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Abstract

We verify -after appropriate modifications- an old conjecture of Brezis-Ekeland [4] con-
cerning the feasibility of a global and variational approach to the problems of existence
and uniqueness of solutions of non-linear transport equations, which do not normally
fit in an Euler-Lagrange framework. Our method is based on a concept of ”anti-self
duality” that seems to be inherent in many problems, including gradient flows of convex
energy functionals treated in [12] and other parabolic evolution equations ([9]).

1 Introduction

Second order boundary value problems involving self-adjoint operators have often been
connected to variational principles since they often arise as Euler-Lagrange equations as-
sociated to certain energy or action functionals. In 1976, Brezis and Ekeland formulated
in [4] an intriguing minimization principle which can be associated to gradient flows of
convex energy functionals as well as to transport equations. However, they could not
use it to establish existence of solutions for associated equations because the method
required the identification of the infimum, which they could not establish.

In [12] we offered a variant of the Brezis-Ekeland principle which gave an alternate
variational proof of the existence and uniqueness of gradient flows of convex energy
functionals. The semi-convex case was dealt with in [11]. In this paper, we again modify
the Brezis-Ekeland method to provide a complete variational proof for the existence
and uniqueness of solutions of certain non-linear transport equations. In a forthcoming
paper ([9], we develop a general framework for a far-reaching variational approach to
many equations which do not normally fit into the standard Euler-Lagrange theory.
This approach is based on the concept of anti-self dual Lagrangians which seems to be
inherent in many important differential equations.
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2 A new Lagrangian associated to the transport equation

Let a : Ω → R
n and a0 : Ω → R be two smooth functions on a bounded domain Ω of

R
n, and consider the first order linear operator

Av = a · ∇v = Σn
i=1ai

∂v

∂xi
and Λv = a · ∇v + a0v.

As in [2], we shall assume throughout that the vector field Σn
i=1ai

∂v
∂xi

is actually the

restriction of a smooth vector field Σn
i=1āi

∂v
∂xi

defined on an open neighborhood X of Ω̄

and that each āi is a C1,1 function on X. We also assume that the boundary of Ω is
piecewise C1, in such a way that the outer normal n is defined almost everywhere on
∂Ω. In this case, if we denote by

Σ− = {x ∈ ∂Ω; n(x) · a(x) < 0} and Σ+ = ∂Ω \ Σ− = {x ∈ ∂Ω; n(x) · a(x) ≥ 0},

then a trace u|Σ−
makes sense in L2

loc(Σ−) as soon as u ∈ L2(Ω) and Λu ∈ L2(Ω).

Let now β : R → R be a continuous nondecreasing function convex, and let f ∈
L2(Ω). We are interested in finding variationally solutions for the nonlinear transport
equation:

{

−Λu = β(u) + f on Ω
u(x) = 0 on Σ−.

(1)

under the following coercivity condition:

a0(x) −
1
2diva(x) ≥ α > 0 on Ω. (2)

In [4], Brezis and Ekeland propose the following variational principle to solve (1): Let j
be an antiderivative of β, and consider the functional

IBE(u) =

∫

Ω

[

j(u) + j∗(−Λu) − fu+ (a0 −
1

2
div a)u2

]

dx+
1

2

∫

Σ+

|u(x)|2n · a dσ (3)

on the set

K = {v ∈ L2(Ω); Λv ∈ L2(Ω), j(v) and j∗(f − Λv) ∈ L1(Ω) with v = 0 on Σ−}.

They argued that if
inf
v∈K

IBE(v) = IBE(v̄) = 0, (4)

Then v̄ is a solution of (1). However, they could neither show that the infimum is
attained nor that it is zero, which was an unfortunate impediment to the use of this
approach for establishing existence and uniqueness results.

