theorem 3.3 from the following Ky-Fan type min-max theorem due to Brezis-Nirenberg-
Stampachia (see [6]).

Lemma 3.4 Let D be a convex subset of a reflexive Banach space X and let M(x, y) be a real valued function
on D ×D ⊂ X ×X that satisfies the following conditions:

(1) M(x, x) ≤ 0 for every x ∈ D.

(2) For each x ∈ D, the function y →M(x, y) is concave.

(3) For each y ∈ D, the function x →M(x, y) is weakly lower semi-continuous on X.

(4) There exists K > 0 and y0 ∈ X such that ‖y0‖ ≤ K and inf
‖x‖>K

M(x, y0) > 0.

Then there exists x0 ∈ D such that sup
y∈D

M(x0, y) ≤ 0.

Proof of Theorem 3.3: Since the Lagrangian LB,` defined above is anti-self dual on the graph of Λ, we
can write for each x ∈ D := Dom(L) ∩D(B) ∩D(b1, b2) ⊂ D(Λ),

I(x) = LB,`(x,Λx) + 〈Λx, x〉 = L∗
B,`(−Λx,−x) + 〈Λx, x〉

= sup{〈y,−Λx〉 + 〈p,−x〉 − LB,`(y, p); y ∈ X, p ∈ X∗} + 〈Λx, x〉

= sup{〈y,−Λx〉 + 〈p,−x〉 − L(y,By + p) − `(b1(y), b2(y)); y ∈ D, p ∈ X∗} + 〈Λx, x〉

= sup{〈y,−Λx〉 + 〈q −By,−x〉 − L(y, q) − `(b1(y), b2(y)); y ∈ D, q ∈ X∗} + 〈Λx, x〉

= sup{〈y,−Λx〉 + 〈x,By〉 − `(b1(y), b2(y)) + sup{〈q,−x〉 − L(y, q); , q ∈ X∗}; y ∈ D} + 〈Λx, x〉

= sup{〈x− y,Λx〉 + 〈x,By〉 − `(b1(y), b2(y)) +HL(y,−x); y ∈ D}

= sup
y∈D

M(x, y)

where
M(x, y) = 〈x− y,Λx〉 + 〈x,By〉 − `(b1(y), b2(y)) +HL(y,−x),

and where HL is the Hamiltonian associated to L.
We now claim that M satisfies all the properties of the Ky-Fan min-max lemma above. Indeed,
(1) For each x ∈ D(B)∩D(b1, b2), we have y →M(x, y) is concave since the first part y → 〈x−y,Λx〉+〈x,By〉
is clearly linear, while y → −`(b1(y), b2(y)) and y → HL(y, x) are concave.
(2) For each y ∈ D(A) ∩ D(b1, b2), the function x → M(x, y) is weakly lower semi-continuous on D(A) ∩
D(b1, b2) since x → 〈x− y,Λx〉+ 〈x,By〉 is weakly continuous by hypothesis while x→ HL(y,−x) is clearly
the supremum of continuous affine functions.
(3) To show that M(x, x) ≤ 0 for each x ∈ D(A) ∩D(b1, b2), use the fact that HL is an ASD Hamiltonian,
hence HL(x,−x) ≤ 0 and Property (13) satisfied by ` to write

M(x, x) ≤ 〈x,Bx〉 − `(b1(x), b2(x)) =
1

2
(‖b2(x)‖

2 − ‖b1(x)‖
2) − `(b1(x), b2(x)) ≤ 0.

(4) The set X0 = {x ∈ X ;M(x, 0) ≤ 0} is bounded in X since M(x, 0) = HL(0,−x) + 〈Λx, x〉 − `(0, 0) and
the latter goes to infinity with ‖x‖.
It follows from Lemma 3.4 that there exists x̄ ∈ D such that sup

y∈D
M(x̄, y) ≤ 0. In other words

I(x̄) = sup
y∈D

M(x̄, y) ≤ 0.

On the other hand, for any x ∈ X , we have

I(x) = L(x,Bx+ Λx) + 〈Λx, x〉 + `(b1x, b2x)

≥ −〈x,Bx〉 + `(b1x, b2x)

= −
1

2
(‖b2(x)‖

2 − ‖b1(x)‖
2) + `(b1x, b2x) ≥ 0.
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It follows that I(x̄) = 0 = infx∈X I(x), which means

L(x̄, Bx̄+ Λx̄) + 〈Λx̄, x̄〉 + `(b1x̄, b2x̄) = inf
x∈X

{L(x,Bx+ Λx) + 〈Λx, x〉 + `(b1x, b2x)} = 0. (24)

To establish (21), write

0 = L(x̄, Bx̄+ Λx̄) + 〈Λx̄, x̄〉 + `(b1x̄, b2x̄) = L(x̄, Bx̄+ Λx̄) + 〈x̄, Bx̄+ Λx̄〉 − 〈x̄, Bx̄〉 + `(b1x̄, b2x̄)

= L(x̄, Bx̄+ Λx̄) + 〈x̄, Bx̄+ Λx̄〉 −
1

2
(‖b2x̄‖

2 − ‖b1x̄‖
2) + `(b1x̄, b2x̄).

Since L(x, p) + 〈x, p〉 ≥ 0 and `(r, s) ≥ 1
2 (‖s‖2 − ‖r‖2), we get

{

L(x̄, Bx̄+ Λx̄) + 〈x̄, Bx̄+ Λx̄〉 = 0.
`(b1x̄, b2x̄) = 1

2 (‖b2x̄‖
2 − ‖b1x̄‖

2).
(25)

To obtain the second claim, we use that L is anti-selfdual to write

〈(x̄,Λx̄+Bx̄), (−Λx̄−Bx̄,−x̄)〉 = −2〈x̄,Λx̄+Bx̄〉

= 2L(x̄,Λx̄+Bx̄)

= L(x̄,Λx̄+Bx̄) + L∗(−Λx̄−Bx̄,−x̄).

The last part of claim (21) now follows from the limiting case of the Legendre-Fenchel duality.

