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Abstract

We consider the class of time-dependent anti-selfdual Lagrangians, which –just like the stationary case an-
nounced in [5]– enjoys remarkable permamence properties and provides variational formulations and reso-
lutions for several initial-value parabolic equations including gradient flows and other dissipative systems.
Even though these evolutions do not fit in the standard Euler-Lagrange theory, we show that their solu-
tions –as well as those of related parabolic variational inequalities– can be obtained as minima –but also

more importantly as zeroes– of action functionals of the form
∫ T

0
L(t, u(t), u̇(t) + Λtu(t))dt) where L is a

time-dependent anti-selfdual Lagrangian and where Λt is a flow of skew-adjoint operators. Details, proofs
and more applications will be given in [7] in the setting of bounded linear operators. The case of linear
unbounded operators is dealt with in [11]. Nonlinear but appropriately defined “skew-adjoint” operators will
be considered in [8].

Résumé

Lagrangiens anti-autoduaux: Le cas dynamique. On considère le cas des Lagrangiens anti-autoduaux
qui dépendent du paramètre temps. Comme dans le cas stationnaire annoncé dans [5], cette classe possède
des propriétés de permanence remarquables qui permettent une formulation et une résolution variationnelle
de plusieurs équations paraboliques dissipatives qui ne sont pas normalement de type Euler-Lagrange.

Version francaise abrégée: À tout Lagrangien anti-autodual autonome L sur X×X∗ (où X est reflexif),
on associe un semi-group de contractions (Tt)t∈R+ tel que x(t) = Ttx est la solution de (−ẋ(t),−x(t)) ∈
∂L(x(t), ẋ(t)) avec x(0) = x. On associe un nouveau principe variationnel à une classe importante d’équations
–ainsi que des inéquations– paraboliques dissipatives. Les solutions sont obtenues comme minima –mais aussi

surtout comme des racines– de fonctionnelles d’action de la forme
∫ T

0
L(t, u(t), u̇(t) + Λtu(t))dt, où L est un

Lagrangien anti-autodual et où Λt est un flow d’opérateurs antisymmétriques. Ces équations peuvent être
des flots de gradients à potentiel convexe, comme dans l’équation de la chaleur et celle des médias poreux,
mais aussi des évolutions nonlinéaires associées à des opérateurs du premier ordre, et donc non-autoadjoints.

1 Time-dependent anti-selfdual Lagrangians

Let H be a Hilbert space with 〈 , 〉 as scalar product and let [0, T ] be a fixed real interval (0 < T < +∞).
Consider the classical space L2

H of Bochner integrable functions from [0, T ] into H with norm denoted by
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‖ · ‖2, as well as the Hilbert space A2
H = {u : [0, T ] → H ; u̇ ∈ L2

H} consisting of all absolutely continuous

arcs u : [0, T ] → H , equipped with the norm ‖u‖
A

2

H

= (‖u(0)‖2
H +

∫ T

0
‖u̇‖2dt)

1
2 .

Definition 1.1 Let L : [0, T ]×H×H → IR∪{+∞} be measurable with respect to the σ-field generated by the
products of Lebesgue sets in [0, T ] and Borel sets in H×H. Say that L is an anti-self dual Lagrangian (ASD)
on [0, T ]×H×H if Lt : (x, p) → L(t, x, p) is in LAD(H) for any t ∈ [0, T ]: that is if L∗(t, p, x) = L(t,−x,−p)
for all (x, p) ∈ H ×H, where L∗ is the Legendre transform in the last two variables.

The most basic time-dependent ASD-Lagrangians are of the form L(t, x, p) = ϕ(t, x) + ϕ∗(t,−p) where for
each t, the function x→ ϕ(t, x) is convex and lower semi-continuous.

Definition 1.2 Say that a convex lower semi-continuous function ` : H × H → IR ∪ {+∞} is a self-dual
time-boundary Lagrangian if `∗(−h1, h2) = `(h1, h2) for all (h1, h2) ∈ H ×H.

The basic example of a self dual boundary Lagrangian is given by a function ` on H × H , of the form
`(x, p) = 1

2
‖x‖2 − 2〈a, x〉+ ‖a‖2 + 1

2
‖p‖2, where a is given in H . A remarkable permanence property of ASD

Lagrangians is that it “lifts” to path spaces.