In this note, we propose a variation of the Brezis-Ekeland functional, which will
remedy the situation and which will allow us to establish variationally, existence and
uniqueness of solutions for non-linear transport equations. First, we identify the appro-
priate underlying space. Consider first

H1(Ω) = {u ∈ L2(Ω); Au ∈ L2(Ω)}.
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equipped with the norm ‖u‖H1 = ‖u‖2 + ‖Au‖2. As noticed in [2], that the fact that a
function u is in H1(Ω) does not necessarily guarantee that u|Σ−

is in the space

L2
A(Σ−) =

{

u ∈ L2
loc(Σ−);

∫

Σ−

|u(x)|2|n(x) · a(x)|dσ < +∞

}

.

However, if u ∈ H1(Ω) and uΣ− ∈ L2
A(Σ−), then necessarily uΣ+ ∈ L2

A(Σ+). The
appropriate space for our setting is therefore

H1
A(Ω) = {u ∈ H1(Ω);u|Σ−

∈ L2
A(Σ−)}.

equipped with the norm ‖u‖H1
A

= ‖u‖2 + ‖Au‖2 + ‖u|Σ−
‖

L2
A

(Σ−)
.

To define appropriate boundary spaces, we follow [5] and consider for each open
subset Γ of ∂Ω, the space

H
1/2

00
(Γ) =

{

v ∈ L2
A(Γ); ∃w ∈ H1(Ω), w = 0 on ∂Ω \ Γ, and w = v on Γ

}

A trace theorem ([14], Vol III. p. 307) or [1]) yields that the restriction mapping u→ uΓ is

a continuous surjective map from V = {v ∈ H1(Ω); v|∂Ω\Γ
= 0} onto H

1/2

00
(Γ). It follows

that there is a continuous surjection from H1
A(Ω) onto H1

0 (Ω) ⊕H
1/2

00
(Σ−) ⊕H

1/2

00
(Σ+)

via the map

T : H1
A(Ω) → H1

0 (Ω) ⊕H
1/2

00
(Σ−) ⊕H

1/2

00
(Σ+),

given by Tu = (Ku, u|Σ−
, u|Σ+

), where K : H1
A(Ω) → H1

0 (Ω) is the operator that

associates to u ∈ H1
A(Ω) the unique function w ∈ H1

0 (Ω) such that ∆w = ∆u and w = 0
on ∂Ω.

Now we consider the convex functional ψ on L2(Ω) defined by:

ψ(u) =

∫

Ω

{

j(u(x)) + f(x)u(x) +
1

2
(a0 −

1

2
div a)u2)

}

dx

and its conjugate ψ∗ defined by

ψ∗(v) = sup{

∫

Ω
uv dx− ψ(u);u ∈ H1

A(Ω)}.

Let now Λ1 be the operator defined by:

Λ1(u) = Σn
i=1ai

∂u

∂xi
+

1

2
div(a)u = Λ(u) − (a0 −

1

2
div a)u

in such a way that
∫

Ω
vΛ1u dx = −

∫

Ω
uΛ1v dx+

∫

∂Ω
u(x)v(x)n(x) · a(x)dσ. (5)

Consider finally the following functional on the space H 1
A(Ω)

IG(u) = ψ(u) + ψ∗(−Λ1u) +
1

2

∫

Σ+

|u(x)|2n · a dσ −
1

2

∫

Σ−

|u(x)|2n · a dσ. (6)

We shall show the following
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Theorem 2.1 Under the above conditions, there exists ū ∈ H 1
A(Ω) such that

IG(ū) = inf{IG(u);u ∈ H1
A(Ω)} = 0. (7)

and ū solves
{

−Λu = β(u) + f on Ω
u(x) = 0 on Σ−.

