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Abstract

We develop a concept of anti-self dual Lagrangians that seems inherent to many problems
in mathematical physics, Riemannian geometry, and differential equations. On one hand,
they represent gradients of convex functions which usually drive dissipative systems, and on
the other, their structure is rich enough to also cover – certain representations of– skew-
symmetric operators which normally generate unitary flows. These Lagrangians provide
variational formulations and resolutions for several non-potential boundary value problems
many of which do not fit in the Euler-Lagrange theory. Solutions are minima of functionals
of the form L(u,Λu) where L is an anti-self dual Lagrangian and where Λ is a skew-adjoint
operator. However, and just like the self (antiself) dual equations of quantum field theory
(e.g. Yang-Mills, Seiberg-Witten and Ginzburg-Landau) the equations associated to minimal
solutions of our variational problems are not derived from the fact they are critical points of
the associated functionals, but because they are also zeroes of the corresponding Lagrangians.

Résumé

Une théorie des Lagrangiens anti-autoduaux: Cas stationnaire: On introduit et
développe la notion de Lagrangien anti-autodual qui apparait dans plusieurs problèmes de
géométrie et de physique théorique. Cette classe inclut les champs de gradient de fonctions
convexes qui sont à la base de systèmes dissipatifs, mais aussi contient les opérateurs anti-
symétriques qui, par contre, engendrent des flots conservatifs. Comme pour les équations
autoduales de Yang-Mills, Seiberg-Witten et Ginzburg-Landau, ces Lagrangiens permettent
la résolution variationnelle de plusieurs équations différentielles du premier ordre qui ne ren-
trent pas donc dans le cadre de la théorie de Euler-Lagrange.

Version francaise abrégée: On montre que plusieurs équations de la forme Au+∂ϕ(u) =
f avec ϕ convexe s.c.i. sur un reflexif X , f ∈ X∗ et A : X → X∗ étant un opérateur
linéaire borné positif, peuvent être résolues en minimisant des fonctionelles de la forme I(u) =
L(u,Λu) où L est un Lagrangien anti-autodual (i.e L∗(p, x) = L(−x,−p)) sur X × X∗ et
où Λ est un opérateur antisymétrique de X dans X∗. Ces Lagrangiens permettent des
formulations et des résolutions variationnelles de plusieurs équations différentielles qui ne
rentrent pas normalement dans le cadre de la théorie classique de Euler-Lagrange, puisque
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l’opérateur A n’est pas supposé être auto-adjoint. Comme application, on considère des
équations de transport non-linéaires et des inégalités variationnelles. L’approche s’étend au
cas où il y a des conditions au bord via un opérateur frontière (b1, b2) de X dans un produit
d’espace de Hilbert H1 × H2. Dans ce cas, la fonctionnelle à minimiser est de la forme
I(u) = L(u,Λu) + `(b1(u), b2(u)), où ` est un Lagrangien autodual sur cette frontière, au
sens que `∗(h1, h2) = `∗(−h1, h2) sur H1 ×H2.

1 Basic properties of anti-selfdual Lagrangians

Let X be a reflexive Banach space and consider L : X ×X∗ → IR ∪ {+∞} to be a convex
lower semi-continuous function, that is valued in IR ∪ {+∞} but not being identically +∞.
Its Legendre-Fenchel dual (in both variables) is defined at each (q, y) ∈ X∗ ×X as:
L∗(q, y) = sup{〈q, x〉 + 〈p, y〉 − L(x, p); x ∈ X, p ∈ X∗}.

