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Abstract. We address the question of attainability of the best constant in
the following Hardy-Sobolev inequality on a smooth domain Ω of R

n:

µs(Ω) := inf

(

Z

Ω
|∇u|2dx; u ∈ H2

1,0(Ω) and

Z

Ω

|u|2
?

|x|s
dx = 1

)

when 0 < s < 2, 2? := 2∗(s) =
2(n−s)

n−2
, and when 0 is on the boundary

∂Ω. This question is closely related to the geometry of ∂Ω, as we extend here
the main result obtained in [15] by proving that at least in dimension n ≥ 4,
the negativity of the mean curvature of ∂Ω at 0 is sufficient to ensure the
attainability of µs(Ω). Key ingredients in our proof are the identification of
symmetries enjoyed by the extremal functions correrresponding to the best
constant in half-space, as well as a fine analysis of the asymptotic behaviour
of appropriate minimizing sequences. The result holds true also in dimension
3 but the more involved proof will be dealt with in a forthcoming paper [17].

1. Introduction

Let Ω be a smooth domain of R
n, n ≥ 3 and denote by H2

1,0(Ω) the completion
of C∞

c (Ω), the set of smooth functions compactly supported in Ω, for the norm

‖u‖H2
1,0(Ω) =

√

∫

Ω |∇u|2 dx. The Hardy-Sobolev inequality ([5], [6], [18]) asserts

that for s ∈ [0, 2] and for 2? := 2∗(s) = 2(n−s)
n−2 , there exists C > 0 such that for all

u ∈ H2
1,0(R

n),
(
∫

Rn

|u|2
?

|x|s
dx

)

2
2?

≤ C

∫

Rn

|∇u|2 dx. (1)

We define

µs(Ω) = inf











∫

Ω |∇u|2 dx
(

∫

Ω
|u|2?

|x|s dx
)

2
2?

; u ∈ H2
1,0(Ω) \ {0}











, (2)

and we consider the corresponding ground state solutions in H2
1,0(Ω) ∩ C1(Ω) for











∆u = u2?−1

|x|s in D′(Ω)

u > 0 in Ω
u = 0 on ∂Ω.

(3)
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where here and throughout the paper, ∆ = −
∑

i ∂ii is the Laplacian with minus
sign convention.

It is well known (see for instance [27]) that in the non-singular case i.e., when
s = 0, we have µs(Ω) = µs(R

n) for any domain Ω and that µs(Ω) is never attained
unless cap(Rn \ Ω) = 0. In this situation, the limiting spaces after blow-up of
solutions of (3) is R

n. It was shown in [18] that the same result holds true for any
0 < s < 2 as long as 0 belongs to the interior of a domain.

However, the fact that things may be different when 0 ∈ ∂Ω first emerged in a
paper by Egnell [12] where he considers open cones of the form C = {x ∈ R

n; x =
rθ, θ ∈ D and r > 0} where the base D is a connected domain of the unit sphere
Sn−1 of R

n. Egnell showed that µs(C) is then attained for 0 < s < 2 even when
C̄ 6= R

n. This obviously applies to a half-space R
n
− = {x ∈ R

n
−/ x1 < 0}, where x1

denotes the first coordinate of a generic point x ∈ R
n in the canonical basis of R

n.
Half-spaces containing 0 on their boundary were identified in [15] as the limiting

spaces after blow-up in the case where ∂Ω is smooth at 0, and the curvature of the
boundary at 0 then gets to play an important role. In our context, we specify the
orientation of ∂Ω in such a way that the normal vectors of ∂Ω are pointing outward
from the domain Ω. It was shown in [15] that in dimension n ≥ 4, the negativity
of all principal curvatures at 0 –which is essentially a condition of “strict concav-
ity” at 0– leads to attainability of the best constant for problems with Dirichlet
boundary conditions, while the Neumann problems required the positivity of the
mean curvature at 0. On the other hand, standard Pohozaev type arguments show
non-attainability in the cases where Ω is convex or star-shaped at 0.

In this paper, we improve and complete the results in [15] in a substantial way
by showing that for the best constant to be achieved, it is sufficient that the mean
curvature be negative. This is now quite similar but dual to the case with Neumann
boundary conditions which requires the mean curvature to be positive.

More precisely, assume that the principal curvatures α1, ..., αn−1 of ∂Ω at 0 are
finite. The oriented boundary ∂Ω near the origin can then be represented (up to
rotating the coordinates if necessary) by x1 = ϕ0(x

′) = − 1
2

∑n
i=2 αi−1x

2
i + o(|x′|2),

where x′ = (x2, ..., xn) ∈ Bδ(0) ∩ {x1 = 0} for some δ > 0 and where Bδ(0) is the
ball in R

n centered at 0 with radius δ. If one assumes the principal curvatures at
0 to be negative, that is if

max
1≤i≤n−1

αi < 0,

then the sectional curvature at 0 is negative and therefore ∂Ω –viewed as an (n−1)-
Riemannian submanifold of R

n– is strictly convex at 0 (see for instance [14]). The
latter property means that there exists a neighborhood U of 0 in ∂Ω, such that
the whole of U lies on one side of a hyperplane H that is tangent to ∂Ω at 0 and
U ∩ H = {0}, and so does the complementary R

n \ Ω, at least locally. The above
curvature condition then amounts to a notion of strict local convexity of R

n \Ω at
0. Our main result below shows that at least for dimension greater than 4, it is
sufficient to assume that

∑

1≤i≤n−1

αi < 0.

Theorem 1.1. Let Ω be a smooth bounded oriented domain of R
n where n ≥ 4, such

that 0 ∈ ∂Ω and assume s ∈ (0, 2). If the mean curvature of ∂Ω at 0 is negative,
then the infimum µs(Ω) in (2) is achieved. In addition, the set of minimizers of
(2) is pre-compact in the H2

1,0(Ω)−topology.



BEST HARDY-SOBOLEV CONSTANT 3

The first difficulty we have to face here is that the extremals for (2) when Ω = R
n
−

are not known explicitely, and our first result below –proved in section 2– is the
identification of certain symmetries enjoyed by these extremals –and actually all
positive solutions– on half-space.

Theorem 1.2. Let n ≥ 3, s ∈ (0, 2) and consider u ∈ C2(Rn
−)∩C1(Rn

−) such that










∆u = u2?−1

|x|s in R
n
−

u > 0 in R
n
−

u = 0 on ∂R
n
−,

(4)

where 2? = 2(n−s)
n−2 . Assume that for some C > 0, u(x) ≤ C(1 + |x|)1−n for all

x ∈ R
n
−. Then we have that u◦σ = u for all isometry of R

n such that σ(Rn
−) = R

n
−.

In particular, there exists v ∈ C2(R?
− × R) ∩ C1(R− × R) such that for all x1 < 0

and all x′ ∈ R
n−1, we have that u(x1, x

′) = v(x1, |x′|).

The attainability result is then obtained by combining this new information
with a fine study of the asymptotic behaviour of solutions to the corresponding
subcritical pde’s. They can eventually develop a singularity at zero as we approach
the critical exponent 2∗(s), and for that we proceed to completely describe the way
they may blow up, which makes for an interesting analysis in its own right.
Indeed, assume Ω is a smooth bounded domain of R

n such that 0 ∈ ∂Ω and consider
for any ε ∈ (0, 2? − 2), the infimum

µε
s(Ω) := inf

u∈H2
1,0(Ω)\{0}

∫

Ω
|∇u|2 dx

(

∫

Ω
|u|2?−ε

|x|s dx
)

2
2?−ε

,

which is achieved by a function uε ∈ H2
1,0(Ω), uε > 0 in Ω in C1(Ω) ∩ C2(Ω \ {0})

that satisfies the system














∆uε =
u2?−1−ε

ε

|x|s in D′(Ω)

uε > 0 in Ω
∫

Ω
|uε|

2?−ε

|x|s dx = (µε
s(Ω))

2?−ε
2?−2−ε .

The bulk of the paper (beyond section 2) consists of proving the following estimate.

Theorem 1.3. Let Ω be a smooth bounded oriented domain of R
n where n ≥ 4,

and assuming that uε converges weakly to zero (i.e. when blow-up occurs), then
there exists v solution for (4) such that

∫

Rn
−

|∇v|2 dx = µs(Ω)
2?

2?−2 = µs(R
n
−)

2?

2?−2 ,

while -modulo passing to a subsequence- we have

lim
ε→0

ε (max
Ω

uε)
2

n−2 =
(n − s)

∫

∂Rn
−
|x|2|∇v|2 dx

n(n − 2)2µs(Rn
−)

n−s
2−s

· H(0).

where H(0) is the mean curvature of the oriented boundary ∂Ω at 0.

These techniques actually allow us to prove the following existence theorem. We
shall say that a function is in C1(Ω) if it can be extended to a C1−function in a
neighborhood of Ω.
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Theorem 1.4. Let Ω be a smooth bounded oriented domain of R
n where n ≥ 4,

such that 0 ∈ ∂Ω. Assume s ∈ (0, 2) and consider a ∈ C1(Ω) such that the operator
∆ + a is coercive in Ω. If the mean curvature of ∂Ω at 0 is negative, then there
exists a solution u ∈ H2

1,0(Ω) ∩ C1(Ω) for










∆u + au = u2?−1

|x|s in D′(Ω)

u > 0 in Ω
u = 0 on ∂Ω.

The study of blow-up solutions in certain nonlinear elliptic equations was initi-
ated by Atkinson-Peletier [1] (see also Brézis-Peletier [3]). In the Riemannian con-
text, such asymptotics were first studied by Schoen [28] and Hebey-Vaugon [23].
The techniques of blow-up have been developed in a general context by Druet,
Hebey and the second author [10]. They turned out to be very powerful tools for
the study of best constant problems in Sobolev inequalities, see for instance Druet
[7], Hebey-Vaugon [23], [24] and Robert [26]). We also mention the work of Han
[21], Hebey [22], Druet-Robert [11] and Robert [25]) on the asymptotics for solu-
tions to nonlinear pde’s, the 3−dimensional conjecture of Brézis solved by Druet [8]
and the intricate compactness issues in the Riemannian context (see for instance
Schoen [28] and Druet [9]).

In a forthcoming paper [16], we shall establish a more refined compactness result
which yields an infinite number of sign changing solutions for (3). In another
forthcoming article [17], we tackle similar questions for various critical equations
involving a whole affine subspace of singularities on the boundary.

2. Symmetry of the positive solutions to the limit equation

This section is devoted to the proof of Theorem 1.2, that is the symmetry prop-
erty for the positive solutions to the limit equation on R

n
−. For that, we consider

u ∈ C2(Rn
−) ∩ C1(Rn

−) that verifies the system (4) while verifying for some C > 0
the bound

u(x) ≤
C

(1 + |x|)n−1
(5)

for all x ∈ R
n
−. Denoting by ~e1 the first vector of the canonical basis of R

n, we

consider the open ball D := B1/2

(

− 1
2~e1

)

and define

v(x) := |x|2−nu

(

~e1 +
x

|x|2

)

(6)

for all x ∈ D \ {0} and v(0) = 0. Clearly, this is well-defined.

Step 2.1: We claim that

v ∈ C2(D) ∩ C1(D) and
∂v

∂ν
< 0 on ∂D (7)

where ∂/∂ν denotes the outward normal derivative.

Proof. It follows from the assumptions on u that v ∈ C2(D) ∩ C1(D \ {0}). More-
over, v(x) > 0 for all x ∈ D and v(x) = 0 for all x ∈ ∂D \ {0}. It follows from (5)
that there exists C > 0 such that

v(x) ≤ C|x| (8)
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for all x ∈ D\{0}. Since v(0) = 0, we have that v ∈ C0(D). The function v verifies
the equation

∆v =
v2?−1

|x + |x|2~e1|s
=

v2?−1

|x|s |x + ~e1|
s (9)

in D. Since −~e1 ∈ ∂D \ {0} and v ∈ C1(D \ {0})∩C0(D), there exists C > 0 such
that

v(x) ≤ C|x + ~e1| (10)

for all x ∈ D. It then follows from (8), (9), (10) and standard elliptic theory that
v ∈ C1(D). Since v > 0 in D, it follows from Hopf’s Lemma that ∂v

∂ν < 0 on
∂D. �

We prove the symmetry of u by proving a symmetry property of v, which is
defined on a ball. Our proof uses the moving plane method. We take largely
inspiration in [19] and [4]. Classically, for any µ ≥ 0 and any x = (x′, xn) ∈ R

n

(x′ ∈ R
n−1 and xn ∈ R), we let

xµ = (x′, 2µ − xn) and Dµ = {x ∈ D/ xµ ∈ D}.