(8)

Proof: First we show how (7) implies (8). Indeed, since for each u ∈ H 1
A(Ω), we have

ψ(u) + ψ∗(−Λ1u) +

∫

Ω
uΛ1u ≥ 0, (9)

it follows that

IG(u) = ψ(u) + ψ∗(−Λ1u) +
1

2

∫

Σ+

|u(x)|2n · a dσ −
1

2

∫

Σ−

|u(x)|2n · a dσ

= ψ(u) + ψ∗(−Λ1u) +

∫

Ω
uΛ1u

−

∫

Ω
uΛ1u+

1

2

∫

Σ+

|u(x)|2n · a dσ −
1

2

∫

Σ−

|u(x)|2n · a dσ

≥ ψ(u) + ψ∗(−Λ1u) +

∫

Ω
uΛ1u

−
1

2

∫

Σ+∪Σ−

|u(x)|2n · a dσ +
1

2

∫

Σ+

|u(x)|2n · a dσ −
1

2

∫

Σ−

|u(x)|2n · a dσ

= −

∫

Σ−

|u(x)|2n · a dσ ≥ 0.

So, if IG(ū) = 0, then ū = 0 on Σ− since n(x) · a(x) < 0 on Σ−. Moreover, we get that

ψ(ū) + ψ∗(−Λ1ū) +

∫

Ω
ūΛ1ū = 0,

from which follows that −Λ1ū ∈ ∂ψ(ū), that is

−Λ1ū = β(ū) + f + (a0 −
1

2
div a)ū

which means that ū solves (8).
It remains to show that the infimum in (7) is zero and that it is attained. For that,

we need a few lemmas

Lemma 2.2 Let ϕ be any proper convex and lower semi-continuous function on L2(Ω),
and consider the following functionals on the space H 1

A(Ω) and on the dual space H−1(Ω)⊕

H
1/2

00
(Σ−)

∗
⊕H

1/2

00
(Σ+)

∗
respectively:

I(u) = ϕ(u) + ϕ∗(−Λ1u) +
1

2

∫

Σ+

|u(x)|2n · a dσ −
1

2

∫

Σ−

|u(x)|2n · a dσ,

and

J(v, g1, g2) = inf
u∈H1

A
(Ω)

{

ϕ(u) + ϕ∗(−Λ1u−K∗v) +
1

2

∫

Σ+

|u+ g1|
2
n · a dσ −

1

2

∫

Σ−

|u− g2|
2
n · a dσ

}

.
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Then we have:
J∗(Tu) = I(−u) for each u ∈ H1

A
(Ω), (10)

where the Legendre-Fenchel adjoint of J is taken in the duality between the space H 1
0 (Ω) ⊕

H
1/2

00
(Σ−) ⊕H

1/2

00
(Σ+) and its dual H−1(Ω) ⊕H

1/2

00
(Σ−)

∗

⊕H
1/2

00
(Σ+)

∗

.

Proof of lemma: Write

J∗(Tu) = sup
w∈H1

A
(Ω)

sup
v∈H−1(Ω)

sup
g1,g2∈H

1/2

00
(Σ−)×H

1/2

00
(Σ+)

{

∫

Ω
vKudx+

∫

Σ−

ug1dσ +

∫

Σ+

ug2dσ

−ϕ(w) − ϕ∗(−Λ1w −K∗v)

−
1

2

∫

Σ−

|w(x) + g1(x)|
2
n · a dσ +

1

2

∫

Σ+

|w(x) − g2(x)|
2
n · a dσ}.

Let h1(x) = w(x) + g1(x), h2(x) = w(x) − g2(x), p = −Λ1w −K∗v, in such a way that

J∗(Tu) = sup
w∈H1

A
(Ω)

sup
p∈H1

A
(Ω)∗

sup
h1∈H

1/2

00
(Σ−)

sup
h2∈H

1/2

00
(Σ+)

{

∫

Ω
u(−p− Λ1w)dx

+

∫

Σ−

u(h1 − w) n · a dσ +

∫

Σ+

u(w − h2) n · a dσ

−ϕ(w) − ϕ∗(p)

−
1

2

∫

Σ−

|h1(x)|
2
n · a dσ +

1

2

∫

Σ+

|h2(x)|
2
n · a dσ}.

