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Abstract We verify - after appropriate modifications - an old conjecture of
Brezis-Ekeland ([3], [4]) concerning the feasibility of a global and variational
approach to the problems of existence and uniqueness of gradient flows for convex
energy functionals. Our approach is based on a concept of “self-duality” inherent
in many parabolic evolution equations, and motivated by Bolza-type problems in
the classical calculus of variations. The modified principle allows to identify the
extremal value –which was the missing ingredient in [3]– and so it can now be
used to give variational proofs for the existence and uniqueness of solutions for
the heat equation (of course) but also for quasi-linear parabolic equations, porous
media, fast diffusion and more general dissipative evolution equations.

1 Introduction

Second order boundary value problems have often been connected to variational
principles since many of the basic ones arise as Euler-Lagrange equations as-
sociated to certain energy or action functionals. In 1976, Brezis and Ekeland
formulated in [3] an intriguing minimization principle associated to certain first
order initial value problems including gradient flows of convex energy functionals
on infinite dimensional spaces (as in the case of the heat equation), which are
not equations of Euler-Lagrange type. This is because the equations are derived
in this case from the fact that they correspond to “zeroes” of the functionals and
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not because they are critical points (actually minima). This meant that the ap-
plicability of this principle for establishing existence and uniqueness of solutions
for associated equations, depends crucially on the verification that the value of
the infimum is actually zero: a fact they could not establish unless the existence
of solutions was a priori known.
In this paper, we offer a variant of the Brezis-Ekeland principle in which many
of the shortcomings are removed. With it we could prove global existence and
uniqueness of solutions for several basic first order linear and nonlinear evolution
equations. We only deal here with questions of existence and uniqueness of gradi-
ent flows, but we believe that –like with many new variational principles– it will
prove useful. Here is the framework:
Consider the following evolution equation

{

u̇(t) + ∂ϕ(u(t)) = f(t) a.e. on [0, T ]
u(0) = u0

(1)

where ϕ : H → IR ∪ {+∞} is a proper convex and lower semi-continuous func-
tional on a Hilbert space H and where ∂ϕ denotes its subdifferential map. It is
well known [2] that for any f ∈ L2([0, T ];H) and any u0 in the proper domain
Dom(ϕ) of ϕ, there exists a unique solution u ∈ C([0, T ];H) for (1) such that
u̇(t) ∈ L2([0, T ];H) and u(t) ∈ Dom(∂ϕ) a.e.
In the mid-seventies, Brezis and Ekeland [3] formulated the following variational
approach to obtain existence and uniqueness for equation (1). Let ϕ∗ be the
Legendre conjugate of ϕ on H defined as:

ϕ∗(y) = sup{〈y, z〉 − ϕ(z); z ∈ H}, (2)

and –assuming for simplicity that f = 0– we consider the set

K = {v ∈ C([0, T ];H); ϕ∗(−
dv

dt
) ∈ L1(0, T ), v(0) = u0}, (3)

then the solution of (1) is the unique minimizer of the variational problem

Minimize IBE(v) :=

∫ T

0
[ϕ(v(t)) + ϕ∗(−v̇(t))] dt+

1

2
‖v(T )‖2

H over v ∈ K. (4)

The proof is based on the Fenchel-Young inequality:

ϕ(u(t)) + ϕ∗(−u̇(t)) ≥ 〈u(t),−u̇(t)〉 = −
1

2

d

dt
|u(t)|2

H
a.e. on [0, T ] (5)

with equality holding if and only if u satisfies

−u̇(t) ∈ ∂ϕ(u(t)) a.e. on [0, T ] (6)

hence equation (1). But equality in (5) is assured only if one can show that

Min{IBE(v); v ∈ K} =
‖u0‖

2
H

2
, (7)
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which is however not so obvious to prove, unless we already know by different
methods, that (1) has a solution.
For example, in the case of the homogeneous heat equation in a smooth bounded
domain Ω of IRn, the approach of Brezis-Ekeland amounts to minimizing the
functional

IBE(u) =
1

2

∫ T

0

(
∫

Ω
(|∇u(t, x)|2 + |∇∆−1∂u

∂t
(t, x)|2)dx

)

dt+
1

2

∫

Ω
|u(T, x)|2dx

(8)
on the set

K = {u ∈ C([0, T ];L2(Ω));

∫

Ω
|∇∆−1∂u

∂t
(·, x)|2dx ∈ L1(0, T ), u(0) = u0}. (9)

This corresponds to the case where ϕ(u) = 1
2

∫

Ω |∇u|2 dx on H1
0 (Ω) and +∞

elsewhere on L2(Ω). Here w = ∆−1g is defined as the solution of the Dirichlet
problem ∆w = g on Ω with w = 0 on the boundary ∂Ω.
Unless one shows that the infimum is actually equal to 1

2

∫

Ω |u0(x)|
2dx, then

we can only use the Euler-Lagrange equation associated to that minimization
problem, in which case one only obtains a solution to the following equation:

{

( ∂
∂t

−∆)( ∂
∂t

+∆)u = 0 a.e. on [0, T ]
u(0) = u0.

(10)

To remedy the situation, we change the Brezis-Ekeland principle in two funda-
mental ways:

– First, we isolate and exploit a concept of self-dual variational problems that
seems to be inherent to this type of evolution equations. For that we consider
a new convex energy ψ(u) = ϕ(u + u0) − 〈u, f〉 associated to (1), then we
define the functional

I(u) =

∫ T

0
[ψ(u(t)) + ψ∗(−u̇(t))] dt+

1

2
(‖u(0)‖2

H
+ ‖u(T )‖2

H
) (11)

which corresponds to the readily “self-dual” Lagrangian pair (L, `) defined by:

`(c0, cT ) =
1

2
‖c0‖

2
H +

1

2
‖cT ‖

2
H and L(u, v) = ψ(u) + ψ∗(−v). (12)

– This has the added advantage of changing the variational formulation to a
boundary-free one, allowing us to change the constraint set to a Banach space
–typically Aα

H = {u : [0, T ] → H; u& u̇ ∈ Lα
H} for some 1 < α < ∞– so that

standard methods from the calculus of variations –properly extended to an
infinite dimensional framework– can be applied to establish the existence of a
unique minimizer.
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This self-dual setting will then always lead to zero as minimal value, so that under
the right conditions, there is a unique û such that:

I(û) = inf
Aα

H

I(u) = 0. (13)

On the other hand, the Fenchel-Young inequality gives that:

I(u) ≥ ‖u(0)‖2
H

for any u ∈ Aα
H . (14)

It follows that û(0) = 0, while the limiting case of Young’s inequality applied to
ψ, implies –as above– that the path u(t) = û(t) + u0 is a weak solution for the
evolution equation (1).
In summary, we are proposing the following principle established in Theorem
3 below: Assume ϕ is proper convex and lower semi-continuous on a Hilbert
space H, with a non-empty subdifferential at 0. For any u0 ∈ Dom(ϕ) and any
f ∈ L2([0, T ];H), the following functional:

I(u) : =

∫ T

0
[ϕ(u(t) + u0) + ϕ∗(f(t) − u̇(t)) − 〈u(t) + u0, f(t)〉 + 〈u̇(t), u0〉] dt

+
1

2
(‖u(0)‖2

H
+ ‖u(T )‖2

H
) (15)

on A2
H , has a unique minimum v ∈ C([0, T ];H) such that:

v̇ ∈ L2
H , v(t) ∈ Dom(∂ϕ) − u0 for almost all t ∈ [0, T ], (16)

I(v) = inf
A2

H

I(u) = 0, (17)

and the path u(t) = v(t) + u0 is a weak solution for the evolution equation (1).
In the case of the heat equation, this translates to the following:

Corollary 1 For any u0 ∈ H1
0 (Ω) and any f ∈ L2([0, T ] × Ω), the infimum of

the functional

I(u) =
1

2

∫ T

0

∫

Ω

(

|∇(u(t, x) + u0(x))|
2 + |∇∆−1(f(t, x) −

∂u

∂t
(t, x))|2

)

dxdt

+

∫ T

0

∫

Ω

[

u0(x)
∂u

∂t
(t, x) − u0(x)f(t, x) − u(t, x)f(t, x)

]

dxdt

+
1

2

∫

Ω
(|u(0, x)|2 + |u(T, x)|2)dx (18)

on the space A2
L2(Ω) is equal to zero and is attained uniquely at a path v ∈ A2

L2(Ω)

with v(t) ∈ H1
0 ∩H2 for all t ∈ [0, T ], and in such a way that u(t) = v(t) + u0 is

a solution of the equation:






∂u
∂t

= ∆u+ f on Ω × [0, T ]
u(0, x) = u0 on Ω
u(t, x) = 0 on ∂Ω.