Definition 1.1 Say that L is an anti-self dual Lagrangian on X, if

L∗(p, x) = L(−x,−p) for all (p, x) ∈ X∗ ×X. (1)

Our basic premise is that many boundary value problems can be solved by minimizing func-
tionals of the form I(x) = L(x, 0) where L is an anti-selfdual Lagrangian. They satisfy

L(x, p) ≥ −〈x, p〉 for every (x, p) ∈ X ×X∗, (2)

which means that L(x, 0) ≥ 0 for all x ∈ X . However, their main relevance to our study
is because generically, the infimum is actually equal to 0. This latter property allows for
novel variational formulations and resolutions of several basic PDEs and evolution equations,
which –often because of lack of self-adjointness– do not normally fit the Euler-Lagrange
framework. What is remarkable is that it is the very presence of skew-adjoint operators in
certain equations that make the anti-self dual Lagrangian framework suitable for a variational
approach. Details, proofs and more applications will be given in [7] in the setting of bounded
linear operators. The case of linear unbounded operators is dealt with in [10]. Nonlinear but
appropriately defined “skew-adjoint” operators such as those appearing in the Navier-Stokes
and other equations of hydrodynamics will be considered in [8].

Theorem 1.2 Let L be an anti-self dual Lagrangian on a reflexive Banach space X and let
Λ : X → X∗ be a skew-adjoint operator (i.e., Λ∗ = −Λ).

(1) If lim
‖x‖→∞

L(x,Λx)
‖x‖ = +∞ (coercivity), then there exists x̄ ∈ X, such that:

{

L(x̄,Λx̄) = inf
x∈X

L(x,Λx) = 0.

(−Λx̄,−x̄) ∈ ∂L(x̄,Λx̄).
(3)

(2) The same conclusion holds if the map x → L(x, 0) is bounded above on a neighborhood
of the origin of X and if Λ is an invertible operator.

The class LAD(X) of anti-selfdual Lagrangians on a given Banach space X satisfies several
permanence properties: For λ > 0 and L ∈ LAD(X), we have
(1) Scalar multiplication: λ·L(x, p) := λ2L(x

λ
, p

λ
) is also in LAD(X).

(2) Convolution: If Mλ(x, p) = ‖x‖2

2λ2 + λ2‖p‖2

2 , then Lλ = L ?Mλ is also in LAD(X), where

(L ?Mλ)(x, p) := inf{L(z, p) +
‖x− z‖2

2λ2
+
λ2‖p‖2

2
; z ∈ X}.

Note that Lλ is a λ-regularization of the Lagrangian L, which is reminescent of the Yosida
theory for operators and for convex functions.
(3) Iteration with Skew-adjoint operators: If L ∈ LAD(X) and Λ : X → X∗ is a
skew-adjoint operator, then the Lagrangian M(x, p) = L(x,Λx+ p) is also in LAD(X).
If in addition Λ : X → X∗ is invertible, then N(x, p) = L(x+ Λ−1p,Λx) is in LAD(X).
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2 ASD Lagrangians as extensions of certain maximal

monotone operators

ASD Lagrangians are natural extensions of operators of the form A+∂ϕ, where A is positive
and ϕ is convex. This is an important subclass of monotone operators which can now be
resolved variationally. Indeed, first consider the cone C(X) of all bounded below, proper
convex l.s.c functions on X , and let A(X) be the cone of all positive bounded linear operators
from X into X∗ (i.e., 〈Ax, x〉 ≥ 0 for all x ∈ X). Consider the subclasses

C0(X) = {ϕ ∈ C(X); inf
x∈X

ϕ(x) = 0} and A0(X) = {A ∈ A(X);A∗ = −A}.

Lemma 2.1 There is a projection Π : (C(X),A(X)) → (C0(X),A0(X)) such that if (ϕ0, A0)
is the image of (ϕ,A) by Π, then a pair (x, f) ∈ X ×X∗ satisfy (A+ ∂ϕ)(x) = f if and only
if (A0 + ∂ϕ0)(x) = f .

Proof: For (ϕ,A) ∈ (C(X),A(X)), decompose A into a symmetric As and an anti-symmetric
part Aa, by simply writing As = 1

2 (A + A∗) and Aa = 1
2 (A − A∗). Let ϕ0 be the convex

functional ψ+ψ∗(0), where ψ(x) = 1
2 〈Ax, x〉+ϕ(x). Define now the projection as Π(ϕ,A) =

(ϕ0, A
a).