It follows from Hopf’s Lemma (See (7)) that there exists ε0 > 0 such that for any
µ ∈ ( 1

2 − ε0,
1
2 ), we have that Dµ 6= ∅ and v(x) ≥ v(xµ) for all x ∈ Dµ such that

xn ≤ µ. We let µ ≥ 0. We say that (Pµ) holds if:

Dµ 6= ∅ and v(x) ≥ v(xµ) for all x ∈ Dµ such that xn ≤ µ.

We let

λ := min

{

µ ≥ 0; (Pν) holds for all ν ∈

(

µ,
1

2

)}

. (11)

Step 2.2: We claim that λ = 0.

Proof. We proceed by contradiction and assume that λ > 0. We then get that
Dλ 6= ∅ and that (Pλ) holds. We let

w(x) := v(x) − v(xλ)

for all x ∈ Dλ ∩ {xn < λ}. Since (Pλ) holds, we have that w(x) ≥ 0 for all
x ∈ Dλ ∩ {xn < λ}. With the equation (9) of v and (Pλ), we get that

∆w =
v(x)2

?−1

|x + |x|2~e1|s
−

v(xλ)2
?−1

|xλ + |xλ|2~e1|s

≥ v(xλ)2
?−1

(

1

|x + |x|2~e1|s
−

1

|xλ + |xλ|2~e1|s

)

for all x ∈ Dλ ∩ {xn < λ}. With straightforward computations, we have that

|xλ|
2 − |x|2 = 4λ(λ − xn)

|xλ + |xλ|
2~e1|

2 − |x + |x|2~e1|
2 = (|xλ|

2 − |x|2)
(

1 + |xλ|
2 + |x|2 + 2x1)

)

for all x ∈ R
n. It follows that ∆w(x) > 0 for all x ∈ Dλ ∩ {xn < λ}. Note

that we have used that λ > 0. It then follows from Hopf’s Lemma and the strong
comparison principle that

w > 0 in Dλ ∩ {xn < λ} and
∂w

∂ν
< 0 on Dλ ∩ {xn = λ}. (12)
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By definition, there exists a sequence (λi)i∈N ∈ R and a sequence (xi)i∈N ∈ D such
that λi < λ, xi ∈ Dλi , (xi)n < λi, limi→+∞ λi = λ and

v(xi) < v((xi)λi) (13)

for all i ∈ N. Up to extraction a subsequence, we assume that there exists x ∈
Dλ ∩ {xn ≤ λ} such that limi→+∞ xi = x with xn ≤ λ. Passing to the limit
i → +∞ in (13), we get that v(x) ≤ v(xλ). It follows from this last inequality and
(12) that v(x) − v(xλ) = w(x) = 0, and then x ∈ ∂(Dλ ∩ {xn < λ}).

Case 1: If x ∈ ∂D. Then v(xλ) = 0 and xλ ∈ ∂D. Since D is a ball and λ > 0, we
get that x = xλ ∈ ∂D. Since v is C1, we get that there exists τi ∈ ((xi)n, 2λi−(xi)n)
such that

v(xi) − v((xi)λi) = ∂nv((x′)i, τi) × 2((xi)n − λi)

Letting i → +∞, using that (xi)n < λi and (13), we get that ∂nv(x) ≥ 0. On the
other hand, we have that

∂nv(x) =
∂v

∂ν
(x) · (ν(x)|~en) =

λ

|x + ~e1/2|

∂v

∂ν
(x) < 0.

A contradiction with (7).

Case 2: If x ∈ D. Since v(xλ) = v(x), we then get that xλ ∈ D. Since x ∈
∂(Dλ ∩ {xn < λ}), we then get that x ∈ D ∩ {xn = λ}. With the same argument
as in the preceding step, we get that ∂nv(x) ≥ 0. On the other hand, with (12), we
get that 2∂nv(x) = ∂nw(x) < 0. A contradiction.

In all the cases, we have obtained a contradiction. This proves that λ = 0. �

Step 2.3: Here goes the final argument. Since λ = 0, it follows from the definition
(11) of λ that v(x′, xn) ≥ v(x′,−xn) for all x ∈ D such that xn ≤ 0. With the
same technique, we get the reverse inequality, and then, we get that

v(x′, xn) = v(x′,−xn)

for all x = (x′, xn) ∈ D. In other words, v is symmetric with respect to the
hyperplane {xn = 0}. The same analysis holds for any hyperplane containing ~e1.
Coming back to the initial function u, this complete the proof of Theorem 1.2.

3. Test-functions estimates

We first introduce some definitions and notations. We consider a family (aε)ε>0 ∈
C1(Ω) and a function a ∈ C1(Ω) such that there exists an open subset U ⊂ R

n

such that aε, a can be extended to U by C1−functions that we still denote by aε, a.
We assume that they satisfy

Ω ⊂⊂ U and lim
ε→0

aε = a in C1
loc(U). (14)

We assume that

∆ + a is coercive in Ω, (15)

that is, there exists c0 > 0 such that
∫

Ω

(|∇ϕ|2 + aϕ2) dx ≥ c0

∫

Ω

ϕ2 dx
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for all ϕ ∈ C1
c (Ω), the set of C1-functions compactly supported in Ω. Finally, we

let

µs,a(Ω) = inf

∫

Ω
(|∇u|2 + au2) dx
(

∫

Ω
|u|2?

|x|s dx
)

2
2?

.

Note that µs,0(Ω) = µs(Ω). We let x0 ∈ ∂Ω. Since ∂Ω is smooth and x0 ∈ ∂Ω,
there exist U, V open subsets of R

n, there exists I an open intervall of R, there
exists U ′ an open subset of R

n−1 such that 0 ∈ U = I × U ′ and x0 ∈ V . There
exist ϕ ∈ C∞(U, V ) and ϕ0 ∈ C∞(U ′) such that

(i) ϕ : U → V is a C∞ − diffeomorphism
(ii) ϕ(0) = x0

(iii) D0ϕ = IdRn

(iv) ϕ(U ∩ {x1 < 0}) = ϕ(U) ∩ Ω and ϕ(U ∩ {x1 = 0}) = ϕ(U) ∩ ∂Ω.
(v) ϕ(x1, y) = x0 + (x1 + ϕ0(y), y) for all (x1, y) ∈ I × U ′ = U
(vi) ϕ0(0) = 0 and ∇ϕ0(0) = 0.

(16)

Here Dxϕ denotes the differential of ϕ at x. This chart will be useful throughout
all the paper.

The first result we prove is an upper bound for µs,a(Ω).

Proposition 3.1. Let Ω be a smooth bounded domain of R
n, n ≥ 3, such that

0 ∈ ∂Ω. If a ∈ C0(Ω) and s ∈ (0, 2), then µs,a(Ω) ≤ µs(R
n
−).

Proof. Let α > 0 and u ∈ C∞
c (Rn

−) \ {0} such that
∫

Rn
−
|∇u|2 dx

(

∫

Rn
−

|u|2?

|x|s dx
)

2
2?

≤ µs(R
n
−) + α.

Taking x0 = 0 in (16), we define

uε(x) = ε−
n−2

2 u

(

ϕ−1(x)

ε

)

for all x ∈ Ω and all ε > 0. As easily checked, for ε > 0 small enough, we have that

uε ∈ C∞
c (Ω).

With a change of variable, we get that
∫

Ω

|uε|2
?

|x|s
dx =

∫

Rn
−

|u(y)|2
?

∣

∣

∣

ϕ(εy)
ε

∣

∣

∣

s · |Jac(εy)| dy

Since u is compactly supported, we get with point (iii) of (16) and Lebesgue’s
convergence theorem that

lim
ε→0

∫

Ω

|uε|2
?

|x|s
dx =

∫

Rn
−

|u|2
?

|x|s
dx.

On the other hand, we have that
∫

Ω

(|∇uε|
2 + au2

ε) dx =

∫

Rn
−

(|∇u|2gε
+ ε2a ◦ ϕ(εx)u2) ·

√

|gε| dx,
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where (gε(x))ij = (∂iϕ(εx), ∂jϕ(εx)), and |gε| = det(gε). With point (iii) of (16)
and Lebesgue’s convergence theorem, we get that

lim
ε→0

∫

Ω

(|∇uε|
2 + au2

ε) dx =

∫

Rn
−

|∇u|2 dx.

As a consequence, we get that

µs,a(Ω) ≤

∫

Ω(|∇uε|2 + au2
ε) dx

(

∫

Ω
|uε|2

?

|x|s dx
)

2
2?

=

∫

Rn
−
|∇u|2 dx

(

∫

Rn
−

|u|2?

|x|s dx
)

2
2?

+ o(1) ≤ µs(R
n
−) + α + o(1)

where limε→0 o(1) = 0. Letting ε → 0 and α → 0 yields the conclusion of the
proposition. �

4. The subcritical case

Step 4.1: In order to construct minimizers for µs,a(Ω), we consider a subcritical
minimization problem for which we recover compactness. This is the object of the
following proposition.

Proposition 4.1. Let Ω be a smooth bounded domain of R
n, n ≥ 3 and s ∈ (0, 2).

For any ε ∈ (0, 2? − 2), we let aε ∈ C1(Ω) such that ∆ + aε is coercive. Then for
any ε ∈ (0, 2? − 2), the infimum

µε
s,aε

(Ω) := inf
u∈H2

1,0(Ω)\{0}

∫

Ω(|∇u|2 + aεu
2) dx

(

∫

Ω
|u|2?−ε

|x|s dx
)

2
2?−ε

,

is achieved by a function uε ∈ H2
1,0(Ω), uε > 0 in Ω. Moreover, uε ∈ C1(Ω) ∩

C2(Ω \ {0}) and can be assumed to satisfy the system














∆uε + aεuε =
u2?−1−ε

ε

|x|s in D′(Ω)

uε > 0 in Ω
∫

Ω
|u|2

?−ε

|x|s dx = (µε
s,aε

(Ω))
2?−ε

2?−2−ε

Proof. This result is quite standard. We prove the proposition for the sake of
completeness. We claim that there exists a minimizer for µε

s,aε
(Ω). Indeed, let

(uk)k∈N ∈ H2
1,0(Ω) be a minimizing sequence for µε

s,aε
(Ω) such that

∫

Ω

|uk|2
?−ε

|x|s
dx = 1 and µε

s,aε
(Ω) =

∫

Ω

(|∇uk|
2 + aεu

2
k) dx + o(1)

where limk→+∞ o(1) = 0. Since ‖uk‖H2
1,0(Ω) = O(1) when k → +∞, there exists

ũε ∈ H2
1,0(Ω) such that, up to a subsequence, uk ⇀ ũε weakly in H2

1,0(Ω) when

k → +∞ and limk→+∞ uk(x) = ũε(x) a.e. in Ω. Let θk = uk − ũε ∈ H2
1,0(Ω). As

easily checked, we have that

µε
s,aε

(Ω) =

∫

Ω

(|∇ũε|
2 + aεũ

2
ε) dx +

∫

Ω

|∇θk|
2 dx + o(1), (17)
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where limk→+∞ o(1) = 0. Let η ∈ C∞
c (R) such that η(x) = 1 for all x ∈ [−1, 1].

Let A > 0. With Lebesgue’s theorem, we have that
∣

∣

∣

∣

∫

Ω

|uk|2
?−ε

|x|s
dx −

∫

Ω

|ũε|2
?−ε

|x|s
dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

(

η
(uk

A

) |uk|2
?−ε

|x|s
− η

(

ũε

A

)

|ũε|2
?−ε

|x|s

)

dx

∣

∣

∣

∣

+

∫

Ω

∣

∣

∣
1 − η

(uk

A

)
∣

∣

∣

|uk|
2?−ε

|x|s
dx +

∫

Ω

∣

∣

∣

∣

1 − η

(

ũε

A

)
∣

∣

∣

∣

|ũε|
2?−ε

|x|s
dx

≤ o(1) +
1

Aε

∫

Ω

∣

∣

∣
1 − η

(uk

A

)∣

∣

∣

|uk|2
?

|x|s
dx +

1

Aε

∫

Ω

∣

∣

∣

∣

1 − η

(

ũε

A

)∣

∣

∣

∣

|ũε|2
?

|x|s
dx

≤ o(1) +
1

Aε

∫

Ω

|uk|2
?

|x|s
dx +

1

Aε

∫

Ω

|ũε|2
?

|x|s
dx

≤ o(1) +
1

Aε
µs(Ω)−

2?

2

(

‖uk‖
2?

H2
1,0(Ω) + ‖ũε‖

2?