(19)
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As mentioned above, behind this principle lies a far-reaching concept of self-
duality inherent to gradient flows, but also applicable in other situations. In
section 2, we formulate and analyze general self-dual variational problems in
a Hilbertian setting that will be applied in section 3, to establish existence of
gradient flows for non-time dependent potentials. To get the most general re-
sult, one still needs to go through a regularization procedure reminescent of the
Hille-Yosida theory. However, the variational context makes the approximation
much simpler since only weak –as opposed to uniform– convergence arguments are
needed. In section 4 and 5, we develop another approach to cover time-dependent
convex energies. Here, certain intermediate Banach spaces (the so-called “evolu-
tion triples” which appear naturally in the applications) play a key role. An
extension of our approach is given in [7] to cover the case of gradient flows of
semi-convex potentials. We also mention that, several months after the comple-
tion of the first version of this paper, Auchmuty informed us about his paper [1],
where he also considers the Brezis-Ekeland variational problem. There he uses
min-max methods to identify the value of the infimum and to establish existence
and uniqueness under suitable growth conditions on the convex potential.

2 Self-dual Lagrangian on Hilbert spaces

Let H be a Hilbert space with 〈 , 〉 as scalar product and let [0, T ] be a fixed real
interval (0 < T < +∞). Consider the classical space L2

H of Bochner integrable
functions from [0, T ] into H with norm denoted by ‖ · ‖2, as well as the Hilbert
space

A2
H = {u : [0, T ] → H; u̇ ∈ L2

H}

consisting of all absolutely continuous arcs u : [0, T ] → H, equipped with the
norm

‖u‖
A

2

H

= (‖u(0)‖2
H +

∫ T

0
‖u̇‖2dt)

1

2 .

It is clear that A
2

H can be identified with the product space H × L2
H , and that

its dual (A2
H)∗ can also be identified with H × L2

H via the formula:

〈u, (a, p)〉
A2

H
,H×L2

H

= (u(0), a)H +

∫ T

0
〈u̇(t), p(t)〉dt.

We consider the following action functional on A2
H :

I`,L(u) =

∫ T

0
L(t, u(t), u̇(t))dt+ `(u(0), u(T ))

where

` : H ×H → IR ∪ {+∞} and L : [0, T ] ×H ×H → IR ∪ {+∞}
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are two appropriate Lagrangians. We shall always assume that L is measurable
with respect to the σ-field in [0, T ]×H×H generated by the products of Lebesgue
sets in [0, T ] and Borel sets in H ×H.

We assume throughout that ` and L(t, ·, ·) are convex, lower semi-continuous
valued in IR ∪ {+∞} but not identically +∞. In this case, we can associate to
the pair (`, L), the following “Bolza-dual” functionals:

M(t, p, s) = L∗
t (s, p) and m(r, s) = `∗(r,−s)

where L∗
t and `∗ denote the Legendre duals of Lt = L(t, ·, ·) and ` respectively.

In other words, M and l are the convex and lower semi-continuous functions on
H ×H defined by:

M(t, p, s) = sup{〈u, s〉 + 〈v, p〉 − L(t, u, v); u, v ∈ H}

and
m(r, s) = sup{〈u, r〉 + 〈v,−s〉 − `(u, v); u, v ∈ H}.

Writing

Im,M (u) =

∫ T

0
M(t, u, u̇)dt+m(u(0), u(T ))

for u ∈ A2
H , the relevance of the “Bolza-dual” functionals starts becoming appar-

ent from the following –easy to establish– “weak duality” formula:

inf
u∈A2

H

I`,L(u) ≥ − inf
u∈A2

H

Im,M (u). (20)

A key aspect of the finite dimensional theory is that equality holds provided Im,M

and I`,L “behave lower semicontinuously with respect to certain perturbations.
To analyse that in our context, we associate the following “variation function”
J`,L defined on (A2

H)∗ = H × L2
H as:

J`,L(a, y) = inf{

∫ T

0
L(t, u(t) + y(t), u̇(t))dt+ `(u(0) + a, u(T )) ; u ∈ A2

H}.

Proposition 1 Under the above conditions, the functional J`,L is convex and
satisfies

J∗
`,L(p) = Im,M (p) for all p ∈ A2

H .

where J∗
`,L is the Legendre transform of J`,L in the duality (H × L2

H , A
2
H).

The convexity of J`,L is easy to establish. For the rest, we need the following
lemma.

Lemma 1 Let EM : L2
H×L2

H → IR ∪ {+∞} be defined as EM (p, s) =
∫ T
0 M(t, p(t), s(t))dt,

then

EM (p, s) = sup

{

∫ T

0
(〈s(t), u(t)〉 + 〈p(t), v(t)〉 − L(t, u(t), v(t)))dt ; (u, v) ∈ L2

H × L2
H

}

.
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Proof: For all u, v ∈ L2
H and p, s ∈ L

2

H , we have:

∫ T

0
L(t, u(t), v(t))dt +

∫ T

0
M(t, p(t), s(t))dt ≥

∫ T

0
(〈s(t), u(t)〉 + 〈p(t), v(t)〉dt,

which implies

∫ T

0
M(t, p(t), s(t))dt ≥ sup

{

∫ T

0
[〈s(t), u(t)〉 + 〈p(t), v(t)〉 − L(t, u(t), v(t)] dt; (u, v) ∈ L2

H × L2
H

}

.

For the reverse inequality, let (p, s) be in L2
H×L2

H in such a way that β < EM (p, s)

and let µ(t) be such that µ(t) < M(t, p(t), s(t)) for all t while
∫ T
0 µ(t)dt > β. We

then have for all t,

−µ(t) > −M(t, p(t), s(t)) = inf{L(t, u, v) − 〈u, s(t)〉 − 〈v, p(t)〉; (u, v) ∈ H ×H}.

By a standard measurable selection theorem (see [5]), there exists a measurable
pair (u1, u2) ∈ L2

H × L2
H such that

−µ(t) ≥ L(t, u1(t), u2(t)) − 〈u1(t), s(t)〉 − 〈u2(t), p(t)〉.

Therefore

β <

∫ T

0
µ(t)dt ≤

∫ T

0
[−L(t, u1(t), u2(t)) + 〈u1(t), s(t)〉 + 〈u2(t), p(t)〉] dt

≤ sup

{

∫ T

0
[〈s(t), u(t)〉 + 〈p(t), v(t)〉 − L(t, u(t), v(t))] dt ; (u, v) ∈ L2

H × L2
H

}

which implies that

EM (p, s) ≤ sup

{

∫ T

0
[〈s(t), u(t)〉 + 〈p(t), v(t)〉 − L(t, u(t), v(t))] dt ; (u, v) ∈ L2

H × L2
H

}

.

Proof of Proposition 1: For p ∈ A2
H , write:

J∗
`,L(p) = sup

a∈H
sup

y∈L2
H

sup
u∈A2

H

{

〈a, p(0)〉 +

∫ T

0
[〈y(t), ṗ(t)〉 − L(t, u(t) + y(t), u̇)] dt− `(u(0) + a, u(T ))

}

.

Make a substitution

u(0) + a = a′ ∈ H and u+ y = y′ ∈ L2
H ,

we obtain

J∗
`,L(p) = sup

a′∈H

sup
y′∈L2

H

sup
u∈A

2

H

{

〈a′ − u(0), p(0)〉 − `(a′, u(T )) +

∫ T

0

[

〈y′(t) − u(t), ṗ(t)〉 − L(t, y′(t), u̇(t)
]

dt

}

.
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Since u̇ ∈ L2
H and u ∈ L2

H , we have:
∫ T

0
〈u, ṗ〉 = −

∫ T

0
〈u̇, p〉 + 〈p(T ), u(T )〉 − 〈p(0), u(0)〉,

which implies

J∗
`,L(p) = sup

a′∈H

sup
y′∈L2

H

sup
u∈A

2

H

{〈a′, p(0)〉 +

∫ T

0
{〈y′, ṗ〉 + 〈u̇, p〉 − L(t, y′(t), u̇(t))}dt

− 〈u(T ), p(T )〉 − `(a′, u(T ))}.

It is now convenient to identify A
2

H with H × L2
H via the correspondence:

(c, v) ∈ H × L2
H 7→ c+

∫ T

t
v(s) ds ∈ A

2

H

u ∈ A
2

H 7→ (u(T ),−u̇(t)) ∈ H × L2
H .

We finally obtain

J∗
`,L(p) = sup

a′∈H

sup
c∈H

{

〈a′, p(0)〉 + 〈−c, p(T )〉 − `(a′, c)
}

+ sup
y′∈L2

H

sup
v∈L2

H

{

∫ T

0

[

〈y′, ṗ〉 + 〈v, p〉 − L(t, y′(t), v(t))
]

dt

}

= EM (p, ṗ) +m(p(0), p(T ))

= IM,m(p).