Theorem 3.2 is now immediate as it corresponds to the case where b1, b2 and ` are zero. Actually, we can
add to Λ any positive linear operator B : D(B) ⊂ X → X∗ with a large enough domain. We shall see in the
next section that it is already sufficient to cover several nonlinear PDEs including Navier-Stokes equations
and others.

Corollary 3.5 Let L be an anti-self dual Lagrangian on a reflexive space X, B : X → X∗ a positive bounded
linear operator and let Λ : D(Λ) ⊂ X → X∗ be a regular map such that Dom1(L) ⊂ D(Λ) and

lim
‖x‖→+∞

HL(0, x) + 〈x,Bx + Λx〉 = +∞.

Then, there exists x̄ ∈ Dom1(L) such that:

L(x̄, Bx̄+ Λx̄) + 〈x̄, Bx̄+ Λx̄〉 = inf
x∈X

L(x,Bx+ Λx) + 〈x,Bx + Λx〉 = 0 (26)

(−Λx̄−Bx̄,−x̄) ∈ ∂L(x̄, Bx̄+ Λx̄). (27)

Proof: It is sufficient to apply Theorem 3.3 to b1, b2 and ` being identically zero, while Λ̃ = Λ +B satisfies
Dom1(L) ⊂ D(Λ̃).

If the domain of the linear operator B is not large enough, we can use Lemma 2.7 to obtain

Corollary 3.6 Let L be an anti-self dual Lagrangian on a reflexive Banach space X such that x → L(x, 0)
is bounded on the unit ball of X. Suppose B : D(B) ⊂ X → X∗ is a linear skew-adjoint operator and
Λ : X → X∗ is a regular map such that D(B) ∩ Dom1L ⊂ D(Λ) and

lim
‖x‖→+∞

HL(0, x) + 〈x,Λx〉 = +∞.

Then there exists x̄ ∈ D(B) ∩ Dom1L satisfying (26) and (27).

Proof: By the above Lemma, LB is an anti-selfdual Lagrangian, in particular it is so on the graph of Λ.
The rest follows from Theorem 3.3 applied with b1, b2 and ` being identically zero.

In order to deal with situations where operators are skew-adjoint provided one takes into account certain
boundary terms, we have the following
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Corollary 3.7 Let ` : H1 × H2 → R ∪ {+∞} be a self-dual boundary Lagrangian on the product of two
Hilbert spaces H1 × H2, and let L : X × X∗ → R ∪ {+∞} be an anti-selfdual Lagrangian on a reflexive
Banach space X such that for every p ∈ X∗, x → L(x, p) is bounded on the bounded sets of X. Let
(B, (b1, b2)) : D(B) × D(b1, b2) → X∗ × (H1 × H2) be linear operators such that one of the following two
conditions hold:

1. B is antisymmetric modulo boundary operators (b1, b2), and 0 ∈ Dom1(L) ⊂ D(B) ∩D(b1, b2).

2. B is skew-adjoint modulo the boundary operators (b1, b2) and `(r, s) ≤ C(1 + ‖r‖2 + ‖s‖2) for all
(r, s) ∈ H1 ×H2.

Then, for any regular operator Λ : D(Λ) ⊂ X → X∗ such that Dom(L) ∩D(B) ∩D(b1, b2) ⊂ D(Λ) and

lim
‖x‖→+∞

HL(0, x) + 〈Λx, x〉 = +∞,

there exists x̄ ∈ Dom1(L) ∩D(B) ∩D(b1, b2) such that:

L(x̄, Bx̄+ Λx̄) + 〈x̄,Λx̄〉 + `(b1x̄, b2x̄) = inf
x∈X

{L(x,Bx+ Λx) + 〈x,Λx〉 + `(b1x, b2x)} = 0 (28)

(−Λx̄−Bx̄,−x̄) ∈ ∂L(x̄, Bx̄+ Λx̄) (29)

`(b1(x̄), b2(x̄)) =
1

2
(‖b2(x̄)‖

2 − ‖b1(x̄)‖
2). (30)

Proof: This follows from Theorem 3.2 and Proposition 2.5, since under these conditions the Lagrangian
LB,` is anti-selfdual.

4 A variational nonlinear Lax-Milgram theorem and applications

We now apply the above results to the most basic ASD Lagrangians of the form L(x, p) = ϕ(x)+ϕ∗(Bx−p)
where ϕ is a convex function and B is a linear anti-symmetric but not necessarily bounded operator. The
applications differ as they will depend on the “position” of the domain of B. We start with the case where
the linear operator component has a “large domain”.

Theorem 4.1 Let ϕ be a proper convex lower semi-continuous function on a reflexive Banach space X and
let B : D(B) ⊂ X → X∗ be an anti-symmetric linear operator such that Dom(ϕ) ⊂ D(B). Then, for any

regular operator Λ : D(Λ) ⊂ X → X∗ such that Dom(ϕ) ⊂ D(Λ) and lim
‖x‖→+∞

ϕ(x)+〈Λx,x〉
‖x‖ = +∞, there

exists for every f ∈ X∗, a solution x̄ ∈ Dom(ϕ) to the equation

0 ∈ f + Λx+Bx+ ∂ϕ(x). (31)

It is obtained as a minimizer of the problem:

inf
x∈X

{ϕ(x) + 〈f, x〉 + ϕ∗(−Λx−Bx− f) + 〈x,Λx〉} = 0. (32)

Proof: It is an immediate consequence of Corollary 3.5 applied to the Lagrangian L(x, p) = ψ(x) +ψ∗(−p)
where ψ(x) = ϕ(x) + 〈f, x〉. Note that its Hamiltonian is now H(x, y) = ϕ(−y)− ϕ(x) − 〈f, x+ y〉 meaning
that the coercivity hypothesis implies that H(0, y) + 〈y,Λy〉 → +∞ with ‖y‖. Corollary 3.5 then applies
with the Lagrangian L and the regular operator Λ to obtain that the minimum in (32) is attained at some
x̄ ∈ X . We then get

ϕ(x̄) + ϕ∗(−Bx̄− Λx̄− f) = 〈−Bx̄− Λx̄− f, x̄〉

which yields, in view of Legendre-Fenchel duality that

−Bx̄− Λx̄− f ∈ ∂ϕ(x̄).