Proposition 1.1 Suppose that L is an anti-self dual Lagrangian on [0, T ]×H ×H, then

1. For each ω ∈ R, the Lagrangian M(u, p) :=
∫ T

0
e2wtL(t, e−wtu(t), e−wtp(t))dt is anti-self dual on L2

H .

2. If ` is a self-dual boundary Lagrangian on H ×H, then the Lagrangian

M(u, p) =

{
∫ T

0
L(t, u(t), p(t) + u̇(t))dt + `(u(0), u(T )) if u ∈ A2

H

+∞ otherwise

is anti-self dual on L2
H , provided u→

∫ T

0
L(t, u(t), p(t))dt is continuous on L2

H .

3. The Lagrangian defined on A2
H × (A2

H)∗ by

N(u, p) =

∫ T

0

L(t, u(t) −
R

T

t
p(s)ds, u̇(t))dt + `(u(0) +

R

T

0
p(s)ds, u(T ))

is anti-selfdual on A2
H ×X∗

0 where X∗
0 = {q ∈ (A2

H )∗;
∫ T

0
q(s)ds = 0}.

Theorem 1.3 Suppose L is an anti-self dual Lagrangian on [0, T ] ×H ×H and ` is a self-dual boundary
Lagrangian on H ×H, and suppose there exists C > 0 such that for all x ∈ L2

H ,

∫ T

0

L(t, x(t), 0)dt ≤ C(1 + ‖x‖2

L2
H

).

Then, there exists v ∈ A2
H such that

(

v(t), v̇(t)
)

∈ Dom(L) for almost all t ∈ [0, T ] and

∫ T

0

L(t, v(t), v̇(t))dt + `(v(0), v(T )) = inf
u∈A2

H

∫ T

0

L(t, u(t), u̇(t))dt+ `(u(0), u(T )) = 0.

In particular, for every v0 ∈ H the following functional on A2
H

I(u) =

∫ T

0

L(t, u(t), u̇(t))dt +
1

2
‖u(0)‖2 − 2〈v0, u(0)〉 + ‖v0‖

2 +
1

2
‖u(T )‖2

has a minimum equal zero. It is attained at a unique path v which then satisfies the following:

v(0) = v0 and
(

v(t), v̇(t)
)

∈ Dom(L) for almost all t ∈ [0, T ], (1)

d

dt
∂pL(t, v(t), v̇(t)) = ∂xL(t, v(t), v̇(t)) (2)

(−v̇(t),−v(t)) ∈ ∂L(t, v(t), v̇(t)), (3)

‖v(t)‖2

H = ‖v0‖
2 − 2

∫ t

0

L(s, v(s), v̇(s))ds for every t ∈ [0, T ]. (4)
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2 Semigroups associated to autonomous anti-selfdual Lagrangians

When the Lagrangian L(x, p) is autonomous, the situation is much nicer since we can associate a flow without
stringent boundedness or coercivity conditions. Indeed, we can then use a Yosida-type λ-regularization of

ASD-Lagrangians Lλ = L ? Tλ where Tλ(x, p) = ‖x‖2

2λ2 + λ2‖p‖2

2
. Then Lλ satisfies the conditions of Theorem

1.3, and we can then find for each initial point v ∈ H , a path vλ ∈ A2
H , with vλ(0) = v, which verify

properties (1)-(4). Letting λ → 0, we can recover a semi-group of 1-Lipschitz operators Tt defined on the
Partial Domain of ∂L defined as follows

Dom1(∂L) = {x ∈ X ; there exists p, q ∈ X∗ such that (p, 0) ∈ ∂L(x, q)}.

Note that if L(x, p) = ϕ(x)+ϕ∗(−p) with 0 assumed to be in the domain of ∂ϕ, then x0 belongs to Dom1(∂L)
if and only if it belongs to the usual domain of ∂ϕ. We then obtain the following result.