Theorem 2.2 (Variational formulation and proof of a nonlinear Lax-Milgram theorem) For
any pair (ϕ,A) ∈ C(X) × A(X) and any f ∈ X∗, there exists a Lagrangian L ∈ LAD(X)
such that:

1. For any f ∈ X∗, the equation (A+ ∂ϕ)(x) = f has a solution x̄ ∈ X if and only if the
functional I(x) = L(x, 0) attains its minimum at x̄.

2. If lim
‖x‖→∞

ϕ(x)+ 1
2 〈Ax,x〉

‖x‖ = +∞, then for any f ∈ X∗, the equation −Ax+ f ∈ ∂ϕ(x) has

a solution x̄ ∈ X that is obtained as a minimizer of the problem:

inf
x∈X

{ψ(x) + ψ∗(−Aax)} = 0 (4)

where ψ is the convex functional ψ(x) = 1
2 〈Ax, x〉 + ϕ(x) − 〈f, x〉, and Aa is the anti-

symmetric part of A.

Proof: Associate to each (ϕ,A) ∈ C(X)×A(X), the anti-selfdual Lagrangian

L(ϕ,A)(x, p) = L(ϕ0,Aa)(x, p) = ϕ0(x) + ϕ∗
0(−A

ax− p), for (x, p) ∈ X ×X∗,

where (ϕ0, A
a) is the projection of (ϕ,A). The fact that the minimum in (4) is attained at

x̄ ∈ X , means that ψ(x̄) + ψ∗(−Aax̄) = 0 = −〈Aax̄, x̄〉 which yields, in view of Legendre-
Fenchel duality that −Aax̄ ∈ ∂ψ(x̄) = Asx̄+ ∂ϕ(x̄) − f , hence x̄ satisfies −Ax+ f ∈ ∂ϕ(x).

Example 1 - A variational principle for a non-symmetric Dirichlet problem: Let
a : Ω → Rn be a smooth function on a bounded domain Ω of Rn, and consider the first order
linear operator Av = a · ∇v = Σn

i=1ai
∂v
∂xi

assumed to be the restriction of a smooth vector

field Σn
i=1āi

∂v
∂xi

defined on an open neighborhood of Ω̄. Consider the Dirichlet problem:

{

∆u+ Σn
i=1ai

∂u
∂xi

= u3 + f on Ω

u = 0 on ∂Ω.
(5)

If ai = 0, then to find a solution, it is sufficient to minimize the functional

Φ(u) =
1

2

∫

Ω

|∇u|2dx+
1

4

∫

Ω

|u|4dx+

∫

Ω

fudx

and to write that the minimizer ū satisfies ∂Φ(ū) = 0. However, if the non self-adjoint term
a is not zero, we can use the above to get:
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Theorem 2.3 Assume div(a) ≥ 0 on Ω and consider on H1
0 (Ω), the functional

I(u) = Ψ(u) + Ψ∗(a.∇u+
1

2
div(a)u)

where Ψ(u) = 1
2

∫

Ω
|∇u|2dx+ 1

4

∫

Ω
|u|4dx+

∫

Ω
fudx+ 1

4

∫

Ω
div(a) |u|2dx, and Ψ∗ is its Legendre

transform. Then, there exists ū ∈ H1
0 (Ω) such that I(ū) = inf{I(u);u ∈ H1

0 (Ω)} = 0, and ū
is a solution of (5).

A variational resolution for variational inequalities: Given a bilinear continuous func-
tional a on X × X so that a(v, v) ≥ λ‖v‖2 and letting ϕ : X → R be a convex l.s.c, then
solving the corresponding variational inequality amounts to constructing for any f ∈ X∗, a
point x̄ ∈ X such that for all z ∈ X ,

a(x̄, x̄− z) + ϕ(x̄) − ϕ(z) ≤ 〈x̄− z, f〉. (6)

It is easy to see that this problem can be rewritten as: f ∈ Ay + ∂ϕ(y), where A is the
bounded linear operator from X into X∗ defined by a(u, v) = 〈Au, v〉. This means that the
variational inequality (6) can be rewritten and solved using the variational principle (4). For
example, one can solve the following typical ”obstacle ” problem in the following way.