An immediate application is the case where the linear operator component is bounded which already covers
many interesting applications.
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Corollary 4.2 Let ϕ be a function on a reflexive Banach space X and let B : X → X∗ be a bounded linear
operator such that the function ψ(x) := ϕ(x) + 1

2 〈Bx, x〉 is proper convex and lower semi-continuous on X.
Assume

lim
‖x‖→∞

‖x‖−1(ϕ(x) +
1

2
〈Bx, x〉) = +∞. (33)

Then, for any regular operator Λ : X → X∗ and any f ∈ X∗, there exists a solution x̄ ∈ X to the equation

0 ∈ f + Λx+Bx+ ∂ϕ(x). (34)

It is obtained as a minimizer of the problem:

inf
x∈X

{ψ(x) + 〈f, x〉 + ψ∗(−Λx−Bax− f) + 〈x,Λx〉} = 0 (35)

where Ba is the anti-symmetric part of B.

Proof: Apply the above theorem to ψ(x) + 〈f, x〉 and Ba = 1
2 (B −B∗). We then get x̄ ∈ X such that:

−Bax̄− Λx̄− f ∈ ∂ψ(x̄) = Bsx̄+ ∂ϕ(x̄)

hence x̄ satisfies (34).

Example 1: A variational resolution for the Stationary Navier-Stokes equation

Consider the incompressible stationary Navier-Stokes equation on a domain Ω of R
3







(u · ∇)u+ f = ν∆u−∇p on Ω
divu = 0 on Ω

u = 0 on ∂Ω
(36)

where ν > 0 and f ∈ Lp(Ω; R3). Let

Φ(u) =
ν

2

∫

Ω

Σ3
j,k=1(

∂uj

∂xk
)2 dx (37)

be the convex and coercive function on the Sobolev subspace V = {u ∈ H1
0 (Ω;R3); divv = 0}. Its Legendre

transform Φ∗ on V can be characterized as Φ∗(v) = 〈Sv, v〉 where S : V ∗ → V is the bounded linear operator
that associates to v ∈ V ∗ the solution v̂ = Sv of the Stokes’ problem







ν∆v̂ + ∇p = −v̂ on Ω
divv̂ = 0 on Ω

v̂ = 0 on ∂Ω.
(38)

It is easy to see that (36) can be reformulated as
{

(u · ∇)u+ f ∈ −∂Φ(u) = ν∆u−∇p
u ∈ V.

(39)

Consider now the nonlinear operator Λ : V → V ∗ defined as

〈Λu, v〉 =

∫

Ω

Σ3
j,k=1uk

∂uj

∂xk
vj dx = 〈(u · ∇)u, v〉.

We can deduce the following

Theorem 4.3 Assume Ω is bounded domain in R
3 and consider f ∈ Lp(Ω; R3) for p > 6

5 . Then the infimum
of the functional

I(u) = Φ(u) + Φ∗(−(u · ∇)u+ f) −

∫

Ω

Σ3
j=1fjuj

on V is equal to zero, and is attained at a solution of the Navier-Stokes equation (36).
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Proof: To apply Theorem 4.1, it remains to show that Λ is a regular conservative operator. First note that
〈Λu, u〉 = 0 on V . For the weak-to weak continuity, assume that un → u weakly in H1(Ω). We need to show
that for a fixed v ∈ V , we have that

〈Λun, v〉 =

∫

Ω

Σ3
j,k=1u

n
k

∂un
j

∂xk
vj dx = −

∫

Ω

Σ3
j,k=1u

n
k

∂vj

∂xk
un

j dx

converges to 〈Λu, v〉 =
∫

Ω Σ3
j,k=1uk

∂vj

∂xk
uj dx. But the Sobolev embedding in dimension 3 implies that (un)

converges strongly in Lp(Ω; R3) for 1 ≤ p < 6. On the other hand,
∂uj

∂xk
is in L2(Ω) and the result follows

from an application of Hölder’s inequality.

Example 2: Variational resolution for a fluid driven by its boundary

The full strength of Corollary 4.2 comes out when one deals with the Navier-Stokes equation with a boundary
moving with a prescribed velocity:







(u · ∇)u+ f = ν∆u−∇p on Ω
divu = 0 on Ω

u = u0 on ∂Ω
(40)

where
∫

∂Ω
u0·n dσ = 0, ν > 0 and f ∈ Lp(Ω; R3). Assuming that u0 ∈ H3/2(∂Ω) and that ∂Ω is connected,

a classical result of Hopf then yields for each ε > 0, the existence of v0 ∈ H2(Ω) such that

v0 = u0 on ∂Ω, div v0 = 0 and
∫

Ω
Σ3

j,k=1uk
∂v0

j

∂xk
uj dx ≤ ε‖u‖2

V for all u ∈ V . (41)

Setting v = u+ v0, then solving (40) reduces to finding a solution for






(u · ∇)u+ (v0 · ∇)u+ (u · ∇)v0 + f − ν∆v0 + (v0 · ∇)v0 = ν∆u−∇p on Ω
divu = 0 on Ω

u = 0 on ∂Ω.

This can be reformulated as the following equation in the space V

(u · ∇)u+ (v0 · ∇)u+ (u · ∇)v0 + g ∈ −∂Φ(u) (42)

where Φ is again the convex functional Φ(u) = ν
2

∫

Ω Σ3
j,k=1(

∂uj

∂xk
)2 dx as above and where

g := f − ν∆v0 + (v0 · ∇)v0 ∈ V ∗.

In other words, this is an equation of the form

Λu+Bu+ g ∈ −∂Φ(u) (43)

with Λu = (u · ∇)u is a regular conservative operator, and Bu = (v0 · ∇)u + (u · ∇)v0 is a bounded linear
operator. Note that the component B1u := (v0 · ∇)u is skew-symmetric which means that Hopf’s result
yields the required coercivity condition:

Ψ(u) := Φ(u) +
1

2
〈Bu, u〉 ≥

1

2
(ν − ε)‖u‖2 for all u ∈ V.