H2
1,0(Ω)

)

where limk→+∞ o(1) = 0. Letting k → +∞, and then A → +∞, we get that

lim
k→+∞

∫

Ω

|uk|2
?−ε

|x|s
dx =

∫

Ω

|ũε|2
?−ε

|x|s
dx.

It then follows that
∫

Ω
|ũε|

2?−ε

|x|s dx = 1. With the definition of µε
s,aε

(Ω), we then get

that

µε
s,aε

(Ω) ≤

∫

Ω

(|∇ũε|
2 + aεũ

2
ε) dx.

With (17), we then get that limk→+∞ θk = 0 in H2
1,0(Ω). As a consequence, µε

s,aε
(Ω)

is attained by ũε. This proves the claim.

Up to replacing ũε by |ũε|, we can assume that ũε ≥ 0. We let

uε = µε
s,aε

(Ω)
1

2?−2−ε ũε.

As easily checked, uε ≥ 0 is also a minimizer for µε
s,aε

(Ω). It satisfies

∆uε + aεuε =
u2?−1−ε

ε

|x|s
in D′(Ω).

Moreover, it follows from the appendix and standard elliptic theory that uε ∈
C1(Ω) ∩ C2(Ω \ {0}). Since ∆uε ≥ 0 in Ω and uε 6≡ 0, it follows from the strong
comparison principle that uε > 0 in Ω. �

Step 4.2: For any ε ∈ (0, 2?−2), we let (aε), a as in (14) and (15). We let µε
s,aε

(Ω)
as in Proposition 4.1. We claim that

lim
ε→0

µε
s,aε

(Ω) = µs,a(Ω).

Indeed, we let α > 0 and let u ∈ C∞
c (Ω) \ {0} such that

∫

Ω
(|∇u|2 + au2) dx
(

∫

Ω
|u|2?

|x|s dx
)

2
2?

≤ µs,a(Ω) + α.
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We have that

lim
ε→0

∫

Ω(|∇u|2 + aεu
2) dx

(

∫

Ω
|u|2?−ε

|x|s dx
)

2
2?−ε

=

∫

Ω(|∇u|2 + au2) dx
(

∫

Ω
|u|2?

|x|s dx
)

2
2?

≤ µs,a(Ω) + α.

Letting ε → 0 and α → 0, we get that

lim sup
ε→0

µε
s,aε

(Ω) ≤ µs,a(Ω). (18)

We now let v ∈ C∞
c (Ω) \ {0}. It follows from Hölder’s inequality that

(
∫

Ω

|v|2
?−ε

|x|s
dx

)

2
2?−ε

≤

(
∫

Ω

dx

|x|s

)
2ε

2?·(2?−ε)
(
∫

Ω

|v|2
?

|x|s
dx

)

2
2?

and then
∫

Ω
(|∇v|2 + av2) dx
(

∫

Ω
|v|2?

|x|s dx
)

2
2?

≤

(
∫

Ω

dx

|x|s

)
2ε

2?·(2?−ε)

·

∫

Ω
(|∇v|2 + aεv

2) dx
(

∫

Ω
|v|2?−ε

|x|s dx
)

2
2?−ε

+

∫

Ω(a − aε)v
2 dx

(

∫

Ω
|v|2?−ε

|x|s dx
)

2
2?−ε

for ε > 0 small. Here, we have used that ∆ + aε is coercive on Ω for ε > 0
small, which is a consequence of (14) and (15). Taking the infimum, using Hölder’s
inequality and (14), we get that

µs,a(Ω) ≤ (1 + o(1))µε
s,aε

(Ω) (19)

where limε→0 o(1) = 0. The conclusion of Step 4.2 then follows from (18) and (19).

Step 4.3: We prove that, when it is nonzero, the weak limit of the uε’s is a
minimizer for µs,a(Ω). This is the object of the following proposition.

Proposition 4.2. Let Ω be a smooth bounded domain of R
n, n ≥ 3, such that

0 ∈ ∂Ω. For s ∈ (0, 2) and ε ∈ (0, 2? − 2), we let aε, a be as in (14) and (15). For
any ε ∈ (0, 2? − 2), let µε

s,aε
(Ω) and uε be as in Proposition 4.1. Then there exists

u0 ∈ H2
1,0(Ω) such that, up to a subsequence, uε ⇀ u0 weakly in H2

1,0(Ω) when

ε → 0. If u0 6≡ 0, then limε→0 uε = u0 strongly in H2
1,0(Ω) and u0 is a minimizer

for µs,a(Ω). In particular, µs,a(Ω) is attained.

Proof. It is clear from Proposition 4.1 and the hypothesis (14) and (15) that

‖uε‖H2
1,0(Ω) = O(1)

when ε → 0. Then there exists u0 ∈ H2
1,0(Ω) such that, up to a subsequence,

uε ⇀ u0 weakly in H2
1,0(Ω) when ε → 0. We assume that u0 6≡ 0. It then follows

from the definition of µs,a(Ω) that
∫

Ω(|∇u0|
2 + au2

0) dx
(

∫

Ω
|u0|2

?

|x|s dx
)

2
2?

≥ µs,a(Ω).

Testing the weak inequality ∆uε + aεuε =
u2?−1−ε

ε

|x|s on u0 and letting ε → 0, we get

that
∫

Ω

(|∇u0|
2 + au2

0) dx =

∫

Ω

|u0|2
?

|x|s
dx.
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We then obtain that
∫

Ω

|u0|2
?

|x|s
dx ≥ µs,a(Ω)

2?

2?−2 .

Since uε ⇀ u0 when ε → 0, we get with the definition of uε in Proposition 4.1 and
Step 4.2 that

∫

Ω

|u0|2
?

|x|s
dx ≤ lim inf

ε→0

∫

Ω

|uε|2
?−ε

|x|s
dx = µs,a(Ω)

2?

2?−2 .

Consequently, we get that
∫

Ω

(|∇u0|
2 + au2

0) dx =

∫

Ω

|u0|2
?

|x|s
dx = µs,a(Ω)

2?

2?−2 . (20)

Since µε
s,aε

(Ω)
2?−ε

2?−2−ε =
∫

Ω
(|∇uε|2 + aεu

2
ε) dx, we get with the definition of uε in

Proposition 4.1 that

µs,a(Ω)
2?

2?−2 =

∫

Ω

(|∇u0|
2 + au2

0) dx +

∫

Ω

|∇(uε − u0)|
2 dx + o(1) (21)

with limε→0 o(1) = 0. It follows from (20) and (21) that limε→0 uε = u0 in H2
1,0(Ω).

As easily checked, in this case, u0 is a minimizer for µs,a(Ω). �

5. Preliminary Blow-Up analysis

From now on, we let Ω be a smooth bounded domain of R
n, n ≥ 3, such that

0 ∈ ∂Ω. We let s ∈ (0, 2). For any ε > 0, we let pε ∈ [0, 2? − 2) such that

lim
ε→0

pε = 0. (22)

We let a ∈ C1(Ω) and a family (aε)ε>0 ∈ C1(Ω) such that (14) and (15) hold. For
any ε > 0, we consider uε ∈ H2

1,0(Ω) ∩ C2(Ω \ {0}) a solution to the system
{

∆uε + aεuε =
u2?−1−pε

ε

|x|s in D′(Ω)

uε > 0 in Ω
(23)

for all ε > 0. We assume that uε is of minimal energy type, that is
∫

Ω

|uε|2
?−pε

|x|s
dx = µs(Ω)

2?

2?−2 + o(1) (24)

where limε→0 o(1) = 0. Note that it follows from (14), (15), (23) and (24) that

‖uε‖H2
1,0(Ω) = O(1) (25)

when ε → 0. We also assume that blow-up occurs, that is

uε ⇀ 0 (26)

weakly in H2
1,0(Ω) when ε → 0. Such a family arises naturally when u0 ≡ 0

in Propositions 4.1 and 4.2. In the remaining sections, we describe precisely the
behaviour of the uε’s. We follow the strategy developed in [10].

It follows from Proposition 8.1 of the Appendix that uε ∈ C0(Ω). We let xε ∈ Ω
and µε, kε > 0 such that

max
Ω

uε = uε(xε) = µ
−n−2

2
ε and kε := µ

1− pε
2?−2

ε . (27)
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We let ϕ : U → V a local chart as in (16) with x0 = 0, where U, V are open
neighborhoods of 0. For any ε > 0 and any x ∈ U

kε
∩ {x1 ≤ 0}, we define the

maximum rescaling of uε as follows

vε(x) :=
uε ◦ ϕ(kεx)

uε(xε)
, (28)

where xε, kε are as in (27). As easily checked, for any η ∈ C∞
c (Rn), we have that

ηvε ∈ H2
1,0(R

n
−). In this section, we prove the following proposition:

Proposition 5.1. Let Ω be a smooth bounded domain of R
n, n ≥ 3 and s ∈ (0, 2).

Consider (pε)ε>0 such that pε ∈ [0, 2? − 2) for all ε > 0. We consider (uε)ε>0 ∈
H2

1,0(Ω) such that (14), (15), (23), (24) and (26) hold. Let vε be as in (28). Then

there exists v ∈ H2
1,0(R

n
−) \ {0} such that for any η ∈ C∞

c (Rn),

ηvε ⇀ ηv in H2
1,0(R

n
−)

when ε → 0. Moreover, v verifies that

∆v =
v2?−1

|x|s
in D′(Rn

−)

and
∫

Rn
−

|∇v|2 dx = µs(Ω)
2?

2?−2 = µs(R
n
−)

2?

2?−2 .

In addition, there exists θ ∈ (0, 1) such that v ∈ C1,θ(Rn
−) and

vε → v in C1,θ
loc (Rn

−)

when ε → 0. Moreover, we have that

lim
ε→0

µpε
ε = 1. (29)

Proof. Steps 5.1 to 5.9 below are devoted to the proof of this Proposition.

Step 5.1: We claim that
µε = o(1) (30)

when ε → 0. We proceed by contradiction and assume that limε→0 µε 6= 0. In this
case, up to a subsequence, there exists C > 0 such that uε(x) ≤ C for all x ∈ Ω and
all ε > 0. Since (26) hold, it follows from standard elliptic theory (see for instance
[20]) that limε→0 uε = 0 in C0(Ω). A contradiction with (24). This proves (30).

Step 5.2: We claim that
|xε| = O(kε) (31)

when ε → 0. We proceed by contradiction and assume that

lim
ε→0

|xε|

kε
= +∞. (32)

For any ε > 0, we let

βε = |xε|
s
2 uε(xε)

2+pε−2?

2 = |xε|
s
2 k

2−s
2

ε . (33)

It follows from the definition (33) of βε and (32) that

lim
ε→0

βε = 0, lim
ε→0

βε

kε
= +∞ and lim

ε→0

βε

|xε|
= 0 (34)

when ε → 0.
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Case 5.2.1: We assume that there exists ρ > 0 such that

d(xε, ∂Ω)

βε
≥ 2ρ

for all ε > 0. For x ∈ B2ρ(0) and ε > 0, we define

vε(x) :=
uε(xε + βεx)

uε(xε)
.

Note that this is well defined since xε + βεx ∈ Ω for all x ∈ B2ρ(0). As easily
checked, we have that

∆vε + β2
ε aε(xε + βεx)vε =

v2?−1−pε
ε

∣

∣

∣

xε

|xε|
+ βε

|xε|
· x
∣

∣

∣

s

weakly in B2ρ(0). Since (34) holds, we have that

∆vε + β2
ε aε(xε + βεx)vε = (1 + o(1))v2?−1−pε

ε

weakly in B2ρ(0), where limε→0 o(1) = 0 in C0
loc(B2ρ(0)). Since 0 ≤ vε(x) ≤

vε(0) = 1 for all x ∈ B2ρ(0), it follows from standard elliptic theory that there
exists v ∈ C1(B2ρ(0)) such that v ≥ 0 and

vε → v

in C1
loc(B2ρ(0)) when ε → 0. In particular,

v(0) = lim
ε→0

vε(0) = 1. (35)

With a change of variables and the definition (33) of βε, we get that
∫

Ω∩Bρβε (xε)

u2?−pε
ε

|x|s
dx =

uε(xε)
2?−pεβn

ε

|xε|s

∫

Bρ(0)

v2?−pε
ε

∣

∣

∣

xε

|xε|
+ βε

|xε|
· x
∣

∣

∣

s dx

≥

(

βε

kε

)n−2 ∫

Bρ(0)

v2?−pε
ε

∣

∣

∣

xε

|xε|
+ βε

|xε|
x
∣

∣

∣

s dx.