Corollary 2.4 Let a be bilinear continuous functional on a reflexive Banach space X ×X

so that a(v, v) ≥ λ‖v‖2, and let K be a convex closed subset of X. Then, for any f ∈ X∗,
there is x̄ ∈ K where the following minimum is attained:

ϕ(x̄) + (ϕ+ ψK)∗(−Λx̄) = inf
x∈X

{ϕ(x) + (ϕ+ ψK)∗(−Λx)} = 0.

Here ϕ(x) = 1
2a(x, x)− 〈f, x〉, Λ : X → X∗ is the skew-adjoint operator defined by 〈Λu, v〉 =

1
2 (a(u, v) − a(v, u)) and ψK(x) = 0 on K and +∞ elsewhere. Furthermore, x̄ is a solution
of the variational inequality: a(x̄, x̄− z) ≤ 〈x̄− z, f〉 for all z ∈ K.

3 ASD Lagrangians in boundary value problems

Definition 3.1 A boundary operator will be any pair (b1, b2) : X → H1 ×H2 of continuous
linear maps from X into Hilbert spaces H1 and H2. We shall say that (b1, b2) is a regular
boundary operator if there is a projection Π : X → X0 := Ker(b1, b2) so that the bounded
linear map (Π, b1, b2) : X → Ker(b1, b2) ⊕H1 ⊕H2 is an isomorphism.
We shall then identify X∗ with the space X∗

0 ⊕H1⊕H2 in such a way that the duality between
X and X∗ is given by: 〈x, p〉 = 〈x, (p0, p1, p2)〉 = 〈x, p0〉 + 〈b1(x), p1〉 + 〈b2(x), p2〉.

Definition 3.2 An operator Λ : X → X∗ is said to be skew-symmetric modulo the boundary
operator (b1, b2), if for every x, y ∈ X,

〈Λx, y〉
(X,X∗)

= −〈Λy, x〉
(X,X∗)

+ 〈b2(x), b2(y)〉H2
− 〈b1(x), b1(y)〉H1

(7)

That is if the operator Λ − 1
2 (b∗2b2 − b∗1b1) is skew-symmetric. We then say that we have a

skew symmetric triplet (Λ, b1, b2).

Definition 3.3 Say that ` : H1 ×H2 → IR ∪ {+∞} is a self-dual boundary Lagrangian if

`∗(−h1, h2) = `(h1, h2) for all (h1, h2) ∈ H1 ×H2. (8)

The basic example of a self dual boundary Lagrangian is given by a function `a on H1 ×H2

of the form `a(x, p) = 1
2‖x‖

2 − 2〈a, x〉 + ‖a‖2 + 1
2‖p‖

2, where a is given in H1. Boundary
conditions require new ASD Lagrangians.
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Theorem 3.4 Let L be an anti-self dual Lagrangian on a reflexive Banach space X. Let
(Λ, b1, b2) : X → X∗ ×H1 ×H2 be a regular skew symmetric triplet, and let ` be a self dual
boundary Lagrangian on H1 ×H2. Then,

1. The Lagrangian M(x, p) = L(x,Λx) + `(b1(x), b2(x)) is anti-self dual on X.

2. If x → L(x,Λx) + `(b1(x), b2(x)) is coercive on X, then there exists x̄ ∈ X such that:

L(x̄,Λx̄) + `(b1x̄, b2x̄) = inf
x∈X

{L(x,Λx) + `(b1x, b2x)} = 0. (9)

3. For any a ∈ H1, there exists x̄ ∈ X such that:






L(x̄,Λx̄) + 〈x̄,Λx̄〉 = 0.
(−Λx̄,−x̄) ∈ ∂L(x̄,Λx̄)

b1(x̄) = a

(10)

It is obtained as a minimizer for I(x) = L(x,Λx) + 〈x,Λx〉 + ‖b1(x) − a‖2 over X.