Theorem 2.1 Let L be an anti-selfdual Lagrangian on a Hilbert space H that is uniformly convex in the
first variable. Assuming Dom1(∂L) is non-empty, then there exists a semi-group of 1-Lipschitz operators
(Tt)t∈R+ on Dom1(∂L) denoted by etL such that T0 = Id and for any x ∈ Dom1(∂L), the path x(t) = etLx

satisfies the following:
d

dt
∂pL(x(t), ẋ(t)) = ∂xL(x(t), ẋ(t)) (5)

(−ẋ(t),−x(t)) ∈ ∂L(t, x(t), ẋ(t)) (6)

‖x(t)‖2

H = ‖x‖2 − 2

∫ t

0

L(x(s), ẋ(s))ds for every t ∈ [0, T ]. (7)

2.1 Variational resolution of initial value problems

The following was established in [10] in the case of gradient flows of convex potentials (i.e., when A = 0 and
ω = 0), and in [9] in the case of gradient flows of semi-convex functions (i.e., when A = 0 and ω > 0).

Theorem 2.2 Let ϕ be a proper, bounded below, convex lower semi-continuous functional on H such that
0 ∈ Dom∂ϕ and let A be a positive bounded linear operator on H. For any ω ∈ R and v0 ∈ Dom∂ϕ, consider
the following functional on A2

H :

I(u) =

∫ T

0

e−2ωt
{

ψ(eωtu(t)) + ψ∗(eωt(−Aau(t) − u̇(t)
}

dt+
1

2
‖u(0)‖2 − 2〈v0, u(0)〉 + ‖v0‖

2 +
1

2
‖u(T )‖2

where Aa is the anti-symmetric part of A, and ψ(u) = ϕ(u) + 1

2
〈Au, u〉. The minimum of I is then zero and

is attained at a path x(t), in such a way that v(t) = eωtx(t) is a solution of

{

−Av(t) + ωv(t) − v̇(t) ∈ ∂ϕ(v(t)) a.e. t ∈ [0, T ]
v(0) = v0

(8)

2.2 Variational resolution for coupled flows and wave-type equations

ASD Lagrangians are suited to treat variationally coupled evolution equations.

Proposition 2.1 Let ϕ be a proper convex lower semi-continuous function on X × Y and let A : X → Y ∗

be any bounded linear operator. Assume B1 : X → X (resp., B2 : Y → Y ) are positive operators, then for
any (x0, y0) ∈ dom(∂ϕ) and any (f, g) ∈ X × Y , there exists a path (x(t), y(t)) ∈ A2

X ×A2
Y such that

−ẋ(t) −A∗y(t) −B1x(t) + f ∈ ∂1ϕ(x(t), y(t))

−ẏ(t) +Ay(t) −B2y(t) + g ∈ ∂2ϕ(x(t), y(t))

x(0) = x0

y(0) = y0.
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The solution is obtained as a minimizer on A2
X ×A2

Y of the following functional

I(x, y) =

∫ T

0

{ψ(x(t), y(t)) + ψ∗(−A∗y(t) −Ba
1x(t) − ẋ(t), Ax(t) −Ba

2y(t) − ẏ(t))} dt

+
1

2
‖x(0)‖2 − 2〈x0, x(0)〉 + ‖x0‖

2 +
1

2
‖x(T )‖2

+
1

2
‖y(0)‖2 − 2〈y0, y(0)〉 + ‖y0‖

2 +
1

2
‖y(T )‖2.

whose infimum is zero. Here Ba
1 (resp., Ba

2 ) are the skew-symmetric parts of B1 and B2 and

ψ(x, y) = ϕ(x, y) +
1

2
〈B1x, x〉 − 〈f, x〉 +

1

2
〈B2y, y〉 − 〈g, x〉

Proof: It is enough to apply Theorem 2.1 to the ASD Lagrangian

L((x, y), (p, q)) = ψ(x, y) + ψ∗(−A∗y −Ba
1x− p,Ax−Ba

2y − q).