Using (24), (34) and passing to the limit ε → 0 (note that µ−1
ε ≥ 1 for ε > 0 small),

we get that
∫

Bρ(0)

v2?

dx = 0,

and then v ≡ 0 in Bρ(0). A contradiction with (35). Then (32) does not hold. This
proves that (31) holds in Case 5.2.1.

Case 5.2.2: We assume that, up to a subsequence,

lim
ε→0

d(xε, ∂Ω)

βε
= 0. (36)

In this case,

lim
ε→0

xε = x0 ∈ ∂Ω.

Since x0 ∈ ∂Ω, we let ϕ : U → V as in (16), where U, V are open neighborhoods of
0 and x0 respectively. We let ũε = uε ◦ ϕ, which is defined on U ∩ {x1 ≤ 0}. For
any i, j = 1, ..., n, we let gij = (∂iϕ, ∂jϕ), where (·, ·) denotes the Euclidean scalar
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product on R
n, and we consider g as a metric on R

n. We let ∆g = −divg(∇) the
Laplace-Beltrami operator with respect to the metric g. In our basis, we have that

∆g = −gij
(

∂ij − Γk
ij∂k

)

,

where gij = (g−1)ij are the coordinates of the inverse of the tensor g and the Γk
ij ’s

are the Christoffel symbols of the metric g. As easily checked, we have that

∆gũε + aε ◦ ϕ(x) · ũε =
ũ2?−1−pε

ε

|ϕ(x)|s

weakly in U ∩ {x1 < 0}. We let zε ∈ ∂Ω such that

|zε − xε| = d(xε, ∂Ω). (37)

We let x̃ε, z̃ε ∈ U such that

ϕ(x̃ε) = xε and ϕ(z̃ε) = zε. (38)

It follows from the properties (16) of ϕ that

lim
ε→0

x̃ε = lim
ε→0

z̃ε = 0, (x̃ε)1 < 0 and (z̃ε)1 = 0. (39)

At last, we let

ṽε(x) :=
ũε(z̃ε + βεx)

ũε(x̃ε)

for all x ∈ U−z̃ε

βε
∩{x1 < 0}. With (39), we get that ṽε is defined on BR(0)∩{x1 < 0}

for all R > 0, as soon as ε is small enough. The function ṽε verifies

∆g̃ε ṽε + β2
ε aε ◦ ϕ(z̃ε + βεx)ṽε =

ṽ2?−1−pε
ε

∣

∣

∣

ϕ(z̃ε+βεx)
|xε|

∣

∣

∣

s

weakly in BR(0) ∩ {x1 < 0}. In this expression, g̃ε = g(z̃ε + βεx) and ∆g̃ε is the
Laplace-Beltrami operator with respect to the metric g̃ε. With (36), (37) and (38),
we get that

ϕ(z̃ε + βεx) = xε + OR(1)βε,

for all x ∈ BR(0) ∩ {x1 ≤ 0} and all ε > 0, where there exists CR > 0 such that
|OR(1)| ≤ CR for all x ∈ BR(0) ∩ {x1 < 0}. With (34), we then get that

lim
ε→0

|ϕ(z̃ε + βεx)|

|xε|
= 1

in C0(BR(0) ∩ {x1 ≤ 0}). It then follows that

∆g̃ε ṽε + β2
ε aε ◦ ϕ(z̃ε + βεx)ṽε = (1 + o(1))ṽ2?−1−pε

ε

weakly in BR(0)∩{x1 < 0}, where limε→0 o(1) = 0 in C0(BR(0)∩{x1 ≤ 0}). Since
ṽε vanishes on BR(0) ∩ {x1 = 0} (in the sense of the trace) and that 0 ≤ ṽε ≤ 1,
it follows from standard elliptic theory that there exists ṽ ∈ C1(BR(0) ∩ {x1 ≤ 0})
such that

lim
ε→0

ṽε = ṽ

in C0(BR
2
(0) ∩ {x1 ≤ 0}). In particular,

ṽ ≡ 0 on BR
2
(0) ∩ {x1 = 0}. (40)
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Moreover, it follows from (37) and (38) that

ṽε

(

x̃ε − z̃ε

βε

)

= 1 and lim
ε→0

x̃ε − z̃ε

βε
= 0.

In particular, ṽ(0) = 1. A contradiction with (40). Then (32) does not hold. This
proves (31) in Case 5.2.2.

In both cases, we have obtained that (31) holds. This concludes Step 5.2.

A consequence of (31) is that limε→0 xε = 0 ∈ ∂Ω. We let ϕ : U → V as in (16) be
a local chart of ∂Ω with x0 = 0 (in other words, ϕ(0) = 0), where U, V are open
neighborhoods of 0. We write

xε = ϕ(x1,ε, zε),

where x1,ε < 0 and zε ∈ R
n−1 are such that (x1,ε, zε) ∈ U .

Step 5.3: We claim that

d(xε, ∂Ω) = (1 + o(1))|x1,ε| = O(kε) and zε = O(kε), (41)

when ε → 0. Indeed, with (31), we get that

d(xε, ∂Ω) ≤ |xε| = O(kε) (42)

when ε → 0. We first remark that

d(xε, ∂Ω) ≤ d(xε, ϕ(0, zε)) = |x1,ε|.

We let aε ∈ span(~e2, ..., ~en) and Yε = ϕ(0, aε) ∈ ∂Ω such that d(xε, ∂Ω) = |xε − Yε|.
Since d(xε, ∂Ω) ≤ |x1,ε|, we get that

zε − aε = O(|x1,ε|),

when ε → 0. Since ∇ϕ0(0) = 0 (where ϕ0 is as in (16)), we get that

ϕ0(zε) = ϕ0(aε) + o(|zε − aε|) = ϕ0(aε) + o(|x1,ε|)

when ε → 0. Moreover,

d(xε, ∂Ω) = |xε − Yε|

= |(x1,ε + ϕ0(zε) − ϕ0(aε), zε − aε)|

= |(x1,ε + o(|x1,ε|), zε − aε)| ≤ |x1,ε|

when ε → 0. It then follows that zε − aε = o(|x1,ε|) and d(xε, ∂Ω) = (1 + o(1))|x1,ε|
when ε → 0. This last result, (31) and (42) prove (41).

Step 5.4: We let

λε := −
x1,ε

kε
> 0 and θε :=

zε

kε
. (43)

It follows from (41) that there exist λ0 ≥ 0 and θ0 ∈ R
n−1 such that

lim
ε→0

λε = λ0 and lim
ε→0

θε = θ0. (44)

For any ε > 0 and any x ∈ U
kε

∩ {x1 ≤ 0}, we let (as in (28))

vε(x) :=
uε ◦ ϕ(kεx)

uε(xε)
, (45)

where ϕ : U → V is defined in (16) (with x0 = 0) and kε, xε are as in (27). As
easily checked, for any η ∈ C∞

c (Rn), we have that

ηvε ∈ H2
1,0(R

n
−)
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for all ε > 0. We go on in the proof of Proposition 5.1.

Step 5.5: We claim that for any η ∈ C∞
c (Rn), there exists vη ∈ H2

1,0(R
n
−) such

that, up to a subsequence,

ηvε ⇀ vη

weakly in H2
1,0(R

n
−). Indeed, as easily checked, we have that

∇(ηvε)(x) = vε∇η +
kε

uε(xε)
η · D(kεx)ϕ[(∇uε)(ϕ(kεx))],

for all ε > 0 and all x ∈ R
n
−. In this expression, Dxϕ is the differential of the

function ϕ at x. It is standard that for any α > 0, there exists Cα > 0 such that

(x + y)2 ≤ Cαx2 + (1 + α) · y2

for all x, y > 0. With this inequality, we get that
∫

Rn
−

|∇(ηvε)|
2 dx ≤ Cα

∫

Rn
−

|∇η|2v2
ε dx

+(1 + α)

∫

Rn
−

η2 k2
ε

uε(xε)2
· |D(kεx)ϕ[(∇uε)(ϕ(kεx))]|2 dx.

Since D0ϕ = IdRn , we get that with Hölder’s inequality and a change of variables
that

∫

Rn
−

|∇(ηvε)|
2 dx ≤ Cα

∫

Rn
−

|∇η|2v2
ε dx

+(1 + α) · (1 + O(kε))

∫

Rn
−

η2 k2
ε

uε(xε)2
· |∇uε|

2(ϕ(kεx)) dx

≤ Cα‖∇η‖2
n · ‖vε‖

2

L
2n

n−2 (Supp ∇η)

+(1 + α) · (1 + O(kε)) · µ
pε(n−2)
2?−2

ε

∫

Ω

|∇uε|
2 dx (46)

With another change of variables, we get that
∫

Rn
−

|∇(ηvε)|
2 dx ≤ Cα · µ

(n−2)pε
2?−2

ε ‖∇η‖2
n · ‖uε‖

2

L
2n

n−2 (Ω)

+(1 + α) · (1 + O(kε)) · µ
pε(n−2)

2?−2
ε

∫

Ω

|∇uε|
2 dx. (47)

With (25), Sobolev’s inequality and since µpε
ε ≤ 1 for all ε > 0 small enough, we

get with (47) that

‖ηvε‖H2
1,0(Rn

−) = O(1)

when ε → 0. It then follows that there exists vη ∈ H2
1,0(R

n
−) such that, up to a

subsequence, ηvε ⇀ vη weakly in H2
1,0(R

n
−) when ε → 0. This concludes Step 5.5.

Step 5.6: We claim that there exists v ∈ H2
1,0(R

n
−) such that for any η ∈ C∞

c (Rn),
we have that, up to a subsequence,

ηvε ⇀ ηv

weakly in H2
1,0(R

n
−) when ε → 0. Indeed, we let η1 ∈ C∞

c (Rn) such that η1 ≡ 1
in B1(0) and η1 ≡ 0 in R

n \ B2(0). For any R > 0, we let ηR(x) = η1(
x
R ) for all
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x ∈ R
n. With a diagonal argument, we can assume that, up to a subsequence, for

any R > 0, there exists vR ∈ H2
1,0(R

n
−) such that

ηRvε ⇀ vR

weakly in H2
1,0(R

n
−) when ε → 0, and that (ηRvε)(x) → vR(x) when ε → 0 for a.e.

x ∈ R
n
−. Letting ε → 0 in (47), with (25), Sobolev’s inequality and since µpε

ε ≤ 1
for all ε > 0 small enough, we get that there exists a constant C > 0 independant
of R such that

∫

Rn
−

|∇vR|
2 dx ≤ Cα‖∇ηR‖

2
n · C + (1 + α) · C

for all R > 0. Since ‖∇ηR‖2
n = ‖∇η1‖2

n for all R > 0, we get that there exists
C > 0 independant of R such that

∫

Rn
−

|∇vR|
2 dx ≤ C

for all R > 0. It then follows that there exists v ∈ H2
1,0(R

n
−) such that vR ⇀ v

weakly in H2
1,0(R

n
−) when R → +∞ and vR(x) → v(x) when R → +∞ for a.e.

x ∈ R
n
−. As easily checked, we then obtain that vη = ηv (we omit the proof of this

fact. It is straightforward). This ends Step 5.6.

Step 5.7: We claim that

v 6≡ 0.

Indeed, we let R > 0. We proceed as in Case 5.2.2 of the proof of (31) in Step 5.2,
for any i, j = 1, ..., n, we let (g̃ε)ij = (∂iϕ(kεx), ∂jϕ(kεx)), where (·, ·) denotes the
Euclidean scalar product on R

n. We consider g̃ε as a metric on R
n. We let

∆g̃ε = −g̃ij
ε

(

∂ij − Γk
ij(g̃ε)∂k

)

,

where g̃ij
ε := (g̃−1

ε )ij are the coordinates of the inverse of the tensor g̃ε and the
Γk

ij(g̃ε)’s are the Christoffel symbols of the metric g̃ε. With a change of variable

and the definition (45), equation (23) rewrites as

∆g̃ε (ηRvε) + k2
ε aε ◦ ϕ(kεx)ηRvε =

(ηRvε)
2?−1−pε

∣

∣

∣

ϕ(kεx)
kε

∣

∣

∣

s in D′(BR(0) ∩ {x1 < 0}) (48)

for all ε > 0. With (27), (45) and since s ∈ (0, 2), we get that 0 ≤ vε ≤ 1 and that
there exists p > n

2 such that the RHS of (48) is bounded in Lp when ε → 0. It then
follows from standard elliptic theory that there exists α > 0 such that

‖ηRvε‖C0,α(BR/2(0)∩{x1≤0}) = O(1)

when ε → 0. It then follows from Ascoli’s theorem that for any α′ ∈ (0, α),

vR ∈ C0,α′

(BR/2(0) ∩ {x1 ≤ 0}) and that, up to a subsequence,

lim
ε→0

ηRvε = vR in C0,α′

(BR/4(0) ∩ {x1 ≤ 0}) (49)

With (45) and (43), we have that (ηRvε)(−λε, θε) = 1 for all ε > 0 and R > 0 large
enough. Passing to the limit ε → 0 in this last equality, using (49) and (44), we get
that

vR(−λ0, θ0, 0) = 1
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for R > 0 large enough. With the same type of arguments, we get that v ∈
C0,α({x1 ≤ 0}) and that limR→+∞ vR = v in C0,α

loc ({x1 ≤ 0}). Since ηRv = vR, we
get that v(−λ0, θ0) = 1. In particular, v 6≡ 0 and λ0 > 0. This ends Step 5.7.