Proposition 2 An arc p ∈ A2
H belongs to ∂J`,L(0, 0) if and only if it satisfies:

Im,M (p) = inf
A2

H

Im,M = − inf
A2

H

I`,L

Dually, an arc x ∈ A2
H belongs to ∂Jm,M (0, 0) if and only if it satisfies:

I`,L(x) = inf
A2

H

I`,L = − inf
A2

H

Im,M

Proof: As noted above, the definition of m,M and weak duality, yield:

inf
u∈A2

H

I`,L(u) ≥ − inf
u∈A2

H

Im,M (u).

In view of Proposition 1, if p ∈ ∂J`,L(0, 0) ∈ A2
H , then

inf
A2

H

I`,L(u) ≥ − inf
A2

H

Im,M (u) = sup
A2

H

−Im,M(u)

= sup
A2

H

−J∗
`,L(u) ≥ −J∗

`,L(p)

= J`,L(0, 0) = inf
u∈A2

H

I`,L(u).

The following concept is at the heart of our approach.
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Definition 1 Say that the pair (L, `) is self-dual if for all (p, s) ∈ H × H, we
have

m(r, s) = `(−r,−s) and M(s, p) = L(−s,−p),

or equivalently

`∗(r, s) = `(−r, s) and L∗(p, s) = L(−s,−p)

Theorem 1 Suppose that L and l are two proper convex and lower semi-continuous
functions from H ×H to IR ∪ {+∞} such that the pair (L, `) is self-dual, then

Im,M (u) = I`,L(−u) for any u in A2
H (21)

and
inf
A2

H

I`,L ≥ 0 ≥ sup
A2

H

−Im,M = − inf
A2

H

I`,L. (22)

Suppose in addition that for some p0 and q0 ∈ H, C > 0 and α ∈ L∞[0, T ], we
have for all (t, x) ∈ [0, T ] ×H,

L(t, x, p0) ≤ α(t)(1 + ‖x‖2
H) and `(x, q0) ≤ C(1 + ‖x‖2

H). (23)

Then, there exists v ∈ A2
H such that (v(t), v̇(t)) ∈ Dom(L) for almost all t ∈ [0, T ]

and
I`,L(v) = inf

u∈A2
H

I`,L(u) = 0. (24)

Proof of Theorem 1: Proposition 1 and the fact that (L, `) is self-dual implies
immediately that Im,M (u) = I`,L(−u) for any u. This combined with the weak
duality inequality and the fact that the constraint set is a vector space, gives that

inf
u∈A2

H

I`,L(u) ≥ − inf
u∈A2

H

Im,M (u) = − inf
A2

H

I`,L(u)

which means that infA2
H
I`,L is necessarily non-negative.

To prove (24) we need to show that the convex functional J`,L is sub-differentiable
at (0, 0), so as to conclude using Proposition 2. For that, we show that J is
bounded in a neighborhood of (0, 0) in the space H×L2

H . Indeed, by considering
the path γ(t) = q0t+ t

T
(p0 − q0) joining p0 to q0, we get:

J`,L(a, y) ≤

∫ T

0
L(t, y(t) + γ(t), p0)dt+ `(p0 + a, q0)

≤

∫ T

0
α(t)(C1t+ ‖y(t)‖2

H)dt+ C2(1 + ‖a‖2
H ).

This means that J`,L is convex and bounded in a neighborhood of (0, 0) in the
space H ×L2

H , hence it is subdifferentiable at (0, 0), and Proposition 2 therefore
applies.
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Remark 1 Note that all what we needed for the proof is the existence of a path
γ joining p0 and q0 ∈ H, and C > 0 such that for any (y, a) ∈ L2

H × H with
‖a‖H ≤ 1 and ‖y‖L2

H
≤ 1, we have

∫ T

0
L(t, y(t) + γ(t), p0)dt+ `(p0 + a, q0) ≤ C. (25)

This is a much weaker assumption on the Lagrangian.

Corollary 2 Suppose that L is a proper convex and lower semi-continuous La-
grangian from [0, T ] ×H ×H to IR ∪ {+∞} such that for all (t, x, p) ∈ [0, T ] ×
H ×H:

L∗(t, x, p) = L(t,−p,−x) (26)

and for some p0 ∈ H and α ∈ L∞[0, T ], we have

L(t, x, p0) ≤ α(t)(1 + ‖x‖2
H) for all (t, x) ∈ [0, T ] ×H. (27)

Then there exists v ∈ A2
H such that:

(v(t), v̇(t)) ∈ Dom(L) for almost all t ∈ [0, T ], (28)

d

dt
∂pL(t, v(t), v̇(t)) = ∂xL(t, v(t), v̇(t)) (29)

and

‖v(t)‖2
H = −2

∫ t

0
L(s, v(s), v̇(s))ds for every t ∈ [0, T ]. (30)

Proof: Consider on H × H the convex function `(x, y) = 1
2(‖x‖2 + ‖y‖2) and

notice that the pair (L.`) is then self-dual. By Theorem 1, the functional

I`,L(u) =

∫ T

0
L(t, u(t), u̇(t)dt+ `(u(0), u(T ))

has zero as infimum and it is attained at some v ∈ A2
H . Writing the corre-

sponding Euler-Lagrange equation gives (29).
Now note that

I`,L(u) =

∫ T

0
[L(t, u(t), u̇(t) + 〈u(t), u̇(t)〉] dt+ ‖u(0)‖2.

By (27) also implies that

L(t, x, p) ≥ −〈x, p〉 for all (t, x, p) ∈ [0, T ] ×H ×H, (31)

and so from the fact that I`,L(v) = inf
u∈A2

H

I`,L(u) = 0, follows that v(0) = 0 and

L(s, v(s), v̇(s) + 〈v(s), v̇(s)〉 = 0 for almost all s ∈ [0, T ].

This clearly yields (30).
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3 Self-dual Lagrangians associated to gradient flows

We now give the arch-typical example of a self-dual Lagrangian, from which we
deduce a variational formulation of gradient flows.

Proposition 3 Let ϕ : [0, T ] × H → IR ∪ {+∞} be a measurable function with
respect to the σ-field in [0, T ] ×H generated by the products of Lebesgue sets in
[0, T ] and Borel sets in H. Assume ϕ(t, ·) is convex and lower semicontinuous
on H for every t ∈ [0, T ], such that for some increasing function τ : [0,+∞) →
[0,+∞) we have

−∞ <

∫ T

0
ϕ(t, y(t))dt ≤ τ(‖y‖L2) for every y ∈ L2

H . (32)

Then, for any u0 ∈ H and any f ∈ L2([0, T ];H) such that
∫ T
0 ϕ∗(t,−f(t))dt <∞,

consider the convex potential

ψ(t, x) = ϕ(t, x+ u0) − 〈f(t), x〉

and the functional

I(u) =

∫ T

0
[ψ(t, u(t)) + ψ∗(t,−u̇(t))] dt+

1

2
(‖u(0)‖2 + ‖u(T )‖2). (33)

on A2
H . Then, there exists a unique minimizer v in A2

H such that

I(v) = inf
u∈A2

H

I(u) = 0. (34)

Moreover, u(t) := v(t) + u0 is the unique solution in A2
H to the equation

{

−u̇(t) ∈ ∂ϕ(t, u(t)) + f(t) a.e. on [0, T ]
u(0) = u0.

(35)

Proof: The above variational problem corresponds to the readily self-dual La-
grangian pair (L, `) defined by:

`(c0, cT ) =
1

2
‖c0‖

2
H +

1

2
‖cT ‖

2
H and L(t, x, p) = ψ(t, x) + ψ∗(t,−p). (36)

Note again that

I(u) =

∫ T

0
[ψ(t, u(t)) + ψ∗(t,−u̇(t)) + 〈u(t), u̇(t)〉] dt+ ‖u(0)‖2. (37)

The Fenchel-Young inequality yields:

ψ(t, u(t)) + ψ∗(t,−u̇(t)) ≥ 〈u(t),−u̇(t)〉 = −
1

2

d

dt
‖u(t)‖2

H
a.e. on [0, T ] (38)



12 Nassif Ghoussoub and Leo Tzou

with equality holding if and only if u satisfies

−u̇(t) ∈ ∂ψ(t, u(t)) a.e. on [0, T ]. (39)

The hypothesis insure that Theorem 1 applies. Indeed, in view of Remark 1, by
taking the arc which is identically zero, we have for (a, y) ∈ H × L2

H ,
∫ T

0
L(t, y(t), 0)dt + `(a, 0) =

∫ T

0
ψ(t, y(t))dt + (ψ|X)∗(t, 0) +

‖a‖2
H

2

=

∫ T

0
[ϕ(t, u0 + y(t)) + ϕ∗(t,−f(t))] dt

+

∫ T

0
[|〈y(t), f(t)〉| + |〈u0, f(t)〉|] dt+

‖a‖2
H

2

≤ τ(‖y + u0‖L2
H

) + C1‖y‖L2
H

) + C2 +
‖a‖2

H

2

which means that its is bounded in a neighborhood of (0, 0) in the space H×L2
H .