= sup
w∈H1

A(Ω)

sup
p∈H1

A(Ω)∗
sup

h1∈H
1/2

00
(Σ−)

sup
h2∈H

1/2

00
(Σ+)

{

∫

Ω
(−up+ wΛ1u)dx

−

∫

Σ+

uw n · a dσ +

∫

Σ−

uw n · a dσ

+

∫

Σ−

u(h1 − w) n · a dσ +

∫

Σ+

u(w − h2) n · a dσ

−ϕ(w) − ϕ∗(p)

−
1

2

∫

Σ−

|h1(x)|
2
n · a dσ +

1

2

∫

Σ+

|h2(x)|
2
n · a dσ}.

= sup
w∈H1

A
(Ω)

sup
H1

A
(Ω)∗

sup
h1∈H

1/2

00
(Σ−)

sup
h2∈H

1/2

00
(Σ+)

{−

∫

Ω
up+

∫

Ω
wΛ1udx

+

∫

Σ−

uh1 n · a dσ −

∫

Σ+

uh2 n · a dσ

−ϕ(w) − ϕ∗(p)

−
1

2

∫

Σ−

|h1(x)|
2
n · a dσ +

1

2

∫

Σ+

|h2(x)|
2
n · a dσ}.

= sup
w∈H1

A(Ω)

sup
p∈H1

A(Ω)∗
{−

∫

Ω
up+

∫

Ω
wΛ1udx− ϕ(w) − ϕ∗(p)}

+ sup
h1∈H

1/2

00
(Σ−)

{

∫

Σ−

uh1 n · a dσ −
1

2

∫

Σ−

|h1(x)|
2
n · a dσ}
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+ sup
h2∈H

1/2

00
(Σ+)

{−

∫

Σ+

uh2 n · a dσ +
1

2

∫

Σ+

|h2(x)|
2

n · a dσ}

= ϕ(−u) + ϕ∗(Λ1u) +
1

2

∫

Σ+

|u(x)|2 n · a dσ −
1

2

∫

Σ−

u(x)2 n · a dσ

= I(−u).

Lemma 2.3 Suppose ϕ is also coercive on H1
A(Ω), that is lim‖u‖→+∞

ϕ(u)
‖u‖

H1
A

= +∞.

Then, the corresponding functional J is convex and subdifferentiable at the origin on
the space H−1(Ω) ⊕ H

1/2

00
(Σ−)

∗
⊕ H

1/2

00
(Σ+)

∗
. Furthermore, any p ∈ H1

A such that
T (p) ∈ ∂J(0) satisfies

I(−p) = inf
u∈H1

A(Ω)
I(u) = 0

Proof: The convexity is standard. To prove differentiability at zero, it suffices to show
that J is bounded on the balls of H−1(Ω)⊕H

1/2

00
(Σ−)

∗
⊕H

1/2

00
(Σ+)

∗
. Since ϕ is coercive

on H1
A(Ω), it follows that ϕ∗ is bounded on the bounded sets of H1

A(Ω)∗. It follows that

J(v, g1, g2) = inf
u∈H1

A(Ω)
{ϕ(u) + ϕ∗(−Λ1u−K∗v)

+
1

2

∫

Σ+

|u(x) + g1(x)|
2
n(x)·a(x)dσ −

1

2

∫

Σ−

|u(x) − g2(x)|
2
n(x)·a(x)dσ

≤ ϕ(0) + ϕ∗(−K∗v) +
1

2

∫

Σ+

|g1(x)|
2
n(x)·a(x)dσ −

1

2

∫

Σ−

|g2(x)|
2
n(x)·a(x)dσ.

which is bounded on the ball of the form
{

(v, g1, g2) ∈ H−1(Ω) ⊕H
1/2

00
(Σ−)

∗
⊕H

1/2

00
(Σ+)

∗
; ‖v‖H−1 ≤ 1, ‖g1‖

L2
A

(Σ−)
≤ 1, ‖g2‖

L2
A

(Σ+)
≤ 1

}

.