Step 5.8: We claim that there exists θ ∈ (0, 1) such that v ∈ C1,θ(Rn
−) and

vε → v in C1,θ
loc (Rn

−)

when ε → 0. Indeed, it follows from Step 5.7 that there exists α > 0 such that for
all R > 0, there exists C(R) > 0 such that

‖vε‖C0,α(BR(0)∩{x1≤0}) ≤ C(R).

Following the proof of Proposition 8.1, we let

α0 := sup{α ∈ (0, 1)/ ∀R > 0, ∃C(R) > 0 s.t. ‖vε‖C0,α(BR(0)∩{x1≤0}) ≤ C(R)}.

We let α ∈ (0, α0) and R > 0. We let R̃ > R. There exists C(R̃) > 0 such that

‖vε‖C0,α(BR̃(0)∩{x1≤0}) ≤ C(R̃). (50)

Since vε ≡ 0 on ∂R
n
−, we get with (50) that

|vε(x)| = |vε(x) − vε(x − (x1, 0))| ≤ C(R̃)|x1|
α (51)

for all BR̃(0)∩{x1 < 0} and all ε > 0. It then follows from the properties of ϕ (see
(16) with x0 = 0) that

0 ≤ fε(x) :=
(ηvε)

2?−1−pε

∣

∣

∣

ϕ(kεx)
kε

∣

∣

∣

s ≤
C

|x|s−(2?−1−pε)α

for all ε > 0 and all x ∈ BR̃(0) ∩ {x1 < 0}. With the properties (16), we get that

for any R̃ > 0 and any p > 1, we have that
∫

BR̃(0)∩{x1<0}

dx
∣

∣

∣

ϕ(kεx)
kε

∣

∣

∣

p ≤ C

∫

BR̃(0)

dx

|x|p

for all ε > 0 (note that the RHS can be infinite). Using the same strategy as in the
proof of Proposition 8.1, we get that there exists θ ∈ (0, 1) such that v ∈ C1,θ(Rn

−)
and

vε → v in C1,θ
loc (Rn

−)

when ε → 0. We omit the proof and refer to the proof of Proposition 8.1 for the
details. This ends Step 5.8.

Step 5.9: We claim that

∆v =
v2?−1

|x|s
in D′(Rn

−) (52)

and that
∫

R
n
−

|∇v|2 dx = µs,a(Ω)
2?

2?−2 = µs(R
n
−)

2?

2?−2 .

Indeed, passing to the weak limit ε → 0 and then to the weak limit R → +∞ in
(48), we get that

∆v =
v2?−1

|x|s
in D′(Rn

−).
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Testing this equality with v ∈ H2
1,0(R

n
−)\{0} and using the optimal Hardy-Sobolev

inequality (2), we get that

(

∫

Rn
−

|∇v|2 dx

)
2?−2
2?

=

∫

Rn
−
|∇v|2 dx

(

∫

Rn
−

v2?

|x|s dx
)

2
2?

≥ µs(R
n
−). (53)

We then obtain that
∫

Rn
−

|∇v|2 dx ≥ µs(R
n
−)

2?

2?−2 . (54)

Since 0 ≤ vε ≤ 1, it follows from Lebesgue’s theorem that vε → v strongly in

L
2n

n−2

loc (Rn
− ∩ {x1 ≤ 0}) when ε → 0. Passing to the weak limit in (46) and using

(24), we get that

∫

Rn
−

|∇vR|
2 dx ≤ Cα‖∇ηR‖

2
n · ‖v‖2

L
2n

n−2 (B2R(0)\BR(0))

+(1 + α) · (lim
ε→0

µ
pε(n−2)

2?−2
ε )µs,a(Ω)

2?

2?−2 (55)

for all R > 0. Since v ∈ H2
1,0(R

n
−), it follows from Sobolev’s theorem that v ∈

L
2n

n−2 (Rn
−). Since ‖∇ηR‖2

n = ‖∇η1‖2
n is independant of R > 0 and v ∈ L

2n
n−2 (Rn

−),
letting R → +∞ in (55), we get that

∫

Rn
−

|∇v|2 dx ≤ (1 + α) · (lim
ε→0

µ
pε(n−2)

2?−2
ε )µs,a(Ω)

2?

2?−2 (56)

Since α > 0 is arbitrary and µε ≤ 1, we get with (54), (56), Proposition 3.1 and
(53) that

∫

Rn
−

|∇v|2 dx = µs,a(Ω)
2?

2?−2 = µs(R
n
−)

2?

2?−2 ,

and that

lim
ε→0

µpε
ε = 1.

This ends Step 5.9. Proposition 5.1 then follows from Steps 5.1 to 5.9. �

Step 5.10: We claim that under the hypothesis of Proposition 5.1, we have that

lim
R→+∞

lim
ε→0

∫

Ω\BRkε (0)

u2?−pε
ε

|x|s
dx = 0. (57)

Indeed, we let R > 0. Since D0ϕ = IdRn and ϕ(0) = 0, we have that

ϕ
(

BR
2 kε

(0)
)

⊂ BRkε (0)
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for all R > 0 and ε > 0 small enough. With a change of variable and (24), we get
that

∫

Ω\BRkε (0)

u2?−pε
ε

|x|s
dx ≤

∫

Ω\ϕ

„

B R
2

kε
(0)

«

u2?−pε
ε

|x|s
dx

≤

∫

Ω

u2?−pε
ε

|x|s
dx −

∫

ϕ

„

B R
2

kε
(0)

«

u2?−pε
ε

|x|s
dx

≤ µs,a(Ω)
2?

2?−2 + o(1) − µ
−pε

(n−2)2

2(2−s)
ε (1 + o(1))

∫

B R
2

(0)

v2?−pε
ε

|x|s
dx.

when ε → 0. Letting ε → 0 and then R → +∞, we get with (29) and Proposition
5.1 that

lim
R→+∞

lim
ε→0

∫

Ω\BRkε (0)

u2?−pε
ε

|x|s
dx ≤ µs,a(Ω)

2?

2?−2 − lim
R→+∞

∫

B R
2

(0)

v2?

|x|s
dx

≤ µs,a(Ω)
2?

2?−2 −

∫

Rn
−

v2?

|x|s
dx = 0

This last inequality yields (57).

6. Refined Blow-Up analysis and strong pointwise estimates

The objective of this section is the proof of the following strong pointwise esti-
mate

Proposition 6.1. Let Ω be a smooth bounded domain of R
n, n ≥ 3. We let

s ∈ (0, 2). We let (pε)ε>0 such that pε ∈ [0, 2? − 2) for all ε > 0 and (22) holds.
We consider (uε)ε>0 ∈ H2

1,0(Ω) such that (14), (15), (23), (24) and (26) hold. We
let µε as in (27). Then, there exists C > 0 such that

uε(x) ≤ C ·

(

µε

µ2
ε + |x|2

)

n−2
2

(58)

for all ε > 0 and all x ∈ Ω.

This type of strong pointwise estimate first appeared in [21] in the Euclidean
context, and in [23] in the Riemannian context. General estimates are in [10].

Proof. The rest of the section is mainly devoted to the proof of the proposition.
Here again, we follows the strategy of [10]. We let (uε)ε>0 satisfying the hypothesis
of Proposition 6.1.

Step 6.1: We claim that there exists C > 0 such that

|x|
n−2

2 uε(x)1−
pε

2?−2 ≤ C (59)

for all ε > 0 and all x ∈ Ω.
We proceed by contradiction and let yε ∈ Ω such that

|yε|
n−2

2 uε(yε)
1− pε

2?−2 = sup
x∈Ω

|x|
n−2

2 uε(x)1−
pε

2?−2 → +∞ (60)

when ε → 0. We let

νε := uε(yε)
− 2

n−2 and `ε := ν
1− pε

2?−2
ε (61)
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for all ε > 0. It follows from (60) and (61) that

lim
ε→0

νε = 0 and lim
ε→0

|yε|

`ε
= +∞. (62)

It follows from (27) and (29) that

lim
ε→0

νpε
ε = 1. (63)

We let
γ2

ε := |yε|
s|uε(yε)|

−(2∗−2−pε), (64)

for all ε > 0. It follows from (62) that

lim
ε→0

γε

|yε|
= 0. (65)

Case 6.1.1: We assume that, up to a subsequence, there exists ρ > 0 such that

d(yε, ∂Ω)

γε
≥ 3ρ (66)

for all ε > 0. For any x ∈ B2ρ(0) and any ε > 0, we let

wε(x) := ν
n−2

2
ε uε(yε + γεx). (67)

Note that wε is well defined thanks to (66). With (60) and (64), we get that
∣

∣

∣

∣

yε

|yε|
+

γε

|yε|
x

∣

∣

∣

∣

n−2
2

wε(x)1−
pε

2?−2 ≤ 1.

In particular, with (62), there exists C0 > 0 such that

0 ≤ wε(x) ≤ C0 (68)

for all x ∈ B2ρ(0) and all ε > 0. With (23), we get that

∆wε + γ2
ε aε(yε + γεx)wε =

w2?−1−pε
ε

∣

∣

∣

yε

|yε|
+ γε

|yε|
x
∣

∣

∣

s

for all x ∈ B2ρ(0) and all ε > 0. Since (62) and (68) hold, it follows from standard
elliptic theory that there exists w ∈ C1(B2ρ(0)) such that w ≥ 0 and

lim
ε→0

wε = w (69)

in C1
loc(B2ρ(0)). It follows from (67) that w(0) = 1. With a change of variable, we

get that
∫

Bργε (yε)

uε(x)2
?−pε

|x|s
dx =

γn
ε uε(yε)

2?−pε

|yε|s

∫

Bρ(0)

wε(x)2
?−pε

∣

∣

∣

yε

|yε|
+ γε

|yε|
· x
∣

∣

∣

s dx. (70)

With (64), (63), (62) and (61), we then get that

γn
ε uε(yε)

2?−pε

|yε|s
= (1 + o(1)) ·

(

|yε|

`ε

)

s(n−2)
2

→ +∞

when ε → 0. With (70), (69) and (24), we get that
∫

Bρ(0)

w2?

dx = 0,

and then w ≡ 0. A contradiction since w(0) = 1. This ends Case 6.1.1.
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Case 6.1.2: We assume that

lim
ε→0

d(yε, ∂Ω)

γε
= 0. (71)

It then follows that there exists y0 ∈ ∂Ω such that

lim
ε→0

yε = y0.