By Theorem 1, there is a unique v ∈ A2
H such that:

I(v) = inf
A2

H

I = 0. (40)

This will then insure equality in (38) and that v(0) = 0. It follows that the path
u(t) = v(t) + u0 is a weak solution for (35).

Yosida’s regularization: The boundedness condition (32) on ϕ(t, ·) in Proposi-
tion 3, is quite restrictive and actually not satisfied by most potentials of interest.
We offer two ways to deal with such a difficulty. The first is to assume similar
bounds on ψ but in Banach norms that are stronger –hence easier to satisfy–
than the Hilbert norm of the ambiant space. This will be the subject of sections
4 and 5.

Another way to remedy this is to regularize ψ by using inf-convolution. That
is, for each λ > 0 we define

ψλ(t, x) = inf{ψ(t, y) +
1

2λ
‖x− y‖2

H ; y ∈ H},

so that

ψλ(t, x) ≤ ψ(t, 0) +
1

2λ
‖x‖2

while its conjugate is given by

ψ∗
λ(t, y) = ψ∗(t, y) +

λ

2
‖y‖2. (41)

The ψλ now satisfy the hypothesis of Proposition 3, as long as

−∞ <

∫ T

0
ϕ(t, u0) + ϕ∗(t,−f(t))dt <∞,
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and therefore the corresponding evolution equations
{

v̇(t) + ∂ϕλ(t, v(t)) = f(t) a.e. on [0, T ]
v(0) = u0

(42)

have unique solutions vλ(t) in A2
H that minimize

Iλ(u) :=

∫ T

0
[ψλ(t, u(t)) + ψ∗

λ(t,−u̇(t)) + 〈u(t), u̇(t)〉] dt+ ‖u(0)‖2. (43)

Now we need to argue that (vλ)λ converges as λ→ 0 to a solution of the original
problem. For that, an upper bound on the L2-norm of (v̇λ(t))λ is needed, but this
is not always possible for general time-dependent potentials. However we shall
show next that this is indeed possible at least for when ϕ does not evolve in
time. In a forthcoming paper of Ghoussoub-McCann ([7]), it is shown that such
estimates hold for certain interesting cases of time-dependent potentials.

This analysis is reminiscent of the approach via the resolvent theory of Hille-
Yosida, but is much easier here since the variational argument does not require
uniform convergence of (vλ)λ or their time-derivatives.

Here is the main application of our method.

Theorem 2 Let ϕ : H → IR ∪ {+∞} be a bounded below convex and lower semi-
continuous function on H and let ϕ∗ : H → IR ∪ {+∞} be its Fenchel conjugate.
For any u0 ∈ Dom(∂ϕ) and f ∈ Dom(ϕ∗), consider on A2

H the functional:

I(u) : =

∫ T

0
[ϕ(u(t) + u0) + ϕ∗(f − u̇(t)) − 〈u(t), f〉 + 〈u̇(t), u0〉]dt

+
1

2
(‖u(0)‖2

H
+ ‖u(T )‖2

H
) − T 〈f, u0〉. (44)

Then, there exists a unique v in A2
H such that

I(v) = inf
A2

H

I(u) = 0. (45)

Moreover, the path u(t) = v(t)+u0 is valued in Dom(∂ϕ) for almost all t ∈ [0, T ]
and is a solution for

{

u̇(t) + ∂ϕ(u(t)) = f a.e. on [0, T ]
u(0) = u0.

(46)

We first establish the existence and semi-group property of the solutions, under
a stronger bound on the potential ϕ.

Proposition 4 let ϕ : H → IR be a bounded below convex and lower semi-
continuous function on H. Assume that ϕ satisfies for some C > 0,

ϕ(x) ≤ C(1 + ‖x‖2
H) for u ∈ H. (47)
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Then, for any u0, f ∈ H such that ϕ∗(−f) <∞, the functional I defined in (44)
achieves its minimum on A2

H at a path v, and u(t) = v(t) + u0 is a solution for
(46).

Moreover, the formula PT (u0) = u(T ) defines unambiguously a 1-Lipschitz
semi-group of operators {Pt}t∈R+ on H.

Proof: Again, the functional I can be written as

I(u) =

∫ T

0
[ψ(u(t)) + ψ∗(−u̇(t))] dt+

1

2
(‖u(0)‖2

H
+ ‖u(T )‖2

H
) (48)

where ψ(u) = ϕ(u+u0)−〈u, f〉. Proposition 3 then applies to yield the existence
of a unique solution of (46).

To establish the semi-group and other properties of the solutions, note that
the solution {u(t); t ∈ [0, T ]} can be also characterized as the unique path in A2

H

such that u(0) = u0 while for any t ≤ T ,

∫ t

0
ϕ(u(s)) + ϕ∗(f − u̇(s)) ds+

‖u(t)‖2
H

2
=

‖u0‖
2
H

2
.

This means that one can define unambiguously a one-parameter family of oper-
ators {Pt}t∈R+ on H by Pt(u0) = u(t).
Showing that it is a 1-Lipschitz semi-group of operators is standard: take any two
initial conditions u0 and v0 in H, and write:

0 ≤ 〈Pt(u0) − Pt(v0), ∂ϕ(Pt(u0)) − ∂φ(Pt(v0))〉

= −〈Pt(u0) − Pt(v0),
d

dt
(Pt(u0) − Pt(v0))〉

= −
1

2

d

dt
‖Pt(u0) − Pt(v0)‖

2
H

which means that d
dt
‖Pt(u0) − Pt(v0)‖

2
H ≤ 0, and consequently

‖Pt(u0) − Pt(v0)‖
2
H ≤ ‖u0 − v0‖

2
H .

For the semi-group property, first take u0 ∈ H and let v0 = Pt(u0) Then

∫ s

0
ϕ(Pτ (v0)) + ϕ∗

(

f −
d

dτ
Pτ (v0)

)

dτ +
‖Ps(v0)‖

2
H

2
=

‖v0‖
2
H

2

and
∫ t

0
ϕ(Pτ (u0)) + ϕ∗

(

f −
d

dτ
Pτ (u0)

)

dτ +
‖Pt(u0)‖

2
H

2
=

‖u0‖
2
H

2
.

Adding the two, we get:

∫ s

0
ϕ(Pτ (v0))+ϕ

∗
(

f −
d

dτ
Pτ (v0)

)

dτ+
‖Ps(Pt(u0))‖

2

2
+

∫ t

0
ϕ(Pτ (u0))+ϕ

∗
(

f −
d

dτ
Pτ (u0)

)

=
‖u0‖

2

2
.
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Let now

W (τ) =

{

Pτ (u0) if τ ∈ [0, t]
Pτ−t(Pt(u0)) if τ ∈ [t, t+ s]

then
∫ s+t

0
ϕ(W (τ)) + ϕ∗(f − Ẇ (τ))dτ +

‖W (t+ s)‖2
H

2
=

‖u0‖
2
H

2
.

But we know that:
∫ s+t

0
ϕ(Pτ (u0)) + ϕ∗

(

f −
d

dτ
Pτ (u0)

)

dτ +
‖Ps+t(u0)‖

2
H

2
=

‖u0‖
2
H

2

which means that Pτ (u0) = Wτ for all τ ∈ [0, s+ t] and Ps+t(u0) = Ps(Pt(u0).

End of proof of Theorem 2: Consider as before ψ(u) = ϕ(u+u0)−〈u, f〉 and
for each λ > 0, let

ψλ(x) = inf{ψ(y) +
1

2λ
‖x− y‖2

H ; y ∈ H}.

The functional ψλ now satisfy the hypothesis of Proposition 4 and therefore the
corresponding evolution equation

{

u̇λ(t) + ∂ψλ(uλ(t)) = 0 a.e. on [0, T ]
uλ(0) = 0

(49)

have a solution uλ(t) in A2
H that minimizes

Iλ(u) =

∫ T

0
[ψλ(u(t)) + ψ∗

λ(−u̇(t))] dt+
1

2
(‖u(0)‖2

H
+ ‖u(T )‖2

H
). (50)

Now we need to argue that (uλ)λ converges as λ→ 0 to a solution of the original
problem. Define Jλ(x) to be the unique point in H such that

ψλ(x) = ψ(Jλ(x)) +
1

2λ
‖x− Jλ(x)‖2.