3 Variational resolution for general parabolic equations

For t ∈ [0, T ], consider (bt1, b
t
2) : Xt → Ht

1 × Ht
2 to be regular boundary operators from a reflexive Banach

space Xt into Hilbert spaces H t
1, H

t
2 and we let Λt : Xt → X∗

t be skew-adjoint operators modulo the boundary
(bt1, b

t
2): that is for every x, y ∈ Xt, we have 〈Λtx, y〉H = −〈Λty, x〉H + 〈bt2(x), b

t
2(y)〉Ht

2

−〈bt1(x), b
t
1(y)〉Ht

1

. We

refer to ([5], [7]) for the details. Suppose now H is a Hilbert space such that:

Xt ⊂ H ⊂ X∗
t is an evolution triple with Ker(bt1, b

t
2) being dense in H . (9)

Λt(Xt) ⊂ H and Xt = {x ∈ H ; sup{〈x,Λty〉H ; y ∈ Xt, ‖y‖H ≤ 1} < +∞} (10)

We then call (Xt, H,Λt) a maximal evolution triple. Starting now with a time-dependent ASD Lagrangian
L on H , and selfdual state-boundary Lagrangians mt : Ht

1 ×Ht
2 → IR ∪ {+∞} one can prove (see [7]) that

M(t, x, p) =

{

L(t, x,Λtx+ p) +mt(b
t
1(x), b

t
2(x)) if x ∈ Xt

+∞ otherwise

is also anti-self dual on H ×H for each t ∈ [0, T ].
If now ` is a self-dual time-boundary Lagrangian on H , then the following Lagrangian

M̃(u, p) =

∫ T

0

{M(t, u(t), p(t) + u̇(t))} dt+ `(u(0), u(T ))

is anti-self dual Lagrangian on the elements of A2
H × {0} which is sufficient to get that

I(u) = M̃(u, 0) =

∫ T

0

{

L(t, u(t),Λtu(t) + u̇(t)) +m(t, bt1u(t), b
t
2u(t))

}

dt+ `(u(0), u(T ))

has a minimum at v̄(t), and that the minimal value is zero. Applying the theorem with the time boundary
Lagrangian on H , `(x, p) = 1

2
‖x‖2 − 2〈a, x〉 + ‖a‖2 + 1

2
‖p‖2, where a is a given initial value in H , and with

a state boundary Lagrangian

m(t, x, p) =
1

2
‖x‖2 − 2〈b(t), x〉 + ‖b(t)‖2 +

1

2
‖p‖2,

where b(t) is prescribed in H t
1 for each t, we get that v̄(t) satisfies:















L(t, v(t),Λtv(t) + v̇(t)) + 〈v(t),Λtv(t) + v̇(t)〉 = 0 a.e. t ∈ [0, T ]
(−Λtv(t) − v̇(t),−v(t)) ∈ ∂L(t, v(t), v̇(t))

bt1(v(t)) = b(t) a.e t ∈ [0, T ]
v(0) = a

(11)
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Theorem 3.1 Under the above conditions on (Xt, H,H
t
1, H

t
2, b

t
1, b

t
2), consider bounded linear operators At :

Xt → X∗
t such that At −

1

2
((bt2)

∗bt2 − (bt1)
∗bt1) is positive and denote by Λt the operator Λt = 1

2
(At − A∗

t ) +
1

2
((bt2)

∗bt2 − (bt1)
∗bt1) which is skew-adjoint modulo the boundary. For each t ∈ [0, T ], suppose (Xt, H,Λt) is a

maximal evolution triple and that ϕ(t, ·) is a convex continuous function on H. For f ∈ L2([0, T ];H), a ∈ H
and b(t) ∈ H1

t consider the following functional on A2
H ,

I(u) =

Z

T

0



ψ(t, u(t)) + ψ
∗(t,−Λtu(t) − u̇(t)) +

1

2
(‖bt1u(t)‖

2 + ‖bt2u(t)‖
2) − 2〈b(t), u(t)〉 + ‖b(t)‖2)

ff

dt

+
1

2
(‖u(0)‖2 + ‖u(T )‖2) − 2〈u(0), a〉 + ‖a‖2

,

where ψ(t, x) = ϕ(t, x) + 1

2
〈Atx, x〉 −

1

4
(‖bt2x‖

2 − ‖bt1x‖
2) + 〈f(t), x〉. Suppose there is C > 0 so that for

every x ∈ L2
H ,

∫ T

0

ψ(t, x(t)) + ψ∗(t,−Λtx(t)dt ≤ C(1 + ‖x‖2

L2
H

).