In other words, Ψ is convex and coercive and therefore we can apply Theorem 4.1 to deduce

Theorem 4.4 Under the above hypothesis, and letting Aa be the antisymmetric part of the operator Au =
(u · ∇)v0, the following functional

I(u) = Ψ(u) + Ψ∗(−(u · ∇)u− (v0 · ∇)u−Aau+ g) −

∫

Ω

Σ3
j=1gjuj

has zero for infimum on the Banach space V , which is attained at a solution ū for (42).
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The next application is a nonlinear Lax-Milgram type result with boundary constraints.

Theorem 4.5 Let ϕ : X → R ∪ {+∞} be a convex and lower semi-continuous on a reflexive Banach space
such that for some constant C > 0 and p1, p2 > 1, we have

1
C (‖x‖p1

X − 1) ≤ ϕ(x) ≤ C (‖x‖p2

X + 1) for every x ∈ X, (44)

Let B : D(B) ⊂ X → X∗ be a skew-adjoint operator modulo the boundary (b1, b2) : D(b1, b2) → H1×H2 where
H1, H2 are two Hilbert spaces. Then for any regular operator Λ : X → X∗ such that D(B)∩D(b1, b2) ⊂ D(Λ)
and any a ∈ X, there exists a solution x̄ ∈ X to the equation

Λx+Bx+ f ∈ −∂ϕ(x) (45)

b1(x) = a.

It is obtained as a minimizer of the functional defined as:

I(x) = ϕ(x) + 〈f, x〉 + ϕ∗(−Λx−Bx− f) + 〈x,Λx〉 +
1

2
(‖b1(x)‖

2 + ‖b2(x)‖
2) − 2〈a, b1(x)〉 + ‖a‖2 (46)

when x ∈ D(A) ∩D(b1, b2) and +∞ elsewhere. Moreover, I(x̄) = infx∈X I(x) = 0.

Proof: Let ψ(x) = ϕ(x)+〈f, x〉 and apply Corollary 3.7 to the ASD Lagrangian L(x, p) := ψ(x)+ψ∗(−p), to
the boundary Lagrangian `(r, s) = 1

2 (‖r‖2 +‖s‖2)−2〈a, r〉+‖a‖2, and to the skew-adjoint triplet (B, b1, b2).
Note also that I can be rewritten as:

I(x) = ϕ(x) + ϕ∗(−Λx−Bx− f) − 〈x,−Λx−Bx− f〉 +
1

2
(‖b1(x) − a‖2 ≥ 0.

Example 3: Variational resolution for a fluid driven by a transport operator

Let ~a ∈ C∞(Ω̄) be a smooth vector field on a neighborhood of a C∞ bounded open set Ω ⊂ R
3, let

a0 ∈ L∞(Ω), and consider the space X = {u ∈ H1
0 (Ω; R3); div(u) = 0} and the transport operator B : u 7→

(a · ∇)u+ 1
2div(a)u from D(B) = {u ∈ X ; a · ∇u+ 1

2divu ∈ X∗} into X∗. It is easy to show using Green’s
formula that the operator B is skew-adjoint on the space X (See [10]). Consider now the following equation
on the domain Ω ⊂ R

3







(u · ∇)u+ (~a · ∇)u+ a0u+ |u|m−2u+ f = ν∆u−∇p on Ω
divu = 0 on Ω

u = 0 on ∂Ω
(47)

where ν > 0, 6 ≥ m ≥ 1 and f ∈ Lq(Ω; R3) for q ≥ 6
5 . Suppose

1

2
div(a) − a0 ≥ 0 on Ω, (48)

and consider the functional

Ψ(u) =
ν

2

∫

Ω

Σ3
j,k=1(

∂uj

∂xk
)2 dx+

1

4

∫

Ω

(div~a− 2a0)|u|
2dx+

1

m

∫

Ω

|u|mdx+

∫

Ω

ufdx (49)

which is convex and coercive function on the space X . Theorem 4.5 then applies to yield

Theorem 4.6 Under the above hypothesis,
the functional

I(u) = Ψ(u) + Ψ∗(−(u · ∇)u− ~a · ∇u−
1

2
div(~a)u)

has zero for infimum and the latter is attained at a solution ū for (47).

We can also give a variational resolution for nonlinear anti-Hamiltonian systems.
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Theorem 4.7 Let ϕ be a proper convex lower semi-continuous function on X × Y , let A : X → Y ∗ be any
bounded linear operator, let B1 : X → X∗ (resp., B2 : Y → Y ∗) be two positive bounded linear operators,
and assume Λ := (Λ1,Λ2) : X × Y → X∗ × Y ∗ is a regular conservative operator. Assume that

lim
‖x‖+‖y‖→∞

ϕ(x, y) + 1
2 〈B1x, x〉 + 1

2 〈B2y, y〉

‖x‖ + ‖y‖
= +∞,

then for any (f, g) ∈ X∗ × Y ∗, there exists (x̄, ȳ) ∈ X × Y which solves the following system

{

Λ1(x, y) −A∗y −B1x+ f ∈ ∂1ϕ(x, y).
Λ2(x, y) +Ax−B2y + g ∈ ∂2ϕ(x, y).

(50)

The solution is obtained as a minimizer on X × Y of the functional

I(x, y) = ψ(x, y) + ψ∗(−A∗y −Ba
1x+ Λ1(x, y), Ax −Ba

2y + Λ2(x, y)).

where

ψ(x, y) = ϕ(x, y) +
1

2
〈B1x, x〉 +

1

2
〈B2y, y〉 − 〈f, x〉 − 〈g, y〉.

and where Ba
1 (resp., Ba

2 ) are the skew-symmetric parts of B1 and B2.

Proof: Consider the following ASD Lagrangian (see [8])

L((x, y), (p, q)) = ψ(x, y) + ψ∗(−A∗y −Ba
1x+ p,Ax−Ba

2y + q).