It is easy to check that for every λ > 0, the map x→ Jλ(x) is 1-Lipschitz on H.
We now establish the following estimates:

Lemma 2 For any λ > 0, we have:

u̇λ(t) + ∂ψ(Jλ(uλ(t)) = 0 a.e. on [0, T ] (51)

−u̇λ(t) =
uλ(t) − Jλ(uλ(t))

λ
for all t ∈ [0, T ], (52)

and

‖u̇λ(t)‖ ≤ ‖u̇λ(0)‖ =
‖Jλ(uλ(0))‖

λ
≤ inf{‖z‖; z ∈ ∂ψ(0)}. (53)
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Proof: Denote vλ(t) = Jλ(uλ(t)) and note that by two applications of Young-
Fenchel duality, we have

0 =
∫ T
0 ψ(vλ(t)) + ψ∗(−u̇λ(t)) + 1

2λ
‖uλ(t) − vλ(t)‖2 + λ

2‖u̇λ(t)‖2dt+ 1
2‖uλ(T )‖2

≥
∫ T
0 〈vλ(t),−u̇λ(t)〉 + 1

2λ
‖uλ(t) − vλ(t)‖2 + λ

2‖u̇λ(t)‖2dt+ 1
2‖uλ(T )‖2

≥
∫ T
0 〈vλ(t),−u̇λ(t)〉 + 〈vλ(t) − uλ(t), u̇λ(t)〉 + 1

2‖uλ(T )‖2

= 1
2‖uλ(0)‖2 = 0.

This implies that

ψ(vλ(t)) + ψ∗(−u̇λ(t)) = 〈vλ(t),−u̇λ(t)〉 a.e.

and
1

2λ
‖uλ(t) − vλ(t)‖2 +

λ

2
‖u̇λ(t)‖2 = 〈vλ(t) − uλ(t), u̇λ(t)〉.

It follows that

−u̇λ(t) ∈ ∂ψ(vλ(t)) and − u̇λ(t) =
uλ(t) − vλ(t)

λ
a.e.,

and since x → Jλ(x) is continuous for each λ > 0, the latter is true for every
t ∈ [0, T ].

Pick now z ∈ ∂ψ(0) and note that

0 ≤ 〈0 − vλ(0), z − (−u̇λ(0))〉

= 〈0 − vλ(0), z − (uλ(0)−vλ(0)
λ

)〉

= 〈−vλ(0), z + vλ(0)
λ

〉

which implies that ‖vλ(0)‖
λ

≤ ‖z‖. Use now the 1-Lipschitz semi-group property
to get for λ > 0 and each t ∈ [0, T ],

‖uλ(t+ h) − uλ(t)‖ = ‖Pt(uλ(h)) − Pt(0)‖ ≤ ‖uλ(h)‖.

This implies

‖u̇λ(t)‖ ≤ ‖u̇λ(0)‖ =
‖vλ(0)‖

λ
≤ ‖z‖,

and the lemma is established.
The above estimate now yields that a subsequence (uλj

)j is converging weakly in

A2
H to a path u. This implies that for each t ∈ [0, T ], uλj

(t) → u(t) weakly in H,
and since ‖uλ(t) − vλ(t)‖ = |λ|‖u̇(t)‖ ≤ |λ|‖z‖, we get that vλj

(t) → u(t) weakly
in H for every t ∈ [0, T ].
Since ψ and ψ∗ are weakly lower semi-continuous on H, one can easily deduce
that:

∫ T

0
ψ(u(t))dt ≤ limj

∫ T

0
ψ(vλj

(t))dt,
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∫ T

0
ψ∗(−u̇(t))dt ≤ limj

∫ T

0
ψ∗(−u̇λj

(t))dt,

as well as

‖u(0)‖2 ≤ limj‖uλj
(0)‖2 = 0 and ‖u(T )‖2 ≤ limj‖uλj

(T )‖2 = 0.

Moreover,
∫ T

0

‖uλj
(t) − vλj

(t)‖2

λj
≤
λ2

j‖z‖
2T

λj
→ 0,

and
∫ T

0
λj‖u̇λj

(t)‖2dt ≤ ‖z‖2Tλj → 0.

It follows that

∫ T
0 ψ(u(t) + ψ∗(−u̇(t)) dt+ ‖u(T )‖2

2 ≤ limj

∫ T
0 ψ(vλj

(t))dt+ limj

∫ T
0 ψ∗(−u̇λj

(t))dt

+limj

∫ T
0 (

‖uλj
(t)−vλj

(t)‖2

2λj
+

λj

2 ‖u̇λj
(t)‖2)dt+ limj

‖uλj
(T )‖2

2

≤ limj

∫ T
0 ψλj

(uλj
(t)) + ψ∗

λj
(−u̇λ(t))dt+ limj

‖uλj
(T )‖2

2

≤ limj(
∫ T
0 ψλj

(uλj
(t)) + ψ∗

λj
(−u̇λ(t))dt+

‖uλj
(T )‖2

2 )

= 0.

This means that u solves the minimization problem and that −u̇(t) ∈ ∂ψ(u(t))
a.e. while u(0) = 0. The path u0 + u(t) then solves the original problem (36).

Quasi-linear parabolic equations

Let Ω be a smooth bounded domain in IRn. For p ≥ n−2
n+2 , we have that the Sobolev

space W 1,p+1
0 (Ω) ⊂ H := L2(Ω), and so we define on L2(Ω) the functional

ϕ(u) = 1
p+1

∫

Ω |∇u|p+1 on W 1,p+1
0 (Ω) and +∞ elsewhere. Its conjugate is then

ϕ∗(v) = p
p+1

∫

Ω |∇∆−1v|
p+1

p dx. We then obtain for any u0 ∈W 1,p+1
0 (Ω) and any

f ∈W
−1,

p+1

p (Ω), that the infimum of the functional

I(u) =
1

p+ 1

∫ T

0

∫

Ω

(

|∇(u(t, x) + u0(x))|
p+1 + p|∇∆−1(f(x) −

∂u

∂t
(t, x))|

p+1

p

)

dxdt

+

∫ T

0

∫

Ω

[

u0(x)
∂u

∂t
(t, x) − f(x)u(x, t)

]

dxdt

−T

∫

Ω
f(x)u0(x) dx+

1

2

∫

Ω
(|u(0, x)|2 + |u(T, x)|2)dx



18 Nassif Ghoussoub and Leo Tzou

on the space A2
H is equal to zero and is attained uniquely at an W 1,p+1

0 (Ω)-valued

path ũ such that
∫ T
0 ‖u̇(t)‖2

2dt < +∞. Moreover, the path u(t) = ũ(t) + u0 is a
solution of the equation:







∂u
∂t

(t, x) = ∆pu+ f on Ω × [0, T ]
u(0, x) = u0 on Ω
u(t, 0) = 0 on ∂Ω.

(54)

Porous media equations

Let H = H−1(Ω) equipped with the norm induced by the scalar product

〈u, v〉 =

∫

Ω
u(−∆)−1vdx = 〈u, v〉H−1(Ω).

For m ≥ n−2
n+2 , we have Lm+1(Ω) ⊂ H−1, and so we can consider the functional

ϕ(u) =

{

1
m+1

∫

Ω |u|m+1 on Lm+1(Ω)

+∞ elsewhere
(55)

and its conjugate

ϕ∗(v) =
m

m+ 1

∫

Ω
|∆−1v|

m+1

m dx. (56)

Then, for any u0 ∈ Lm+1(Ω) and any f ∈ L2(Ω), the infimum of the functional

I(u) =
1

m+ 1

∫ T

0

∫

Ω

(

|(u(t, x) + u0(x))|
m+1dx+m∆−1(f(x) −

∂u

∂t
(t, x))|

m+1

m

)

dxdt

+

∫ T

0

∫

Ω

[

u0(x)(∆
−1 ∂u

∂t
)(t, x) − u(x, t)(∆−1f)(x)

]

dxdt

−T

∫

Ω
u0(x)(−∆)−1f(x) dx+

1

2

(

‖u(0)‖2
H−1

+ ‖u(T )‖2
H−1

)

on the space A2
H is equal to zero and is attained uniquely at an Lm+1(Ω)-valued

path ũ such that
∫ T
0 ‖u̇(t)‖2

Hdt < +∞. Moreover, the path u(t) = ũ(t) + u0 is a
solution of the equation:

{

∂u
∂t

(t, x) = ∆um + f on Ω × [0, T ]
u(0, x) = u0 on Ω.

(57)
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4 Intermediate spaces and self-dual variational problems

The approach we use in the rest of the paper, consists of introducing natural
Banach spaces whose norm is stronger than the Hilbertian norm and on which
the energy functional has a better chance to be bounded. The framework –known
as an evolution triple setting– is well known, and the intermediate Banach spaces
appear naturally in the applications. Here is a brief description of this framework.