Since y0 ∈ ∂Ω, which is smooth, we let ϕ : U → V as in (16) with x0 = y0 and
where U, V are open neighborhoods of 0 and y0 respectively. We let ũε = uε ◦ ϕ,
which is defined on U ∩ {x1 ≤ 0}. For any i, j = 1, ..., n, we let gij = (∂iϕ, ∂jϕ),
where (·, ·) denotes the Euclidean scalar product on R

n, and we consider g as a
metric on R

n. We let ∆g = −divg(∇) the Laplace-Beltrami operator with respect
to the metric g. In the basis we choose,

∆g = −gij
(

∂ij − Γk
ij∂k

)

,

where gij = (g−1)ij are the coordinates of the inverse of the tensor g and the Γk
ij ’s

are the Christoffel symbols of the metric g. As easily checked, we have that

∆gũε + aε ◦ ϕ(x) · ũε =
ũ2?−1−pε

ε

|ϕ(x)|s

weakly in U ∩ {x1 < 0}. We let zε ∈ ∂Ω such that

|zε − yε| = d(yε, ∂Ω). (72)

We let ỹε, z̃ε ∈ U such that

ϕ(ỹε) = yε and ϕ(z̃ε) = zε. (73)

It follows from the properties of ϕ that

lim
ε→0

ỹε = lim
ε→0

z̃ε = 0, (ỹε)1 < 0 and (z̃ε)1 = 0. (74)

At last, we let

w̃ε(x) :=
ũε(z̃ε + γεx)

ũε(ỹε)

for all x ∈ U−z̃ε

γε
∩{x1 < 0}. With (74), we get that w̃ε is defined on BR(0)∩{x1 < 0}

for all R > 0, as soon as ε is small enough. The function w̃ε verifies

∆g̃ε w̃ε + γ2
ε aε ◦ ϕ(z̃ε + γεx)w̃ε =

w̃2?−1−pε
ε

∣

∣

∣

ϕ(z̃ε+γεx)
|yε|

∣

∣

∣

s

weakly in BR(0) ∩ {x1 < 0}. In this expression, g̃ε = g(z̃ε + γεx) and ∆g̃ε is the
Laplace-Beltrami operator with respect to the metric g̃ε. With (71), (72) and (73),
we get that

ϕ(z̃ε + γεx) = yε + OR(1)γε,

for all x ∈ BR(0) ∩ {x1 ≤ 0} and all ε > 0, where there exists CR > 0 such that
|OR(1)| ≤ CR for all x ∈ BR(0) ∩ {x1 < 0}. With (65), we then get that

lim
ε→0

|ϕ(z̃ε + γεx)|

|yε|
= 1

in C0(BR(0) ∩ {x1 ≤ 0}). It then follows that

∆g̃ε w̃ε + γ2
ε aε ◦ ϕ(z̃ε + γεx)w̃ε = (1 + o(1))w̃2?−1−pε

ε
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weakly in BR(0)∩{x1 < 0}, where limε→0 o(1) = 0 in C0(BR(0)∩{x1 ≤ 0}). Since
w̃ε vanishes on BR(0) ∩ {x1 = 0} (in the sense of the trace) and that 0 ≤ w̃ε ≤ 2
(see for instance the proof of (68)), it follows from standard elliptic theory that
there exists w̃ ∈ C1(BR(0) ∩ {x1 ≤ 0}) such that

lim
ε→0

w̃ε = w̃

in C0(BR
2
(0) ∩ {x1 ≤ 0}). In particular,

w̃ ≡ 0 on BR
2
(0) ∩ {x1 = 0}. (75)

Moreover, it follows from (71), (72) and (73) that

w̃ε

(

ỹε − z̃ε

γε

)

= 1 and lim
ε→0

ỹε − z̃ε

γε
= 0.

In particular, w̃(0) = 1. A contradiction with (75). This ends Case 6.1.2.

In both cases, we have contradicted (60). This proves (59) and ends Step 6.1.

As a remark, it follows from (23), (26), (59) and standard elliptic theory that

lim
ε→0

uε = 0 in C2
loc(Ω \ {0}). (76)

Step 6.2: This step is a slight improvement of (59). We claim that

lim
R→+∞

lim
ε→0

sup
x∈Ω\BRkε (0)

|x|
n−2

2 uε(x)1−
pε

2?−2 = 0. (77)

We proceed by contradiction and assume that there exists ε0 > 0 and a family
(yε)ε>0 ∈ Ω such that

|yε|
n−2

2 uε(yε)
1− pε

2?−2 ≥ ε0 and lim
ε→0

|yε|

kε
= +∞. (78)

We let

νε := uε(yε)
− 2

n−2 and γε := ν
1− pε

2?−2
ε (79)

for all ε > 0. It follows from (76), (59), (78) and (79) that there exists ρ0 ∈ R such
that

lim
ε→0

yε = 0, lim
ε→0

νε = 0 and lim
ε→0

|yε|

γε
= ρ0 > 0. (80)

Note that it follows from (27) and (29) that

lim
ε→0

νpε
ε = 1. (81)

We let ϕ : U → V as in (16) with x0 = 0 and where U, V are open neighborhoods
of 0. For any x ∈ U

γε
∩ {x1 < 0}, we let

wε(x) := ν
n−2

2
ε uε ◦ ϕ(γεx). (82)

It follows from (59) and the properties (16) of ϕ that there exists C > 0 such that

|x|
n−2

2 wε(x)1−
pε

2?−2 ≤ C (83)

for all x ∈ U
γε

∩ {x1 < 0} and all ε > 0. As above, we let the metric (ḡε)ij =

(∂iϕ, ∂jϕ)(γεx) for i, j = 1, ..., n. With (23), we get that

∆ḡεwε + γ2
ε aε ◦ ϕ(γεx)wε =

w2?−1−pε
ε
∣

∣

∣

ϕ(γεx)
γε

∣

∣

∣

s (84)
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in U
γε

∩ {x1 < 0} for all ε > 0. Moreover, wε vanishes on U
γε

∩ {x1 = 0}. It then

follows from (83), (84) and standard elliptic theory (see for instance [20]) that there
exists w ∈ C0(Rn

− ∩ {x1 = 0}) \ {0}) such that w ≥ 0 and

lim
ε→0

wε = w

in C0(Rn
− ∩ {x1 = 0}) \ {0}). We now write yε = ϕ(γεỹε). It follows from (80) that

limε→0 = y0 6= 0. As a consequence,

w(y0) = lim
ε→0

wε(ỹε) = 1,

and then w 6≡ 0. We let 0 < δ < R. With a change of variable, we have that

lim
ε→0

∫

ϕ(BRγε (0))\ϕ(Bδγε (0))

uε(x)2
?−pε

|x|s
dx =

∫

BR(0)\Bδ(0)

w(x)2
?

|x|s
dx. (85)

With (78), we get that for any ρ > 0, we have that

Bρkε (0) ∩ (ϕ(BRγε (0)) \ ϕ(Bδγε(0))) = ∅

for all ε > 0 small enough, up to a subsequence. It then follows from (57) that

lim
ε→0

∫

ϕ(BRγε (0))\ϕ(Bδγε (0))

uε(x)2
?−pε

|x|s
dx = 0.

This equality and (85) yield
∫

BR(0)\Bδ(0)

w2?

|x|s
dx = 0

for all R > δ > 0. We then get that w ≡ 0. A contradiction since w(y0) = 1. This
ends Step 6.2.

Step 6.3: We prove a first approximation of (58). More precisely, we claim that
for any α ∈ (0, n − 2), there exists Cα > 0 such that

|x|αµ
n−2

2 −α
ε uε(x) ≤ Cα (86)

for all ε > 0 and all x ∈ Ω. Indeed, since ∆+a is coercive on Ω and (aε)ε>0 satisfies
(14) and (15), there exists U0 an open subset of R

n such that Ω ⊂⊂ U0, there exists
α0 > 0 and there exists λ > 0 such that

∫

U0

(

|∇ϕ|2 + (aε − 2α0)ϕ
2
)

dx ≥ λ

∫

U0

ϕ2 dx (87)

for all ϕ ∈ C1
c (U0) and all ε > 0. In other words, the family of the operators

∆+aε−α0 is uniformly coercive in a neighborhood of Ω. We let Gε ∈ C2(U0×U0 \
{(x, x)/x ∈ U0}) be the Green’s function for ∆ + aε − α0 with Dirichlet condition
in U0. In other words, Gε satisfies

∆Gε(x, ·) + (aε − α0)Gε(x, ·) = δx (88)

weakly in D(U). It is standard that Gε exists and, since 0 ∈ U , that there exists
C > 0 such that

0 < Gε(0, x) ≤ C · |x|2−n (89)

for all ε > 0 and all x ∈ U \ {0}. More precisely, there exists δ0 > 0 and C0 > 0
such that

Gε(0, x) ≥ C0 · |x|
2−n and

|∇Gε(0, x)|

|x|n−2
≥

C0

|x|
(90)
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for all ε > 0 and all x ∈ Bδ0(0) \ {0}. We let the operator

Lε = ∆ +

(

aε −
u2?−2−pε

ε

|x|s

)

.

We claim that there exist ν0 ∈ (0, 1) and R1 > 0 such that for any ν ∈ (0, ν0) and
any R > R1, we have that

LεG
1−ν
ε > 0 (91)

for all x ∈ Ω \BRkε(0) and for all ε > 0 sufficiently small. Indeed, we let ν0 ∈ (0, 1)
such that for any ν ∈ (0, ν0), we have that

ν · (aε(x) − α0) ≥ −
1

2
α0 (92)

for all ε > 0 and all x ∈ Ω. With (88), we get that

LεG
1−ν
ε

G1−ν
ε

(x) = α0 + ν · (aε(x) − α0) + ν · (1 − ν) ·
|∇Gε|2

G2
ε

(x) −
uε(x)2

?−2−pε

|x|s
(93)

for all x ∈ Ω \ {0} and all ε > 0. It follows from the pointwise estimate (77) that
there exists R1 > 0 such that for any R > R1, we have that

|x|2−suε(x)2
?−2−pε ≤

1

2
ν(1 − ν)C2

0 (94)

for all ε > 0 and all x ∈ Ω \ BRkε(0). Here, C0 > 0 is as in (90). We are now in
position to prove (91). We let ν ∈ (0, ν0) and R > R1. We first let x ∈ Ω such that
|x| ≥ δ0. It follows from (93) and (92) that

LεG
1−ν
ε

G1−ν
ε

(x) ≥
α0

2
−

uε(x)2
?−2−pε

δs
0

for all ε > 0. Inequality (91) then follows with this inequality and (76). This proves
(91) when |x| ≥ δ0.

We let x ∈ Bδ0(0) \ BRkε(0). It follows from (93), (90) and (94) that

LεG
1−ν
ε

G1−ν
ε

(x) ≥
α0

2
+

ν · (1 − ν) · C2
0

|x|2
−

ν · (1 − ν) · C2
0

2 · |x|2
> 0.

This proves (91) when x ∈ Bδ0(0) \ BRkε(0). Clearly these two assertions prove
inequality (91).

We let R < R1 and ν ∈ (0, ν0). We claim that there exists C(R) > 0 such that














Lε

(

C(R)µ
n−2

2 −ν(n−2)
ε Gε(0, ·)1−ν

)

> Lεuε in Ω \ BRkε(0)

C(R)µ
n−2

2 −ν(n−2)
ε Gε(0, ·)1−ν > uε on ∂Ω \ BRkε(0))















(95)

Indeed, the first inequality is trivial since Lεuε = 0 and (91) holds. Concerning the
second inequality, we get with the definition (27) of µε, the limit (29) and (90) that

uε(x)

µ
n−2

2 −ν(n−2)
ε Gε(0, x)1−ν

≤ Cν−1
0 · µ−(n−2)(1−ν)

ε · |x|(n−2)(1−ν)

≤ 2 · C1−ν
0 · R(n−2)(1−ν) := C(R)

for all x ∈ Ω ∩ ∂BRkε(0). The inequalities (95) are proved.
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Since Gε(0, x)1−ν > 0 in Ω ∩ ∂BRkε(0) and LεGε(0, x)1−ν > 0 in Ω ∩ ∂BRkε(0), it
follows from [2] that Lε verifies the comparison principle. It then follows from (95)
that

uε(x) ≤ C(R)µ
n−2

2 −ν(n−2)
ε Gε(0, x)1−ν

for all x ∈ Ω \ BRkε (0). With (89), we get that there exists C ′(R) > 0 such that

uε(x) ≤ C ′(R)µ
n−2

2 −ν(n−2)
ε |x|2−n+ν(n−2)

for all x ∈ Ω \ BRkε (0). Up to taking C ′(R) larger, it follows from (27) that this
inequality holds on the whole set Ω. Taking α = (n− 2) · (1− ν), we get (86) for α
close to n − 2. As easily checked, this implies the inequality for all α ∈ (0, n − 2).
This ends the proof of (86).

Step 6.4: We are in position to prove Proposition 6.1. For all ε > 0, we let yε ∈ Ω
such that

max
x∈Ω

|x|n−2uε(xε)uε(x) = |yε|
n−2uε(xε)uε(yε).

Clearly, Proposition 6.1 is equivalent to proving that

|yε|
n−2uε(xε)uε(yε) = O(1) (96)

when ε → 0.

Case 6.4.1: We assume that

|yε| = O(kε)

when ε → 0. We then get with (27) that

|yε|
n−2uε(xε)uε(yε) = O(1).

when ε → 0. This proves (96) in Case 6.4.1.