Then there exists v ∈ A2
H such that I(v) = inf

u∈A2
H

I(u) = 0. Moreover, v solves







−Atv(t) − v̇(t) ∈ ∂ϕ(t, v(t)) + f(t) a.e. t ∈ [0, T ]
bt1(v(t)) = b(t) a.e t ∈ [0, T ]

v(0) = a

(12)

Non linear Transport evolutions: With the notation of example 1 of [5], we consider the equation






∂u
∂t

− Σn
i=1ai

∂u
∂xi

− a0u = β(u) + f on [0, T ]× Ω

u(t, x) = b(t, x) on [0, T ]× Σ−.
u(0, x) = u0(x) on Ω

(13)

where u0 ∈ H1
A(Ω), f ∈ H1

A(Ω)∗ and where b(t) ∈ L2(Σ,n · adx) for each t ∈ [0, T ]. Let

ψ(u) =

∫

Ω

{

j(u(x)) + f(x)u(x) +
1

2
(a0 −

1

2
div a)u2)

}

dx

Theorem 3.2 Assume a0(x) −
1

2
diva(x) ≥ α > 0 on Ω, and consider the following functional on the space

X := A2([0, T ];H1
A(Ω)).

I(u) =

Z

T

0



ψ(u(t)) + ψ
∗(−a · ∇xu(t) −

1

2
div a u(t) − u̇(t))

ff

dt

+

Z

T

0

(

1

2

Z

Σ+

|u(t, x)|2n · a dσ −
1

2

Z

Σ
−

|u(t, x)|2n · a dσ +

Z

Σ
−

(|b(t, x)|2 − 2b(t, x)u(t, x))n · a dσ

)

dt

+

Z

Ω



1

2
(|u(0, x)|2 + |u(x, T )|2) − 2〈u(0, x), u0(x)〉 + |u0(x)|

2

ff

dx.

There exists then ū ∈ X such that I(ū) = infu∈X I(u) = 0 and which solves equation (13).

4 Variational resolution for parabolic variational inequalities

Consider for each time t, a bilinear continuous functional at on a Hilbert space H × H and a convex l.s.c
function ϕ(t, ·) : H → R ∪ {+∞}. Solving the corresponding parabolic variational inequality amounts to
constructing for a given f ∈ L2([0, T ];H) and x0 ∈ H , a path x(t) ∈ A2

H([0, T ]) such that for all z ∈ H ,

〈ẋ(t), x(t) − z) + at(x(t), x(t) − z) + ϕ(t, x(t)) − ϕ(t, z) ≤ 〈x(t) − z, f(t)〉. (14)

for almost all t ∈ [0, T ]. This problem can be rewritten as: f(t) ∈ ẏ(t) + Aty(t) + ∂ϕ(t, y), where At is the
bounded linear operator on H defined by at(u, v) = 〈Atu, v〉. This means that the variational inequality
(14) can be rewritten and solved using the variational principle in Theorem 1.3. For example, one can then
solve variationally the following ”obstacle ” problem.
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Corollary 4.1 Let (at)t be bilinear continuous functionals on H ×H satisfying:

• For some λ > 0, we have at(v, v) ≥ λ‖v‖2 on H for every t ∈ [0, T ].

• The map u→
∫ T

0
at(u(t), u(t))dt is continuous on L2

H .

If K is a convex closed subset of H, then for any f ∈ L2([0, T ];H) and any x0 ∈ K, there exists a path
x ∈ A2

H([0, T ]) such that x(0) = x0, x(t) ∈ K for almost all t ∈ [0, T ] and

〈ẋ(t), x(t) − z〉 + at(x(t), x(t) − z) ≤ 〈x(t) − z, f〉 for all z ∈ K.

The path x(t) is obtained as a minimizer of the following functional on A2
H([0, T ]):

I(y) =

Z

T

0

{ϕ(t, y(t)) + (ϕ(t, ·) + ψK)∗(−ẏ(t) − Λty(t))} dt+
1

2
(|y(0)|2 + |y(T )|2) − 2〈y(0), x0〉 + |x0|

2
.

Here ϕ(t, y) = 1

2
at(y, y) − 〈f(t), y〉, Λt : H → H is the skew-adjoint operator defined by 〈Λtu, v〉 =

1

2
(at(u, v) − at(v, u)), and ψK(y) = 0 on K and +∞ elsewhere.
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