Theorem 4.1 yields that I(x, y) = L((x, y),Λ(x, y)) attains its minimum at some point (x̄, ȳ) ∈ X × Y and
that the minimum is actually 0. In other words,

0 = I(x̄, ȳ) = ψ(x̄, ȳ) + ψ∗(−A∗ȳ −Ba
1 x̄+ Λ1(x̄, ȳ), Ax̄−Ba

2 ȳ + Λ2(x̄, ȳ))

= ψ(x̄, ȳ) + ψ∗(−A∗ȳ −Ba
1 x̄+ Λ1(x̄, ȳ), Ax̄−Ba

2 ȳ + Λ2(x̄, ȳ))

−〈(x̄, ȳ), (−A∗ȳ −Ba
1 x̄+ Λ1(x̄, ȳ), Ax̄−Ba

2 ȳ + Λ2(x̄, ȳ))〉

from which follows that
{

−A∗y −Ba
1x+ Λ1(x, y) ∈ ∂1ϕ(x, y) +Bs

1(x) − f
Ax −Ba

2y + Λ1(x, y) ∈ ∂2ϕ(x, y) +Bs
2(y) − g.

(51)

A typical example of such a system are the equations of magneto-hydrodynamics, but here is a simpler
example communicated to us by A. Moameni.

Example 4: A variational resolution for doubly nonlinear coupled equations

Let b1 : Ω → Rn and b2 : Ω → Rn be two smooth vector fields on a bounded domain Ω of Rn, verifying
the conditions in example 3 and let B1v = b1 · ∇v and B2v = b2 · ∇v be the corresponding first order linear
operators. Consider the Dirichlet problem:







∆(v + u) + b1 · ∇u = |u|p−2u+ um−1vm + f on Ω
∆(v − u) + b2 · ∇v = |v|q−2q − umvm−1 + g on Ω

u = v = 0 on ∂Ω.
(52)

We can use the above to get

Theorem 4.8 Assume div(b1) ≥ 0 and div(b2) ≥ 0 on Ω, 2 < p, q ≤ 2n
n−2 and 1 < m < n+2

n−2 and consider

on H1
0 (Ω) ×H1

0 (Ω) the functional

I(u, v) = Ψ(u)+Ψ∗(b1.∇u+
1

2
div(b1)u+∆v−um−1vm)+Φ(v)+Φ∗(b2.∇v+

1

2
div(b2) v−∆u+umvm−1)
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where

Ψ(u) =
1

2

∫

Ω

|∇u|2dx+
1

p

∫

Ω

|u|pdx+

∫

Ω

fudx+
1

4

∫

Ω

div(b1) |u|2dx,

Φ(v) =
1

2

∫

Ω

|∇v|2dx+
1

q

∫

Ω

|v|qdx +

∫

Ω

gvdx+
1

4

∫

Ω

div(b2) |v|2dx

and Ψ∗ and Φ∗ are their Legendre transforms. Then there exists (ū, v̄) ∈ H1
0 (Ω) ×H1

0 (Ω) such that:

I(ū, v̄) = inf{I(u, v); (u, v) ∈ H1
0 (Ω) ×H1

0 (Ω)} = 0,

and (ū, v̄) is a solution of (52).

Proof: Let A = ∆ on H1
0 , B1 = div(b1), B2 = div(b2) and consider the ASD Lagrangian

L((u, v), (r, s))) = Ψ(u) + Ψ∗(b1.∇u+
1

2
div(b1)u+ ∆v + r) + Φ(v) + Φ∗(b2.∇v +

1

2
div(b2) v − ∆u+ s).

It is also easy to verify that the nonlinear operator Λ : H1
0 ×H1

0 → H−1 ×H−1 defined by

Λ(u, v) = (−um−1vm, umvm−1)

is regular and conservative.

5 Nonlinear evolution equations

Consider now an evolution triple X ⊂ H ⊂ X∗, where H is a Hilbert space with 〈, 〉 as scalar product, and
where X is a dense vector subspace of H , that is a reflexive Banach space once equipped with its own norm
‖ · ‖. Assuming the canonical injection X → H , continuous, we identify the Hilbert space H with its dual
H∗ and we “inject” H in X∗ in such a way that

〈h, u〉X∗,X = 〈h, u〉H for all h ∈ H and all u ∈ X

This injection is continuous, one-to-one, and H is also dense in X∗. In other words, the dual X∗ of X is
represented as the completion of H for the dual norm ‖h‖ = sup{〈h, u〉H ; ‖u‖X ≤ 1}.
Let [0, T ] be a fixed real interval and consider the following Banach spaces:

• The space L2
X of Bochner integrable functions from [0, T ] into X with norm

‖u‖2
L2(X) = (

∫ T

0

‖u(t)‖2
Xdt)

1
2 .

• The space X2 of all functions in L2
X such that u̇ ∈ L2

X∗ , equipped with the norm

‖u‖X = (‖u‖2
L2(X) + ‖u̇‖2

L2(X∗))
1/2.

Note that this last space is different from the Sobolev space

A2
X = {u : [0, T ] → X ; u̇ ∈ L2

X}

and we actually have A2
X ⊂ X2 ⊂ A2

X∗ .

Definition 5.1 A time dependent Lagrangian on [0, T ] × X × X∗ is any function L : [0, T ] × X × X∗ →
R ∪ {+∞} that is measurable with respect to the σ-field generated by the products of Lebesgue sets in [0, T ]
and Borel sets in H ×H. The Hamiltonian HL of L is the function defined on [0, T ]×X ×X∗ by:

H(t, x, y) = sup{〈y, p〉 − L(t, x, p); p ∈ X∗}

We say that L is an anti-self dual Lagrangian (ASD) on [0, T ] × X × X∗ if for any t ∈ [0, T ], the map
Lt : (x, p) → L(t, x, p) is in LAD(X): that is if

L∗(t, p, x) = L(t,−x,−p) for all (x, p) ∈ X ×X∗,

where here L∗ is the Legendre transform in the last two variables.
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The most basic time-dependent ASD-Lagrangians are again of the form

L(t, x, p) = ϕ(t, x) + ϕ∗(t,−p)

where for each t, the function x → ϕ(t, x) is convex and lower semi-continuous on X . We now show how
this property naturally “lifts” to path space. For that we associate to each time-dependent Lagrangian L on
[0, T ]×X ×X∗, the corresponding Lagrangian L on the path space L2

X × L2
X∗ defined by

L(u, p) :=

∫ T

0

L(t, u(t), p(t))dt.