Recall now that infu∈H1
A

(Ω) IG(u) ≥ 0. On the other hand, taking any p so that T (p) ∈

∂J(0, 0, 0) and applying Young-Fenchel duality, we obtain

J(0, 0, 0) + J∗(Tp) = 0.

By Lemma 2.2 we have

− inf
u∈H1

A(Ω)
I(u) = −J(0, 0, 0) = J∗(Tp) ≥ I(−p) ≥ inf

u∈H1
A(Ω)

I(u).

In other words, infu∈H1
A(Ω) I(u) = I(−p) = 0.

End of Proof of Theorem 2.1: The only problem remaining is the fact that the
convex functional ψ defined by:

ψ(u) =

∫

Ω

{

j(u(x)) + f(x)u(x) +
1

2
(a0 −

1

2
div a)u2)

}

dx

is not necessarily coercive onH1
A(Ω), so we consider instead for each ε > 0, the functional

ϕε(u) = ψ(u) +
ε

2

∫

Ω
|∇u|2dx
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which obviously is. Setting

Iε(u) = ϕε(u) + ϕ∗
ε (−Λ1u) +

1

2

∫

Σ+

|u(x)|2n · a dσ −
1

2

∫

Σ−

|u(x)|2n · a dσ. (11)

The above lemma now applies and we get pε ∈ H1
A(Ω) such that

inf
u∈H1

A(Ω)
Iε(u) = Iε(−pε) = 0,

As in the beginning of the proof of Theorem 2.1, this means that uε = −pε belongs to
Dom(∂ϕε) and satisfies −Λ1uε ∈ ∂ϕε(uε), which implies

−Λ1uε = β(uε) + f + (a0 −
1

2
div a)uε − ε∆uε.

In other words, we have for each ε > 0,










ε∆uε − a0uε − Σn
i=1ai

∂uε
∂xi

= β(uε) + f on Ω

uε = 0 on Σ−,
∂uε
∂n

= 0 on ∂Ω \ Σ−.

(12)

It is now standard to show that, as ε→ 0, uε converges in L2(Ω) to a solution u of (8).
For details, see Bardos [2].

3 More general transport equations

The above method applies to a more general transport equation of the following form
{

−Λu = β(u) +Bu+ f on Ω
u(x) = u0(x) on Σ−.

(13)

where B : H1
A(Ω) → (H1

A(Ω))∗ is a positive bounded linear operator, f ∈ L2(Ω) and
u0 ∈ L2

A(Σ−).
Indeed, one first decomposes B into a symmetric and an anti-symmetric part, Bs and
Ba, by simply writing Bs = 1

2(B +B∗) and Ba = 1
2(B −B∗).

Now consider the convex functional defined by:

ψ(u) =
1

2
〈Bsu, u〉 +

∫

Ω
(j(u(x)) + f(x)u(x) +

1

2
(a0 −

1

2
div a)u2)dx

and its conjugate ψ∗. Let again Λ1 be the operator

Λ1(u) = Σn
i=1ai

∂u

∂xi
+

1

2
div(a)u = Λ(u) − (a0 −

1

2
div a)u.

The functional on the space H1
A(Ω) is now

Ĩ(u) = ψ(u) + ψ∗(−Λ1u−Bau)

+
1

2

∫

Σ+

|u(x)|2n(x) · a(x) dσ −
1

2

∫

Σ−

|u(x)|2n(x) · a(x) dσ

+2

∫

Σ−

u(x)u0(x)n(x) · a(x) dσ −

∫

Σ−

|u0(x)|
2
n(x) · a(x) dσ.

It us left to the reader to show the following
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Theorem 3.1 There exists ū ∈ H1
A(Ω) such that

Ĩ(ū) = inf{Ĩ(u);u ∈ H1
A(Ω)} = 0. (14)

and ū solves equation (13).
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