Let H be a Hilbert space with 〈, 〉 as scalar product. Let X be a dense vector
subspace of H and assume that X is equipped with a norm ‖ · ‖ that makes it
a reflexive Banach space. Also assume that the canonical injection X → H is
continuous. We identify the Hilbert space H with its dual H ∗ and we “inject” H
inX∗ via the following procedure. For each h ∈ H, the map Sh : u ∈ X → 〈h, u〉H

is a continuous linear functional on X in such a way that

〈Sh, u〉X∗,X = 〈h, u〉H for all h ∈ H and all u ∈ X

One can easily see that S : H → X∗ is continuous, one-to-one, and that S(H)
is dense in X∗. In other words, one can then place H in X∗ in such a way that
X ⊂ H = H∗ ⊂ X∗ where the injections are continuous and with dense range.
We note that with such an identification the duality 〈f, u〉X∗,X coincides with
the scalar product 〈f, u〉H as soon as f ∈ H and u ∈ X. In other words, we
are representing the dual X∗ of X as the completion of H for the dual norm
‖h‖ = sup{〈h, u〉H ; ‖u‖X ≤ 1}. We shall sometimes say that the space X is
anchored on the Hilbert space H.

For each α (1 < α <∞), we consider the Banach space

Aα
H,X∗ = {u : [0, T ] → X∗;u(0) ∈ H, u& u̇ ∈ Lα

X∗}

equipped with the norm

‖u‖Aα
H,X∗

= ‖u(0)‖H + (

∫ T

0
‖u̇‖α

X∗dt)
1

α .

It is clear that Aα
H,X∗ is a reflexive Banach space that can be identified with the

product space H × Lα
X∗ , while its dual (Aα

H,X∗)∗ ' H × Lβ
X where 1

α
+ 1

β
= 1.

The duality is then given by the formula:

〈u, (a, p)〉
Aα

H,X∗ ,H×L
β
X

= (u(0), a)H +

∫ T

0
〈u̇(t), p(t)〉dt

where 〈·, ·〉 is the duality on X, X∗ and (·, ·) is the inner product on H.
Let ` : X∗×X∗ → IR ∪ {+∞} be convex and weak∗-lower semi-continuous on

X∗ ×X∗, and let L : [0, T ] ×X∗ ×X∗ → IR∪ {+∞} be measurable with respect
to the σ-field in [0, T ] ×X∗ ×X∗ generated by the products of Lebesgue sets in
[0, T ] and Borel sets in X∗ ×X∗, in such a way that for each t ∈ [0, T ], L(t, ·, ·)
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is convex and weak∗-lower semi-continuous on X∗ ×X∗. To any such a pair, we
associate the action functional on Aα

H,X∗ by:

I`,L(u) =

∫ T

0
L(t, u(t), u̇(t))dt+ `(u(0), u(T ))

as well as the corresponding “variation function” J`,L defined on (Aα
H,X∗)∗ =

H × Lβ
X by

Jα
`,L(a, y) = inf{

∫ T

0
L(t, u+ y, u̇)dt+ `(u(0) + a, u(T )) ; u ∈ Aα

H,X∗}

Now associate to the pair (`, L), the following “Bolza-dual” functionals:

M(t, p, s) = (Lt|X×X)∗(s, p) and m(p, s) = (`|X×X)∗(p,−s)

where (Lt|X×X)∗ and (`|X×X)∗ denote the Legendre duals of the restrictions of
Lt = L(t, ·, ·) and ` to X ×X. In other words, M and l are the convex and lower
semi-continuous functions on X∗ ×X∗ defined by:

M(t, p, s) = sup{〈u, s〉X,X∗ + 〈v, p〉X,X∗ − L(t, u, v); u, v ∈ X}

and

m(p, s) = sup{〈u, p〉X,X∗ + 〈v,−s〉X,X∗ − `(u, v); u, v ∈ X}

Definition 2 We again say that the pair (L, `) is self-dual if for all (p, s) ∈
X∗ ×X∗, we have

m(p, s) = `(−p,−s) and M(t, s, p) = L(t,−s,−p),

or equivalently

(`|X×X)∗(p, s) = `(−p, s) and (Lt|X×X)∗(t, p, s) = L(t,−s,−p).

Theorem 3 Suppose that for each t ∈ [0, T ], the Lagrangians L(t, ·) and l are
two proper convex and weak∗-lower semi-continuous functions on X∗ ×X∗ such
that the pair (L, `) is self-dual. Suppose that for some α ∈ (1, 2], J α

`,L : H×Lα∗

X →
IR ∪ {+∞} is sub-differentiable at (0, 0), then there exists v ∈ Aα

H,X∗ such that:

(v(t), v̇(t)) ∈ Dom(L) for almost all t ∈ [0, T ],

and

I`,L(v) = inf
Aα

H,X∗

I`,L(u) = 0.

Again, we need the following lemmas.
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Lemma 3 Define EM (·, ·) : Lα
X∗×Lα

X∗ → R ∪ {+∞} by EM (p, s) =
∫ T
0 M(t, p(t), s(t))dt,

then

EM (p, s) = sup

{

∫ T

0
[〈s(t), u(t)〉 + 〈p(t), v(t)〉 − L(t, u(t), v(t))]dt ; (u, v) ∈ Lβ

X × Lβ
X

}

.

Proof: For u, v ∈ Lβ
X and p, s ∈ Lα

X∗ , we have:

∫ T

0
L(t, u(t), v(t))dt +

∫ T

0
M(t, p(t), s(t))dt ≥

∫ T

0
(〈s(t), u(t)〉 + 〈p(t), v(t)〉)dt,

which implies

∫ T

0
M(t, p(t), s(t))dt ≥ sup

{

∫ T

0
[〈s(t), u(t)〉 + 〈p(t), v(t)〉 − L(t, u(t), v(t))]dt; (u, v) ∈ Lβ

X × Lβ
X

}

.

For the reverse inequality, Let (p, s) be in Lα
X∗ × Lα

X∗ in such a way that β <

EM (p, s) and let µ(t) be such that µ(t) < M(t, p(t), s(t)) for all t while
∫ T
0 µ(t)dt >

β. We then have for all t,

−µ(t) > −M(t, p(t), s(t)) = inf{L(t, u(t), v(t))−〈u(t), s(t)〉−〈v(t), p(t)〉; (u, v) ∈ X×X}

Again, by ([5]), there exists a measurable pair (u1, u2) ∈ Lβ
X × Lβ

X such that

−µ(t) ≥ L(t, u1(t), u2(t)) − 〈u1(t), s(t)〉X,X∗ − 〈u2(t), p(t)〉X,X∗ .

Therefore

β <

∫ T

0
µ(t)dt ≤

∫ T

0
[−L(t, u1(t), u2(t)) + 〈u1(t), s(t)〉X,X∗ + 〈u2(t), p(t)〉X,X∗ ]dt

≤ sup

{

∫ T

0
[〈s(t), u(t)〉 + 〈p(t), v(t)〉 − L(t, u(t), v(t))]dt ; (u, v) ∈ Lβ

X × Lβ
X

}

which implies that

EM (p, s) ≤ sup

{

∫ T

0
[〈s(t), u(t)〉 + 〈p(t), v(t)〉 − L(t, u(t), v(t))]dt ; (u, v) ∈ Lβ

X × Lβ
X

}

.

For the next lemma, recall that Im,M (u) =
∫ T
0 M(t, u(t), u̇(t))dt +m(u(0), u(T ))

for u ∈ Aα
H,X∗ .

Lemma 4 Under the above conditions, we have J ∗
`,L(p) ≥ Im,M (p) for all p ∈

Aα
H,X∗ .
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Proof: For p ∈ Aα
H,X∗ , write:

J∗
`,L(p) = sup

a∈H
sup

y∈L
β
X

sup
u∈Aα

H,X∗

{

(a, p(0)) +

∫ T

0
[〈y, ṗ〉 − L(t, u+ y, u̇)]dt− `(u(0) + a, u(T ))

}

.

Set
F

def
=
{

u ∈ Aα
H,X∗ ; u ∈ Lβ

X

}

⊆ Aα
H,X∗ .

Then

J∗
`,L(p) ≥ sup

a∈H
sup

y∈L
β
X

sup
u∈F

{

(a, p(0)) +

∫ T

0
[−L(t, u+ y, u̇) + 〈y, ṗ〉]dt− `(u(0) + a, u(T ))

}

Make a substitution

u(0) + a = a′ ∈ H and u+ y = y′ ∈ Lβ
X ,

we obtain

J∗
`,L(p) ≥ sup

a′∈H

sup
y′∈L

β
X

sup
u∈F

{

(a′ − u(0), p(0)) − `(a′, u(T )) +

∫ T

0
[〈y′ − u, ṗ〉 − L(t, y′, u̇)]dt

}

.

Set now
S = {u : [0, T ] → X;u ∈ Lβ

X , u̇ ∈ Lβ
X , u(0) ∈ X}.