Define the dual of L in both variables as

L∗(q, v) = sup

{

∫ T

0

(〈q(t), u(t)〉 + 〈p(t), v(t)〉 − L(t, u(t), p(t)))dt ; (u, p) ∈ L2
X × L2

X∗

}

and denote the associated Hamiltonian on path space by:

HL(u, v) = sup

{

∫ T

0

(〈p(t), v(t)〉 − L(t, u(t), p(t)))dt ; p ∈ L2
X∗

}

The following is standard (see [8]).

Proposition 5.1 Suppose that L is a Lagrangian on [0, T ] × X ×X∗, and let L be the corresponding La-
grangian on the path space L2

X × L2
X∗. Then

1. L∗(p, u) =
∫ T

0
L∗(t, p(t), u(t))dt.

2. HL(u, v) =
∫ T

0 HL(t, u(t), v(t))dt.

3. If L is an anti-self dual Lagrangian on [0, T ]×X ×X∗, then L is anti-selfdual on L2
X .

Proposition 5.2 Suppose ` is a self-dual boundary Lagrangian on H × H and let L be an anti-self dual
Lagrangian on [0, T ]×X ×X∗ such that

For each p ∈ L2
X∗, the map u→

∫ T

0
L(t, u(t), p(t))dt is continuous on L2

X (53)

The map u→
∫ T

0 L(t, u(t), 0)dt is bounded on the bounded sets of L2
X (54)

`(a, b) ≤ C(1 + ‖a‖2
H + ‖b‖2

H) for all (a, b) ∈ H ×H. (55)

Then the Lagrangian

ML(u, p) =

{
∫ T

0
L(t, u(t), p(t) + u̇(t))dt + `(u(0), u(T )) if u ∈ X2

+∞ otherwise

is anti-self dual on L2
X .

Proof: For (q, v) ∈ L2
X ×X2, write:

M∗
L(q, v) = sup

u∈L2
X

sup
p∈L2

X∗

{

∫ T

0

(〈u(t), q(t)〉 + 〈v(t), p(t)〉 − L(t, u(t), p(t) + u̇(t)))dt− `(u(0), u(T ))}

= sup
u∈X2

sup
p∈L2

X∗

{

∫ T

0

(〈u(t), q(t)〉 + 〈v(t), p(t)〉 − L(t, u(t), p(t) + u̇(t)))dt − `(u(0), u(T ))}

Make a substitution p(t) + u̇(t) = r(t) ∈ L2
X∗ . Since u and v are both in X2, we have:

∫ T

0

〈v, u̇〉 = −

∫ T

0

〈v̇, u〉 + 〈v(T ), u(T )〉 − 〈v(0), u(0)〉,
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and since the subspace X
2,0

= {u ∈ X2; u(0) = u(T ) = 0} is dense in L2
X , we obtain

M∗
L(q, v) = sup

u∈X2

sup
r∈L2

X∗

{

∫ T

0

(〈u(t), q(t)〉 + 〈v(t), r(t) − u̇(t)〉 − L(t, u(t), r(t)))dt − `(u(0), u(T ))

= sup
u∈X2

sup
r∈L2

X∗

{

∫ T

0

(〈u(t), q(t) + v̇(t)〉 + 〈v(t), r(t)〉 − L(t, u(t), r(t)))dt

−〈v(T ), u(T )〉 + 〈v(0), u(0)〉 − `(u(0), u(T ))}

= sup
u∈X2

sup
r∈L2

X∗

sup
u0∈X2,0

{

∫ T

0

(〈u(t), q(t) + v̇(t)〉 + 〈v(t), r(t)〉 − L(t, u(t), r(t)))dt

−〈v(T ), (u+ u0)(T )〉 + 〈v(0), (u+ u0)(0)〉 − `((u+ u0)(0), (u+ u0)(T ))}

= sup
w∈X2

sup
r∈L2

X∗

sup
u0∈X2,0

{

∫ T

0

(〈w(t) − u0(t), q(t) + v̇(t)〉 + 〈v(t), r(t)〉 − L(t, w(t) − u0(t), r(t)))dt

−〈v(T ), w(T )〉 + 〈v(0), w(0)〉 − `(w(0), w(T ))}

= sup
w∈X2

sup
r∈L2

X∗

sup
x∈L2

X

{

∫ T

0

(〈x(t), q(t) + v̇(t)〉 + 〈v(t), r(t)〉 − L(t, x(t), r(t)))dt

−〈v(T ), w(T )〉 + 〈v(0), w(0)〉 − `(w(0), w(T ))}

Here we have used the fact that X2,0 is dense in L2
X and the continuity of u →

∫ T

0 L(t, u(t), p(t))dt on L2
X

for each p.
Now, for each (a, b) ∈ X ×X , there is w ∈ X2 such that w(0) = a and w(T ) = b, namely the linear path

w(t) = (T−t)
T a+ t

T b.
Since also X is dense in H and ` is continuous on H , we finally obtain that

M∗
L(q, v) = sup

(a,b)∈X×X

sup
r∈L2

X∗

sup
x∈L2

X

{

∫ T

0

(〈x(t), q(t) + v̇(t)〉 + 〈v(t), r(t)〉 − L(t, x(t), r(t)))dt

−〈v(T ), b〉 + 〈v(0), a〉 − `(a, b)}

= sup
x∈L2

X

sup
r∈L2

X∗

{

∫ T

0

(〈x(t), q(t) + v̇(t)〉 + 〈v(t), r(t)〉 − L(t, x(t), r(t)))dt

+ sup
a∈H

sup
b∈H

{−〈v(T ), b〉 + 〈v(0), a〉 − `(a, b)}

=

∫ T

0

L∗(t, q(t) + v̇(t), v(t))dt + `∗(v(0),−v(T ))

=

∫ T

0

L(t,−v(t),−v̇(t) − q(t))dt+ `(−v(0),−v(T ))

= M(−v,−q).