Case 6.4.2: We assume that

lim
ε→0

|yε|

kε
= +∞. (97)

As in the beginning of Step 6.3, we choose U0 such that Ω ⊂⊂ U0 such that ∆ + aε

is coercive on U0. We let Hε be the Green’s function for ∆+aε on U0 with Dirichlet
boundary condition. It follows from Green’s representation formula and standard
estimates on the Green’s function that

uε(x) ≤

∫

Ω

Hε(x, y) ·
uε(y)2

?−1−pε

|y|s
dy ≤ C

∫

Ω

|x − y|2−n ·
uε(y)2

?−1−pε

|y|s
dy (98)

for all x ∈ Ω. We let

v̂ε(x) = µ
n−2

2
ε uε(kεx)

for all x ∈ k−1
ε Ω and all ε > 0. It follows from Proposition 5.1 and (86) that for

any α ∈ (0, n − 2), there exists Cα > 0 such that

v̂ε(x) ≤
Cα

1 + |x|α
(99)
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for all x ∈ k−1
ε Ω and all ε > 0. It follows from (98) and a change of variable that

µ
−n−2

2
ε uε(yε) ≤ C

∫

k−1
ε Ω

|yε − kεy|
2−n v̂ε(y)2

?−1−pε

|y|s
dx

≤ C

∫

k−1
ε Ω∩{|yε−kεy|≥ |yε|

2 }

1

|yε − kεy|n−2
·
v̂ε(y)2

?−1−pε

|y|s
dx

+C

∫

k−1
ε Ω∩{|yε−kεy|< |yε|

2 }

1

|yε − kεy|n−2
·
v̂ε(y)2

?−1−pε

|y|s
dx.(100)

We estimate the two integrals of the RHS separately. With (99), we get that
∫

k−1
ε Ω∩{|yε−kεy|≥ |yε|

2 }

1

|yε − kεy|n−2
·
v̂ε(y)2

?−1−pε

|y|s
dx

≤ C · |yε|
2−n

∫

k−1
ε Ω

1

|y|s(1 + |y|α·(2?−1−pε))
dy

≤ C · |yε|
2−n (101)

for all ε > 0 small and α close enough to n − 2. On the other hand, with (99), we
get that

∫

k−1
ε Ω∩{|yε−kεy|≤ |yε|

2 }

1

|yε − kεy|n−2
·
v̂ε(y)2

?−1−pε

|y|s
dx

≤ C

∫

k−1
ε Ω∩{|yε−kεy|≤

|yε|
2 }

1

|yε − kεy|n−2
·

1

|y|α(2?−1−pε)+s
dx

≤
C · k

α(2?−1−pε)+s
ε

|yε|α(2?−1−pε)+s

∫

k−1
ε Ω∩{|yε−kεy|≤ |yε|

2 }

1

|yε − kεy|n−2
dy

≤
C · k

α(2?−1−pε)+s
ε

|yε|α(2?−1−pε)+s
·
|yε|2

|kε|n

≤ C|yε|
2−n ·

(

kε

|yε|

)(2?−1−pε)α+s−n

.

Since limα→n−2 limε→0(2
? − 1 − pε)α + s − n = 2 − s > 0, we get with (97) and α

close enough to n − 2 that
∫

k−1
ε Ω∩{|yε−kεy|≥ |yε|

2 }

1

|yε − kεy|n−2
·
v̂ε(y)2

?−1−pε

|y|s
dx = o

(

|yε|
2−n
)

, (102)

when ε → 0. Plugging together (101) and (102) into (100), we get that

µ
−n−2

2
ε uε(yε) = O

(

|yε|
2−n
)

when ε → 0. This proves that (96) holds in Case 6.4.2.

In both cases, we have proved that (96) holds. As easily checked, (58) and then
Proposition 6.1 follow from (96) and (27). This ends Step 6.4, and therefore proves
Proposition 6.1. �

Step 6.5: From Proposition 6.1, we can derive pointwise estimates for vε. This is
the object of the following proposition
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Proposition 6.2. Assume that the hypothesis of Proposition 6.1 are satisfied. Then
there exists C > 0 such that

vε(x) ≤
C

(1 + |x|2)
n−2

2

and |∇vε|(x) ≤
C

(1 + |x|2)
n−1

2

for all ε > 0 and all x ∈ U
kε

∩ {x1 < 0}, where vε was defined in (45) and U is as

in (16) with x0 = 0.

Proof. The first inequality of the proposition is an immediate consequence of the
estimate (58) and the definition (45) of vε. Concerning the second inequality, we
proceed by contradiction and assume that there exists a family (yε)ε>0 such that
yε ∈ U for all ε → 0 and such that

lim
ε→0

(

1 +

∣

∣

∣

∣

yε

kε

∣

∣

∣

∣

)n−1 ∣
∣

∣

∣

∇vε

(

yε

kε

)∣

∣

∣

∣

= +∞. (103)

Case 6.5.1: we assume that yε 6→ 0 when ε → 0. It follows from the pointwise
estimate (58) that for any δ > 0, there exists C(δ) > 0 such that

uε(x) ≤ C(δ)µ
n−2

2
ε

for all x ∈ Ω \ Bδ(x0) and all ε > 0. We then get that

∆(µ
2−n

2
ε uε) + aε · (µ

2−n
2

ε uε) = µ
n−2

2 (2?−2−pε)
ε

(µ
2−n

2
ε uε)

2?−1−pε

|x|s

in D′(Ω \ B̄δ(x0)). It then follows from standard elliptic theory that

‖µ
2−n

2
ε uε‖C2(Ω\B3δ(x0))

= O(1) (104)

when ε → 0. Since yε 6→ 0, there exists δ > 0 such that, up to a subsequence,

|yε| ≥ 4δ for ε > 0. It follows from (104) that ∇uε(ϕ(yε)) = O(µ
n−2

2
ε ) when ε → 0.

A contradiction with (103). This proves the Proposition in Case 6.5.1.

Case 6.5.2: We assume that

lim
ε→0

yε = 0 and lim
ε→0

|yε|

kε
= +∞. (105)

We let ϕ as in (16) with x0 = 0 and define

hε(x) :=
|yε|n−2

k
n−2

2
ε

uε ◦ ϕ(|yε|x)

for all x ∈ U
|yε|

∩ {x1 ≤ 0}. It follows from (58) and (29) that there exists C > 0

such that

hε(x) ≤ C · |x|2−n (106)

for all x ∈ U
|yε|

∩ {x1 ≤ 0}, x 6= 0. We let

∆ḡε = ḡij
ε

(

∂ij − Γk
ij(ḡε)∂k

)

,

the Laplace-Beltrami operator for the metric (ḡε)ij = (∂iϕ, ∂jϕ)(kεx). In this
expression, the ḡij

ε = (ḡ−1
ε )ij are the coordinates of the inverse of the tensor ḡε and
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the Γk
ij(ḡε) are the Christoffel symbols associated to the metric ḡε. After a change

of variables, (23) rewrites as

∆ḡεhε + |yε|
2aε(ϕ(|yε|x))hε = k

pε
n−2

2
ε

(

kε

|yε|

)2−s−pε(n−2)
h2?−1−pε

ε
∣

∣

∣

ϕ(|yε|x)
|yε|

∣

∣

∣

s

in D′
(

U
|yε|

∩ {x1 < 0}
)

. Since (29), (105) and (106) hold and since s ∈ (0, 2), there

exists p > n
2 such that

∆ḡεhε + |yε|
2aε(ϕ(|yε|x))hε = fε in D′

(

U

|yε|
∩ {x1 < 0}

)

,

where fε ∈ Lp
loc(

U
|yε|

∩ {x1 ≤ 0} \ {0}) uniformly wrt ε → 0. Since hε ≡ 0 on
U
|yε|

∩ {x1 = 0} and (106) holds, it follows from standard elliptic theory that there

exists for any δ1 > δ2 > 0, there exists C ′(δ1, δ2) > 0 such that

‖hε‖C1((Bδ1
(0)\Bδ2

(0))∩{x1≤0}) ≤ C ′(δ1, δ2)

for all ε > 0. It then follows that
∣

∣

∣

∣

∇hε

(

yε

|yε|

)∣

∣

∣

∣

= O(1)

when ε → 0. Coming back to the definitions of hε and vε, we get a contradiction
with (103). This proves the Proposition in Case 6.5.2.

Case 6.5.3: We assume that

|yε| = O(kε)

when ε → 0. In this case, It follows from Proposition 5.1 that
∣

∣

∣
∇vε

(

yε

kε

)∣

∣

∣
= O(1)

when ε → 0. We get a contradiction with (103). This proves the Proposition in
Case 3.

In all the cases, we have contradicted (103). This proves Proposition 6.2. �

Corollary 6.1. Let (uε)ε>0 as in the hypothesis of Proposition 6.1. Then there
exists H ∈ C1(Ω \ {0}) such that

uε(xε)uε → H in C1
loc(Ω \ {0})

when ε → 0.

Proof. We let Hε(x) := uε(xε)uε(x) for all x ∈ Ω and all ε > 0. It follows from
Proposition 6.1 that for any open subset U such that U ⊂ Ω \ {0}, there exists
C(U) > 0 such that |Hε(x)| ≤ C(U) for all x ∈ U and all ε > 0. Equation (23)
rewrites as

∆Hε + aεHε = uε(xε)
2+pε−2? H2?−1−pε

ε

|x|s

in Ω. The conclusion of the Corollary is then a consequence of standard elliptic
theory. �
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7. Pohozaev identity and proof of the theorems

In this section, we prove the following estimate:

Proposition 7.1. Let Ω be a smooth bounded domain of R
n, n ≥ 4. We let

s ∈ (0, 2). We let (pε)ε>0 such that pε ∈ [0, 2? − 2) for all ε > 0 and (22) holds.
We consider (uε)ε>0 ∈ H2

1,0(Ω) such that (14), (15), (23), (24) and (26) hold. We
let µε as in (27) and v as in Proposition 5.1. Then, we have that

lim
ε→0

pε

µε
=

(n − s)
∫

∂Rn
−
|x|2|∇v|2 dx

n(n − 2)2µs(Rn
−)

n−s
2−s

· H(0).

In this expression, H(0) is the mean curvature of the oriented boundary ∂Ω at 0.

We prove the Proposition in the sequel, and postpone the proofs of Theorems
1.1 and 1.4 to the end of the section. We let pε ≥ 0 such that limε→0 pε = 0. We
let uε, aε and a as in (14), (15), (23), (24) and (26). We assume that 0 < s < 2
and let xε, µε, kε as in (27). Since limε→0 xε = 0, we consider the chart ϕ defined
in (16) with x0 = 0.

Step 7.1: We provide a Pohozaev-type identity for uε. It follows from Proposition
8.1 that uε ∈ C1(Ω) and that ∆uε ∈ Lp(Ω) for all p ∈ (1, n

s ). In the sequel, we
denote by ν(x) the outward normal vector at x ∈ ∂Ω of the oriented hypersurface
∂Ω (oriented as the boundary of Ω). Integrating by parts, we get that

∫

Ω

xi∂iuε∆uε dx

= −

∫

∂Ω

xi∂iuε∂νuε dσ +

∫

Ω

∂j(x
i∂iuε)∂juε dx

= −

∫

∂Ω

xi∂iuε∂νuε dσ +

∫

Ω

|∇uε|
2 dx +

∫

Ω

xi∂i
|∇uε|2

2
dx

=
(

1 −
n

2

)

∫

Ω

|∇uε|
2 dx +

∫

∂Ω

(

(x, ν)
|∇uε|2

2
− xi∂iuε∂νuε

)

dσ

=
(

1 −
n

2

)

(
∫

∂Ω

uε∂νuε dσ +

∫

Ω

uε∆uε dx

)

+

∫

∂Ω

(

(x, ν)
|∇uε|2

2
− xi∂iuε∂νuε

)

dσ.