Since β ≥ 2 ≥ α and ‖ · ‖X∗ ≤ C‖ · ‖X , we have S ⊆ A
α

H,X∗ ∩ Lβ
X = F and

J∗
`,L(p) ≥ sup

a′∈H

sup
y′∈L

β
X

sup
u∈S

{

(a′ − u(0), p(0)) +

∫ T

0
[〈y′, ṗ〉 − 〈u, ṗ〉 − L(t, y′, u̇)]dt− `(a′, u(T ))

}

Since u̇ ∈ Lβ
X and u ∈ Lβ

X , we have:

∫ T

0
〈u, ṗ〉dt = −

∫ T

0
〈u̇, p〉dt+ 〈p(T ), u(T )〉 − 〈p(0), u(0)〉.

But p(0) ∈ H, so 〈p(0), u(0)〉 = (p(0), u(0)) which implies

J∗
`,L(p) ≥ sup

a′∈H

sup
y′∈L

β
X

sup
u∈S

{

(a′, p(0)) +

∫ T

0

{

〈y′, ṗ〉 + 〈u̇, p〉 − L(t, y′, u̇)
}

dt− 〈u(T ), p(T )〉 − `(a′, u(T ))

}

.

It is now convenient to identify S = {u : [0, T ] → X; u ∈ Lβ
X , u̇ ∈ Lβ

X , u(0) ∈ X}

with X × Lβ
X via the correspondence:

(c, v) ∈ X × Lβ
X 7→ c+

∫ T

t
v(s) ds ∈ S

u ∈ S 7→ (u(T ),−u̇(t)) ∈ X × Lβ
X .
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We finally obtain

J∗
`,L(p) ≥ sup

a′∈H

sup
c∈X

{

(a′, p(0)) + 〈−c, p(T )〉 − `(a′, c)
}

+ sup
y′∈L

β
X

sup
v∈L

β
X

{

∫ T

0
[〈y′, ṗ〉 + 〈v, p〉 − L(t, y′, v)]dt

}

= EM (p, ṗ) +m(p(0), p(T ))

= IM,m(p).

Proof of Theorem 3: By the definition of m,M and by the self-duality hypoth-
esis, we have

inf
u∈Aα

H,X∗

I`,L(u) ≥ − inf
u∈Aα

H,X∗

Im,M (u) = − inf
u∈Aα

H,X∗

I`,L(u).

If v is an element in −∂J`,L(0, 0), it then follows from Lemma 4 that

0 ≥ − inf
Aα

H,X∗

I`,L = − inf
Aα

H,X∗

Im,M

≥ sup
Aα

H,X∗

−J∗
`,L

= sup
u∈Aα

H,X∗

inf
(a,y)∈H×L

β
X

{

J`,L(a, y) − 〈(a, y), u〉
H×L

β
X

,Aα
H,X∗

}

≥ inf
H×L

β
X

{

J`,L(a, y) − 〈(a, y), v〉
H×L

β
X

,Aα
H,X∗

}

≥ J`,L(0, 0) = inf
u∈Aα

H,X∗

I`,L(u) ≥ 0.

Note that any v in −∂J`,L(0, 0) ⊂ Aα
H,X∗ is a solution since

0 ≤ I`,L(−v) = Im,M (v)

≤ sup
(a,y)∈H×L

β
X

{

〈v, (a, y)〉
Aα

H,X∗ ,H×L
β
X

− J`,L(a, y)

}

≤ −J`,L(0, 0) = − inf
u∈Aα

H,X∗

I`,L(u) = 0.

5 Variational formulation of the gradient flow of an evolving convex

landscape

Here is the main result of this section.
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Theorem 4 Let X be a reflexive Banach space anchored on a Hilbert space H,
and suppose ϕ : [0, T ] × H → IR ∪ {+∞} is a jointly measurable function such
that for every t ∈ [0, T ], the function ϕ(t, ·) is convex and lower semi-continuous
functional on H. Assume

ϕ(t, ·) is coercive on H i.e., lim
‖v‖H→∞

ϕ(t, v) = +∞, (58)

and that for some γ > 1, there is an increasing function τ : [0,+∞) → [0,+∞)
so that

−∞ <

∫ T

0
ϕ(t, y(t))dt ≤ τ(‖y‖L

γ
X

) for every y ∈ Lγ
X . (59)

Setting α = min{2, γ∗} where 1
γ

+ 1
γ∗ = 1, then for any u0 ∈ Dom(ϕ) and any

f ∈ Lα∗

X∗ such that
∫ T
0 ϕ∗(t,−f(t))dt <∞, the functional

I(u) : =

∫ T

0
[ϕ(t, u(t) + u0) + (ϕ|X )∗(t, f(t) − u̇(t)) − 〈u(t) + u0, f(t)〉 + 〈u̇(t), u0〉] dt

+
1

2
(‖u(0)‖2

H
+ ‖u(T )‖2

H
) (60)

attains its infimum on the set K = {u ∈ Aα
H,X∗ ; u(t) ∈ H a.e} uniquely at a

point v such that v(t) + u0 ∈ Dom(ϕ) for all t ∈ [0, T ]. Moreover,

I(v) = inf
K
I(u) = 0, (61)

and the path u(t) = v(t) + u0 is a solution for the equation

{

u̇(t) + ∂ϕ(u(t)) = f(t) a.e. on [0, T ]
u(0) = u0.

(62)

Proof: Note that I can be written as

I(u) =

∫ T

0
[ψ(t, u(t)) + (ψ|X )∗(t,−u̇(t))] dt+

1

2
(‖u(0)‖2

H
+ ‖u(T )‖2

H
) (63)

where ψ(t, u) = ϕ(t, u + u0) − 〈u, f(t)〉 on [0, T ] × X, and +∞ elsewhere on
[0, T ] ×X∗.

Define ` : X∗ ×X∗ → IR ∪ {+∞} by

`(c0, cT ) =

{ 1
2‖c0‖

2
H + 1

2‖cT ‖
2
H if c0 and cT ∈ H

+∞ otherwise,
(64)

and L on [0, T ] × X∗ × X∗ as L(t, u, v) = ψ(t, u) + (ψ|X)∗(t,−v). We need to
show that ` and L satisfy the hypothesis of Theorem 3.

Since the functions u → ψ(t, u) and u → ‖u‖2
H are convex, lower semi-

continuous and coercive on H, it follows that ` and L(t, ·, ·) are convex and
weak∗-lower semi-continuous on X∗ ×X∗. Indeed, to show that L is weak∗-lower
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semi-continuous, let un ∈ X∗ go to u in the weak∗-topology. We may as well
assume that lim infn ψ̃(t, un) <∞ which means that (un)n is eventually living in
X ⊂ H. Since ψ(t, ·) is coercive on H, the sequence (un)n is eventually bounded
there and therefore converging weakly in H -up to a subsequence- to an element
ũ ∈ H. Since X is anchored on a Hilbert space H, the convergence of (un)n to ũ
is also in the weak-star topology of X∗ and therefore ũ = u ∈ X. The rest follows
from the lower semi-continuity of ϕ(t, ·) in the weak topology of H.

To establish self-duality, let m and M be their associated Bolza-dual function-
als. We need to show that

m(p, s) = `(p, s) and M(t, s, p) = L(t,−s,−p) for all (p, s) ∈ X ∗ ×X∗.

Recall that m(·, ·) : X∗ ×X∗ → IR ∪ {+∞} is defined as:

m(d0, dT ) = sup{〈c0, d0〉 + 〈cT , dT 〉 − `(c0, cT ); c0, cT ∈ X}

= sup{〈c0, d0〉 −
‖c0‖

2
H

2
|c0 ∈ X} + sup{〈cT , dT 〉 −

‖cT ‖
2
H

2
; cT ∈ X}

To prove that m(d0, dT ) = `(d0, dT ), we distinguish two cases:

If d0 ∈ X∗ but d0 /∈ H, then there exists {cj} ⊆ X ⊆ H that is bounded in H,

yet 〈cj , d0〉 → ∞ as j → ∞. It follows that sup{〈c0, d0〉 −
‖c0‖2

H

2 ; c ∈ X} ≥ ∞.
The same obviously holds for the case where dT ∈ X∗, but dT /∈ H.

On the other hand, d0 ∈ H yields

sup{〈d0, c0〉 −
‖c0‖

2
H

2
; c0 ∈ X} = sup{(d0, c0) −

‖c0‖
2
H

2
; c0 ∈ X}

= sup{(d0, c0) −
‖c0‖

2
H

2
; c0 ∈ X̄ = H}

= ‖d0‖
2
H/2

and therefore m(d0, dT ) = `(d0, dT ) in all cases.