Variational principle for a Lax-Milgram type theorem with prescribed boundary

Definition 3.5 Say that A : X → X∗ is positive modulo the boundary operator (b1, b2) if
the operator A− 1

2 (b∗2b2 − b∗1b1) is positive.

Corollary 3.6 Assume A : X → X∗ is positive modulo the boundary operator (b1, b2), and
that ϕ ∈ C(X). If lim

‖x‖→∞
‖x‖−1

{

ϕ(x) + 1
2 〈Ax, x〉 −

1
4 (‖b2x‖

2 −‖b1x‖
2)

}

= +∞, then for any

a ∈ H1 and any f ∈ X∗, there is x̄ ∈ X where the following minimum is attained:

inf
x∈X

{

ψ(x) + ψ∗(−Λx) +
1

2
‖b1(x)‖

2 − 2〈a, b1(x)〉 + ‖a‖2 +
1

2
‖b2(x)‖

2

}

= 0.

Here ψ(x) = ϕ(x) + 1
2 〈Ax, x〉 −

1
4 (‖b2x‖

2 − ‖b1x‖
2) + 〈f, x〉 and Λ = Aa + 1

2 (b∗2b2 − b∗1b1).
Furthermore, x̄ is a solution to the equation

{

−Ax ∈ ∂ϕ(x) + f

b1(x) = a.
(11)

Example 2 - A variational principle for first order non-linear transport equations:
As in example 1, let a : Ω → Rn and a0 : Ω → R be two smooth functions on a bounded
domain Ω of Rn, and consider the first order linear operator Av = a · ∇v = Σn

i=1ai
∂v
∂xi

and

Λv = a · ∇v + a0v. Assume that the boundary of Ω is piecewise C1, in such a way that the
outer normal n is defined almost everywhere on ∂Ω. Denoting

Σ− = {x ∈ ∂Ω; n(x) · a(x) < 0} and Σ+ = ∂Ω \ Σ− = {x ∈ ∂Ω; n(x) · a(x) ≥ 0},

then a trace u|Σ
−

makes sense in L2
loc(Σ−) as soon as u ∈ L2(Ω) and Λu ∈ L2(Ω).

Let now β : R → R be a continuous nondecreasing function so that its antiderivative j
is convex, and let f ∈ L2(Ω). We are interested in finding variationally solutions for the
nonlinear transport equation:

{

−a · ∇u+ a0u = β(u) + f on Ω
u(x) = 0 on Σ−.

(12)

The appropriate space in our setting is

H1
A(Ω) = {u ∈ L2(Ω); Au ∈ L2(Ω), and

∫

Σ−

|u(x)|2|n(x) · a(x)|dσ < +∞}.

5



equipped with the norm ‖u‖H1
A

= ‖u‖2 + ‖Au‖2 + ‖u|Σ
−

‖
L2

A
(Σ

−
)
.

If now a0(x) −
1
2diva(x) ≥ 0 on Ω, then Λ is positive modulo the boundary operators u →

(u|Σ
−

, u|Σ+) ∈ L2(Σ−) × L2(Σ+), and the operator

Λ1(u) := a · ∇u+
1

2
div(a)u = Λ(u) − (a0 −

1

2
div a)u

is therefore skew-adjoint modulo that boundary. We can now state:

Theorem 3.7 Assume the coercivity condition a0(x) −
1
2diva(x) ≥ α > 0 on Ω and consider

the following functional on the space H1
A(Ω)

I(u) = ψ(u) + ψ∗(−Λ1u) +
1

2

∫

Σ+

|u(x)|2n · a dσ −
1

2

∫

Σ−

|u(x)|2n · a dσ (13)

where ψ is the convex functional on L2(Ω) defined by:

ψ(u) =

∫

Ω

{

j(u(x)) + f(x)u(x) +
1

2
(a0 −

1

2
div a)u2)

}

dx

where ψ∗ is its Legendre conjugate. Then there exists a solution ū for (12) that is obtained
as a minimizer I(ū) = inf{IG(u);u ∈ H1

A(Ω)} = 0.
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