If now (q, v) ∈ L2
X∗ × L2

X \ X2, then we use the fact that u →
∫ T

0 L(t, u(t), 0)dt is bounded on the unit ball
of X2 and the growth condition on ` to deduce
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M∗
L(q, v) ≥ sup

u∈X2

sup
r∈X2

{

∫ T

0

(〈u(t), q(t)〉 + 〈v(t), r(t)〉 − 〈v(t), u̇(t)〉 − L(t, u(t), r(t)))dt − `(u(0), u(T ))}

≥ sup
u∈X2

sup
r∈X2

{−‖u‖L2
X
‖q‖L2

X∗
− ‖v‖L2

X
‖r‖L2

X∗
+

∫ T

0

(−〈v(t), u̇(t)〉 − L(t, u(t), r(t)))dt − `(u(0), u(T ))}

≥ sup
‖u‖X2≤1

{−‖q‖2 +

∫ T

0

(〈−v(t), u̇(t)〉 − L(t, u(t), 0))dt− `(u(0), u(T ))}

≥ sup
‖u‖X2≤1

{C +

∫ T

0

(〈−v(t), u̇(t)〉 − L(t, u(t), 0))dt−
1

2
(‖u(0)‖2 + ‖u(T )‖2)}

≥ sup
‖u‖X2≤1

{D +

∫ T

0

〈−v(t), u̇(t)〉dt −
1

2
(‖u(0)‖2

X + ‖u(T )‖2
X)}.

Since now v does not belong to X2, we have that

sup
‖u‖X2≤1

∫ T

0

(〈v(t), u̇(t)〉dt +
1

2
(‖u(0)‖2

X + ‖u(T )‖2
X) = +∞

which means that M∗(q, v) = +∞ = M(−v,−q).

Now we can prove the following

Theorem 5.2 Let X ⊂ H ⊂ X∗ be an evolution pair and consider an anti-self dual Lagrangian L on
[0, T ]×X ×X∗ and a self-dual boundary Lagrangian ` on H ×H. Assume the following conditions:

For each p ∈ L2
X∗ , the map u→

∫ T

0
L(t, u(t), p(t))dt is bounded on the bounded sets of L2

X (56)

lim
‖v‖L2(X)→+∞

∫ T

0

HL(t, 0, v(t))dt = +∞, (57)

and
`(a, b) ≤ C(1 + ‖a‖2

H + ‖b‖2
H) for all (a, b) ∈ H ×H. (58)

(1) Then for any regular conservative operator Λ : D(Λ) ⊂ L2(X) → L2(X∗) such that X2 ⊂ D(Λ), the
following functional

I`,L,Λ(u) =

∫ T

0

L(t, u(t),Λu(t) + u̇(t))dt + `(u(0), u(T ))

has zero infimum. Moreover, there exists v ∈ X2 such that:
(

v(t),Λv(t) + v̇(t)
)

∈ Dom(L) for almost all t ∈ [0, T ] (59)

I`,L,Λ(v) = inf
u∈X2

I`,L,Λ(u) = 0, (60)

L(t, v(t),Λv(t) + v̇(t)) + 〈v(t), v̇(t)〉 = 0 for almost all t ∈ [0, T ], (61)

`(v(0), v(T )) =
1

2
(‖v(T )‖2

H − ‖v(0)‖2
H), (62)

(−v̇(t) − Λv(t),−v(t)) ∈ ∂L(t, v(t), v̇(t) + Λv(t)). (63)

(2) In particular, for every v0 ∈ H the following functional

Iv0,L,Λ(u) =

∫ T

0

L(t, u(t),Λu(t) + u̇(t))dt+
1

2
‖u(0)‖2 − 2〈v0, u(0)〉 + ‖v0‖

2 +
1

2
‖u(T )‖2

has minimum equal to zero on L2
X . It is attained at a unique path v such that v(0) = v0, verifying (59- 63)

and in particular

‖v(t)‖2
H = ‖v0‖

2 − 2
∫ t

0
L(s, v(s),Λv(s) + v̇(s))ds for every t ∈ [0, T ]. (64)
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Proof: First apply Proposition 5.2 to get that the Lagrangian

ML(u, p) =

{
∫ T

0 L(t, u(t), p(t) + u̇(t))dt + `(u(0), u(T )) if u ∈ X2

+∞ otherwise

is anti-self dual on L2
X . It is now sufficient to apply Corollary 3.5 to conclude that the infimum of ML(u,Λu)

is equal 0 and is achieved. This yields claim (59) and (60).
Since L(t, v(t), v̇(t)) ≥ −〈v(t), v̇(t)〉 for all t ∈ [0, T ], and since `(v(0), v(T )) ≥ 1

2 (‖v(T )‖2
H −‖v(0)‖2

H), claims
(61) and (62) follow from the following identity

0 = I`,L,Λ(v) =

∫ T

0

L(t, v(t),Λv(t) + v̇(t) + 〈v(t), v̇(t)〉)dt−
1

2
(‖v(T )‖2

H − ‖v(0)‖2
H) + `(v(0), v(T )).

To prove (63), use (61), the fact that L is anti-selfdual and that Λ is conservative to write:

L(s, v(s),Λv(s) + v̇(s)) + L∗(s,−Λv(s) − v̇(s),−v(s)) + 〈(v(s),Λv(s) + v̇(s)), (Λv(s) + v̇(s), v(s))〉 = 0

and conclude by the limiting case of the Legendre-Fenchel duality in the space X ×X∗.
For (2) it suffices to apply the first part with the boundary Lagrangian

`(r, s) =
1

2
‖r‖2 − 2〈v0, r〉 + ‖v0‖

2 +
1

2
‖s‖2.

which is clearly self-dual. We then get

I`,L,Λ(u) =

∫ T

0

[L(t, u(t),Λu(t) + u̇(t)) + 〈u(t), u̇(t)〉] dt+ ‖u(0) − v0‖
2.