To establish the self-duality of L, write

M(t, s, p) = sup{〈s, v〉
X∗ ,X

+ 〈p, u〉
X∗,X

− L(t, u, v); (v, u) ∈ X ×X}

= sup{〈v,−s〉
X,X∗ − (ψ|X )∗(t, v); v ∈ X} + sup{〈u, p〉

X,X∗ − ψ(t, u);u ∈ X}

= ψ∗∗(t,−s) + (ψ|X )∗(t, p)

= ψ(t,−s) + (ψ|X )∗(t, p)

= L(t,−s,−p)

Here we have used that (ψ|X )∗ = (ψ)∗ on [0, T ]×X, and that ψ(t, ·) is weak∗-lower
semi-continuous on X∗.
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It remains to show that the functional J`,L is subdifferentiable at (0, 0) in the

H × Lβ
X -topology where β = α∗. But note that for (a, y) ∈ H × Lβ

X

J`,L(a, y) = inf{

∫ T

0
L(t, u(t) + y(t), u̇(t))dt+ `(u(0) + a, u(T )); u ∈ Aα

H,X∗}

≤

∫ T

0
L(t, y(t), 0)dt + `(a, 0)

=

∫ T

0
ψ(t, y(t))dt + (ψ|X)∗(t, 0) +

‖a‖2
H

2

=

∫ T

0
[ϕ(t, u0 + y(t)) + ϕ∗(t,−f(t))] dt

+

∫ T

0
[|〈y(t), f(t)〉| + |〈u0, f(t)〉|] dt+

‖a‖2
H

2

≤ τ(‖y + u0‖L
β
X

) + C1‖y‖L
β
X

) + C2 +
‖a‖2

H

2

which means that J`,L is bounded in a neighborhood of (0, 0) in the space H×Lα∗

X ,
hence it is subdifferentiable at (0, 0).

Apply now Theorem 3 to find v ∈ Aα
H,X∗ such that: (v(t), v̇(t)) ∈ Dom(L) for

almost all t ∈ [0, T ], and

I`,L(v) = inf
Aα

H,X∗

I`,L(u) = 0.

Note that Dom(L) ⊂ Dom(ψ) × Dom(ψ|X)∗. Write now

0 = I`,L(v) =

∫ T

0
[ψ(t, v(t)) + ψ∗(t,−v̇(t))]dt+

1

2
‖v(0)‖2

H +
1

2
‖v(T )‖2

H

which means that both t → ψ(t, v(t)) and t → (ψ|X)∗(t,−v̇(t)) are in L1[0, T ]
and therefore v(t) ∈ X a.e. Moreover, the path v ∈ C([0, T ];X), and

ψ(t, v(t)) + (ψ|X )∗(t,−v̇(t)) ≥ 〈v(t),−v̇(t)〉 = −
1

2

d

dt
‖v(t)‖2

H

with equality if and only if −v̇(t) ∈ ∂ψ(t, v(t)). Write now again

0 = I`,L(v) =

∫ T

0
[ψ(t, v(t)) + ψ∗(t,−v̇(t))]dt +

1

2
‖v(0)‖2

H +
1

2
‖v(T )‖2

H

≥

∫ T

0
[ψ(t, v(t)) + ψ∗(t,−v̇(t)) + 〈v(t), v̇(t)〉dt

−

∫ T

0

1

2

d

dt
‖v(t)‖2

Hdt+
1

2
‖v(0)‖2

H +
1

2
‖v(T )‖2

H

=

∫ T

0
[ψ(t, v(t)) + ψ∗(t,−v̇(t)) + 〈v(t), v̇(t)〉dt + ‖v(0)‖2

H

= 0.
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It follows that v(0) = 0 and that ψ(t, v(t)) + ψ∗(t,−v̇(t)) = 〈v(t),−v̇(t)〉 for
almost all t ∈ [0, T ]. This means that v(t) satisfies

{

v̇(t) + ∂ψ(t, v(t)) = 0 a.e. on [0, T ]
v(0) = 0

(65)

and that u(t) = v(t) + u0 is a weak solution for equation (62).

6 Applications to nonlinear evolution equations

Fast diffusion equations

This is the case when we have 0 < m < 1 in equation (68). But now (−∆)−1u is

not necessarily in L
m+1

m when u ∈ Lm+1(Ω), hence we need to change the setting
and consider the space X defined as

X = {u ∈ Lm+1(Ω); (−∆)−1u ∈ L
m+1

m (Ω)}

equipped with the norm

‖u‖X = ‖u‖m+1 + ‖(−∆)−1u‖m+1

m
.

X is anchored on the Hilbert space H−1 obtained by completing X for the norm
induced by the scalar product

〈u, v〉 =

∫

Ω
u(−∆)−1vdx = 〈u, v〉H−1(Ω)

That is X ⊂ H−1(Ω) ⊂ X∗ is an evolution triple. Consider the functional

ϕ(u) =

{

1
m+1

∫

Ω |u|m+1 on Lm+1(Ω)

+∞ on H−1 \ Lm+1(Ω).
(66)

Clearly X ⊂ Dom(ϕ) and the conjugate of its restriction to X is:

(ϕ|X)∗(v) =

{

m
m+1

∫

Ω |∆−1v|
m+1

m dx. if ∆−1v ∈ L
m+1

m (Ω)

+∞ otherwise
(67)

Theorem 4 therefore applies with γ = m+ 1 and γ∗ = m+1
m

≥ 2, which means
that α = 2 and we get by considering the space

A2
H,X∗ =

{

u : [0, T ] → X∗;u(0) ∈ H−1;

∫ T

0
‖u̇(t)‖2

X∗
dt < +∞

}

.
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Corollary 3 Assume 0 < m < 1, then for any u0 ∈ Lm+1(Ω) and any f ∈ L
m+1

m

such that ∆−1f ∈ L
m+1

m the infimum of the functional

I(u) =
1

m+ 1

∫ T

0

∫

Ω

(

|(u(t, x) + u0(x))|
m+1dx+m∆−1(f(x) −

∂u

∂t
(t, x))|

m+1

m

)

dxdt

+

∫ T

0

∫

Ω

[

u0(x)(∆
−1 ∂u

∂t
)(t, x) − u(x, t)(∆−1f)(x)

]

dxdt

−T

∫

Ω
u0(x)(−∆)−1f(x) dx+

1

2

(

‖u(0)‖2

H−1
+ ‖u(T )‖2

H−1

)

on the space A2
H,X∗ is equal to zero and is attained uniquely at an X-valued path

ũ. Moreover, u(t) = ũ(t) + u0 is a solution of the equation:

{

∂u
∂t

(t, x) = ∆um + f on Ω × [0, T ]
u(0, x) = u0 on Ω.

(68)

Note that in order to conclude that u(t) ∈ X and not just in Dom(ϕ) as implied
by Theorem 4, one needs to use the easy that:

‖∆−1u(t)‖m+1
m

≤ ‖∆−1u(0)‖m+1
m

+

∫ t

0
‖∆−1u̇(s)‖m+1

m

ds.

More general parabolic equations

Consider an equation of the form

∂u

∂t
−Σn

j=1

∂

∂xj

(

aj(x, t)|
∂u

∂xj
|p−2 ∂u

∂xj

)

+ a0(x, t)|u|
p−2u = f(x, t) (69)

on (0, T ] × IRn and subject to the inititial condition

u(x, 0) = u0(x). (70)

Corollary 4 Assume p ≥ 2, f ∈ Lp([0, T ];W−1,p∗(IRn)), u0 ∈ W 1,p(IRn), and
that each aj (0 ≤ j ≤ n) is a non-negative measurable function such that

0 < c0 ≤ aj(t.x) ≤ c1 <∞ a.e on (0, T ] × IRn. (71)

Let ϕ : [0, T ] ×W 1,p(IRn) be defined as

ϕ(t, u) =
1

p

∫

IRn

(

Σn
j=1aj(x, t)|

∂u

∂xj
|p + a0(t, x)|u|

p

)

dx
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and let ϕ∗(t, u) be its conjugate for each t ∈ [0, T ]. Then, the functional

I(u) : =

∫ T

0

[

ϕ(t, u(t) + u0) + ϕ∗(t, f(t) −
∂u

∂t
)

]

dt

+

∫ T

0

∫

IRn

[

u0(x)
∂u

∂t
(t, x) − f(t, x)(u(x, t) + u0(x))

]

dxdt

+
1

2
(

∫

IRn
|u(0, x)|2 + |u(T, x)|2)dx

has infimum zero on the space

A =

{

u : [0, T ] →W−1,p∗(IRn);u(0) ∈ L2(IRn);

∫ T

0
‖u̇(t)‖

p
p−1

W−1,p∗
dt < +∞

}

.

This infimum is attained uniquely at a path v such that v(t) ∈ W 1,p(IRn) for all
t ∈ [0, T ], and u(t) = v(t) + u0 is a weak solution for the equation (69) and (70).

Indeed, here the evolution triple is obvioulsy

X = W 1,p ⊂ L2 ⊂W
−1,

p
p−1 = X∗.

In this case, α = p
p−1 and α∗ = p, in such a way that the hypothesis of Theorem

4 are readily verified as soon as p ≥ 2. Note that condition (71) can be weakened
considerably.
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