Note also that (61) yields
d(|v(s)|2)

ds
= −2L(s, v(s),Λv(s) + v̇(s)),

which readily implies (64).

We now apply the results of the last section to the particular class of ASD Lagrangian of the form L(x, p) =
ϕ(x) +ϕ∗(Ax− p) to obtain variational formulations and proofs of existence for various nonlinear parabolic
equations.

Proposition 5.3 Let X ⊂ H ⊂ X∗ be an evolution triple and consider for each t ∈ [0, T ] a bounded linear
operator At : X → X∗ and ϕ : [0, T ]×X → R̄ such that for each t the functional ψ(t, x) := ϕ(t, x)+ 1

2 〈Atx, x〉
is convex, lower semi-continuous and satisfies for some C > 0, m,n > 1 the following growth condition:

1
C

(

‖x‖m
L2

X
− 1

)

≤
∫ T

0
{ϕ(t, x(t)) + 1

2 〈Atx(t), x(t)〉} dt ≤ C
(

‖x‖n
L2

X
+ 1

)

for every x ∈ L2
X . (65)

If Λ : D(Λ) ⊂ X → X∗ is a regular conservative operator and v0 ∈ X, we consider on X2 the functional

I(x) =

∫ T

0

{ψ(t, x(t)) + ψ∗(t,−Λx(t) −Aa
t x(t) − ẋ(t))} dt+

1

2
(|x(0)|2 + |x(T )|2) − 2〈x(0), v0〉 + |v0|

2,

where for each t ∈ [0, T ], Aa
t is the anti-symmetric part of the operator At. Then there exists a path v ∈ X2

such that
I(v) = inf

x∈X2

I(x) = 0. (66)

−v̇(t) −Atv(t) − Λv(t) ∈ ∂ϕ(t, v(t)) for a.e. t ∈ [0, T ] (67)

v(0) = v0.
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Proof: The LagrangianL(t, x, p) := ψ(t, x)+ψ∗(t,−Aax−p) is an ASD Lagrangian onX×X∗ by Proposition
2.5. Consider ` on H ×H to be `(r, s) = 1

2 (|r|2 + |s|2) − 2〈r, v0〉+ |v0|
2, and lift Λ to a regular conservative

operator Λ̃ from its domain in L2
X([0, T ]) into L2

X∗([0, T ]) by setting (Λ̃x)(t) = Λ(x(t)). It is easy to check
that all the conditions of Theorem 5.2 are satisfied by L, `, B and Λ̃, hence there exists v ∈ X2 such that
I(v) = 0. We obtain

0 =

∫ T

0

(

ψ(t, v(t)) + ψ∗(t,−Λv(t) −Aa
t v(t) − v̇(t)) + 〈v(t),Λv(t) +Atv(t) + v̇(t)〉

)

dt+
1

2
‖v(0) − v0‖

2
H

which yields since the integrand is non-negative for each t and since we are now in the limiting case of
Legendre-Fenchel duality that

−v̇(t) −Aa
t v(t) − Λv(t) ∈ ∂ϕ(t, v(t)) +As

tv(t) for a.e. t ∈ [0, T ] (68)

v(0) = v0.

Example 5: Navier-Stokes evolutions

We now consider the evolution equation associated to a fluid driven by its boundary.















∂u
∂t + (u · ∇)u+ f = ν∆u−∇p on [0, T ]× Ω

divu = 0 on [0, T ]× Ω
u(t, x) = u0(x) on [0, T ]× ∂Ω
u(0, x) = u0(x) on Ω

(69)

where
∫

∂Ω u
0·n dσ = 0, ν > 0 and f ∈ Lp(Ω; R3). Assuming that u0 ∈ H3/2(∂Ω) and that ∂Ω is connected,

Hopf’s extension theorem again yields the existence of v0 ∈ H2(Ω) such that

v0 = u0 on ∂Ω, div v0 = 0 and
∫

Ω
Σ3

j,k=1uk
∂v0

j

∂xk
uj dx ≤ ε‖u‖2

V for all u ∈ V (70)

where V = {u ∈ H1(Ω;R3); divv = 0}. Setting v = u+ v0, then solving (69) reduces to finding a solution in
the Banach space V0 = {u ∈ H1

0 (Ω;R3); divv = 0} for

∂u

∂t
+ (u · ∇)u+ (v0 · ∇)u+ (u · ∇)v0 + g ∈ −∂Φ(u) (71)

u(0) = u0 − v0.

where Φ is again the convex Dirichlet energy functional Φ(u) = ν
2

∫

Ω Σ3
j,k=1(

∂uj

∂xk
)2 dx and where

g := f − ν∆v0 + (v0 · ∇)v0 ∈ V ∗.

In other words, this is an equation of the form

∂u

∂t
+ Λu+Bu+ g ∈ −∂Φ(u) (72)

where Λu = (u · ∇)u is a regular conservative operator, and Bu = (v0 · ∇)u+ (u · ∇)v0 is a bounded linear
operator on V . The component B1u := (v0 · ∇)u of B is skew-symmetric which means that Hopf’s estimate
implies

C‖u‖2
V ≥ Ψ(u) := Φ(u) +

1

2
〈Bu, u〉 ≥

1

2
(ν − ε)‖u‖2 for all u ∈ V.

Letting Aa be the antisymmetric part of the operator Au = (u · ∇)v0, we can now apply Proposition 5.3 to
obtain

Theorem 5.3 Under the above hypothesis on u0, and for f ∈ Lp(Ω,R3) with p > 6
5 and u0 ∈ V , the

minimum of the functional
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I(u) =

∫ T

0

{

Ψ(u(t)) + Ψ∗(−(u · ∇)u−Bau+ f − u̇) −

∫

Ω

〈f, u〉dx

}

dt

+

∫

Ω

{

1

2
(|u(0, x)|2 + |u(x, T )|2) − 2〈u(0, x), u0(x) − v0(x)〉 + |u0(x) − v0(x)|2

}

dx

on A2
V is zero and is attained at a solution of the equation (71).
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