Using the equation (23) in the RHS, we get that

∫

Ω

xi∂iuε∆uε dx =
(

1 −
n

2

)

(
∫

Ω

u2?−pε
ε

|x|s
dx −

∫

Ω

aεu
2
ε dx

)

+

∫

∂Ω

(

(

1−
n

2

)

uε∂νuε + (x, ν)
|∇uε|2

2
− xi∂iuε∂νuε

)

dσ. (107)
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On the other hand, using the equation (23) satisfied by uε, we get that
∫

Ω

xi∂iuε∆uε dx =

∫

Ω

xi∂iuε
u2?−1−ε

ε

|x|s
dx −

∫

Ω

xi∂iuεaεuε dx

=

∫

Ω

xi|x|−s∂i

(

u2?−pε
ε

2? − pε

)

dx −

∫

Ω

xi∂iuεaεuε dx

= −

∫

Ω

∂i(x
i|x|−s)

u2?−pε
ε

2? − pε
dx +

∫

∂Ω

(x, ν)

2? − pε
·
u2?−pε

ε

|x|s
dσ −

∫

Ω

xi∂iuεaεuε dx

= −

∫

Ω

n − s

|x|s
·

u2?−pε
ε

2? − pε
dx +

1

2

∫

Ω

(naε + xi∂iaε)u
2
ε dx

+

∫

∂Ω

(x, ν)

2? − pε
·
u2?−pε

ε

|x|s
dσ −

∫

∂Ω

(x, ν)

2
aεu

2
ε dσ. (108)

Plugging together (107) and (108), we get that
(

n − 2

2
−

n − s

2? − pε

)
∫

Ω

u2?−pε
ε

|x|s
dx +

∫

Ω

(

aε +
(x,∇aε)

2

)

u2
ε dx

=

∫

∂Ω

(

−
n− 2

2
uε∂νuε + (x, ν)

|∇uε|2

2

−xi∂iuε∂νuε −
(x, ν)

2? − pε
·
u2?−pε

ε

|x|s

)

dσ +

∫

∂Ω

(x, ν)

2
aεu

2
ε dx (109)

for all ε > 0. Since uε ≡ 0 on ∂Ω, we get that

(n − 2)pε

2 · (2? − pε)

∫

Ω

u2?−pε
ε

|x|s
dx −

∫

Ω

(

aε +
(x,∇aε)

2

)

u2
ε dx

=
1

2

∫

∂Ω

(x, ν)|∇uε|
2 dσ. (110)

Step 7.2: We first deal with the RHS of (110). We take ϕ as in (16) with x0 = 0.
With the pointwise limit of Corollary 6.1, we get that

∫

∂Ω

(x, ν)|∇uε|
2 dσ =

∫

∂Ω∩ϕ(U)

(x, ν)|∇uε|
2 dσ + o(µε)

when ε → 0 as soon as n ≥ 4. With a change of variable, we get that
∫

∂Ω

(x, ν)|∇uε|
2 dσ =

(1 + o(1)) ·

∫

Dε

(

ϕ(kεx)

kε
, ν ◦ ϕ(kεx)

)

|∇vε|
2
g̃ε

√

|g̃ε| dx

+o(µn−2
ε ) (111)

where the metric g̃ε is such that (g̃ε)ij = (∂iϕ, ∂jϕ)(kεx) for all i, j = 2, ..., n,
|g̃ε| = det(g̃ε) and

Dε =
U

kε
∩ {x1 = 0}.

Using the expression of ϕ (see (16)), we get that

ν(ϕ(x)) =
(1,−∂2ϕ0(x), ...,−∂nϕ0(x))
√

1 +
∑n

i=2(∂iϕ0(x))2
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for all x ∈ U ∩ {x1 = 0}. We then get that

(ν ◦ ϕ(x), ~X) = (1 + O(|x|2)) ·

(

X1 −
n
∑

i=2

X i∂iϕ0(x)

)

for all x ∈ U ∩ {x1 = 0} and all ~X ∈ R
n. In this expression O(1) is bounded for

x ∈ U ∩ {x1 = 0} and ~X ∈ R
n. With the expression of ϕ (see (16)), we get that

(ϕ(kεx), ν ◦ ϕ(kεx))

= (1 + O(k2
ε |x|

2))

(

ϕ0(kεx) − kε

n
∑

i=2

xi∂iϕ0(kεx)

)

= (1 + O(k2
ε |x|

2)) ·

(

−
1

2
k2

ε ∂ijϕ(0)xixj + O(1)(k3
ε |x|

3)

)

(112)

for ε > 0 and x ∈ U
kε

∩ {x1 = 0}. Plugging (112) into (111), using the estimates of
Proposition 6.1, Lebesgue’s convergence theorem and letting ε → 0, we get that

∫

∂Ω

(x, ν)|∇uε|
2 dσ =

(

−
1

2

∫

∂Rn
−

∂ijϕ0(0)xixj |∇v|2 dx + o(1)

)

· kε (113)

when n ≥ 4 and where limε→0 o(1) = 0.

Step 7.3: It follows from Proposition 6.1
∫

Ω

u2
ε dx = o(µε) (114)

when ε → 0 and as soon as n ≥ 4. Plugging (113) into (110), using (24) and (114),
we get that

(

n − 2

2 · 2?
µs(R

n
−)

n−s
2−s + o(1)

)

pε

=

(

−
1

4

∫

∂Rn
−

∂ijϕ0(0)xixj |∇v|2 dx + o(1)

)

· µε (115)

where limε→0 o(1) = 0 and when n ≥ 4. With (115), we get that

lim
ε→0

n − 2

2 · 2?
µs(R

n
−)

n−s
2−s ·

pε

µε

= −
1

4

∫

∂Rn
−

∂ijϕ0(0)xixj |∇v|2 dx

when n ≥ 4. We consider the second fondamental form associated to ∂Ω, namely

IIp(x, y) = (dνpx, y)

for all p ∈ ∂Ω and all x, y ∈ Tp∂Ω (recall that ν is the outward normal vector at
the hypersurface ∂Ω). In the canonical basis of ∂R

n
− = T0∂Ω, the matrix of the

bilinear form II0 is −D2
0ϕ0, where D2

0ϕ0 is the Hessian matrix of ϕ0 at 0. With
this remark and (115), we get that

lim
ε→0

pε

µε
=

(n − s)

(n − 2)2
µs(R

n
−)−

n−s
2−s ·

∫

∂Rn
−

II0(x, x)|∇v|2 dx (116)



BEST HARDY-SOBOLEV CONSTANT 33

when n ≥ 4. Since v ≥ 0, that v ∈ C2(Rn
−) and v verifies (52), it follows from

the strong maximum principle that v > 0 in R
n
−. Moreover, it follows from the

definition (45) and the pointwise estimate (58) that there exists C > 0 such that

v(x) ≤
C

(1 + |x|2)
n−2

2

for all x ∈ R
n
−. We let ṽ(x) := |x|2−nv

(

x
|x|2

)

be the Kelvin transform of v. As

easily checked, ṽ ∈ C2(Rn
− \ {0}) and verifies

∆ṽ =
ṽ2?−1

|x|s
in R

n
− and ṽ(x) ≤

C

(1 + |x|2)
n−2

2

for all x ∈ R
n
−. Since ṽ vanishes on ∂R

n
−, it then follows from standard elliptic

theory that ṽ ∈ C1(Rn
−) and then, that there exists C > 0 such that ṽ(x) ≤ C|x|

for all x ∈ B1(0) ∩ R
n
−. Coming back to the function v, we get that tehre exists

C > 0 such that

v(x) ≤
C

(1 + |x|2)
n−1

2

for all x ∈ R
n
−. It follows from Proposition 1.2 of Appendix B that there exists

w ∈ C2(R?
− × R) such that v(x1, x

′) = w(x1, |x
′|) for all (x1, x

′) ∈ R
?
− × R

n−1. In
particular, |∇v|(0, x′) is radially symmetrical wrt x′ ∈ ∂R

n
−. Since we have chosen

a chart ϕ that is Euclidean at 0, we get that

∫

∂Rn
−

II0(x, x)|∇v|2 dx =

∑n
i=2(II0)

ii

n

∫

∂Rn
−

|x|2|∇v|2 dx

=
H(0)

n

∫

∂Rn
−

|x|2|∇v|2 dx.

Note that we have used here that in the chart ϕ defined in (16), the matrix of the
first fundamental form at 0 is the identity. Plugging thsi last inequality in (116),
we get that

lim
ε→0

pε

µε
=

(n − s)
∫

∂Rn
−
|x|2|∇v|2 dx

n(n − 2)2µs(Rn
−)

n−s
2−s

· H(0) (117)

when n ≥ 4.

Step 7.4: We are now in position to prove Theorems 1.1 and 1.4. We prove
Theorem 1.1 by contradiction and assume that there are no extremals for (2). It
follows from Propositions 4.1 and 4.2 that there exists uε ∈ H2

1,0(Ω) such that (23),
(24) and (26) hold with aε ≡ 0 and pε = ε. Since 0 < s < 2, then (117) holds
with pε = ε when n ≥ 4. We then get that H(0) ≥ 0. A contradiction with
the assumptions of Theorem 1.1. This proves the first point of Theorem 1.1 when
n ≥ 4. Concerning the compactness, any sequence of minimizers of (2) satisfies
(23) and (24) with pε ≡ 0 and a ≡ 0. If the sequence of minimizers blows up, we
get with (117) that H(0) = 0. A contradiction with our initial assumption. Then
we get that the sequence does not blow up. It then follows from standard elliptic
theory that it converges in H2

1,0(Ω). This proves Theorem 1.1 when n ≥ 4.
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Concerning Theorem 1.4, the proof is quite similar to that of Theorem 1.1. We
assume that the conclusion of the theorem does not hold. It follows from Proposi-
tions 4.1 and 4.2 that there exists uε ∈ H2

1,0(Ω) such that (23), (24) and (26) hold
with aε ≡ a and pε = ε. The proof is then the same as the proof of Theorem 1.1.

8. Appendix: Regularity of weak solutions

In this appendix, we prove the following regularity result:

Proposition 8.1. Let Ω be a smooth bounded domain of R
n, n ≥ 3. We let

s ∈ (0, 2) and a ∈ C0(Ω). We let ε ∈ [0, 2? − 2) and consider u ∈ H2
1,0(Ω) a weak

solution of

∆u + au =
|u|2

?−2−εu

|x|s
in D′(Ω).

Then there exists θ ∈ (0, 1) such that u ∈ C1,θ(Ω).

Proof. Step 8.1: We follow the strategy developed by Trudinger. Let β ≥ 1, and
L > 0. We let

GL(t) =







|t|β−1t if |t| ≤ L
βLβ−1(t − L) + Lβ if t ≥ L
βLβ−1(t + L) − Lβ if t ≤ −L

and

HL(t) =











|t|
β−1

2 t if |t| ≤ L
β+1

2 L
β−1

2 (t − L) + L
β+1
2 if t ≥ L

β+1
2 L

β−1
2 (t + L) − L

β+1
2 if t ≤ −L

As easily checked,

0 ≤ tGL(t) ≤ HL(t)2 and G′
L(t) =

4β

(β + 1)2
(H ′

L(t))2

for all t ∈ R and all L > 0. Let η ∈ C∞
c (Rn). As easily checked, η2GL(u), ηHL(u) ∈

H2
1,0(Ω). With the equation verified by u, we get that

∫

Ω

∇u∇(η2GL(u)) dx =

∫

Ω

|u|2
?−2−ε

|x|s
η2uGL(u) dx −

∫

Ω

aη2uGL(u) dx. (118)

We let JL(t) =
∫ t

0
GL(τ) dτ for all t ∈ R. Integrating by parts, we get that

∫

Ω

∇u∇(η2GL(u)) dx =

∫

Ω

η2G′
L(u)|∇u|2 dx +

∫

Ω

∇η2∇JL(u) dx

=
4β

(β + 1)2

∫

Ω

η2|∇HL(u)|2 dx +

∫

Ω

(∆η2)JL(u) dx

=
4β

(β + 1)2

∫

Ω

|∇(ηHL(u))|2 dx +
4β

(β + 1)2

∫

Ω

η∆η|HL(u)|2 dx

+

∫

Ω

(∆η2)JL(u) dx (119)



BEST HARDY-SOBOLEV CONSTANT 35

On the other hand, with Hölder’s inequality and the definition of µs(R
n), we then

get that
∫

Ω

(

|u|2
?−2−ε

|x|s
− a

)

· η2uGL(u) dx ≤

∫

Ω

(

|a| +
|u|2

?−2−ε

|x|s

)

· (ηHL(u))2 dx

≤

(

∫

Ω∩Supp η

(|a| · |x|s + |u|2
?−2−pε)

2?−ε
2?−2−ε

|x|s

)1− 2
2?−ε

×

(
∫

Ω

|ηHL(u)|2
?

|x|s

)

2
2?

×

(
∫

Ω

dx

|x|s

)
2ε

2?·(2?−ε)

≤ α ·

∫

Ω

|∇(ηHL(u))|2 dx (120)

where

α :=

(

∫

Ω∩Supp η

(|a| · |x|s + |u|2
?−2−pε)

2?−ε
2?−2−ε

|x|s
dx

)1− 2
2?−ε

×µs(R
n)−1

(
∫

Ω

dx

|x|s

)
2ε

2?·(2?−ε)

Plugging (119) and (120) into (118), we get that

A ·

∫

Ω

|∇(ηHL(u))|2 dx ≤
4β

(β + 1)2

∫

Ω

|η∆η||HL(u)|2 dx +

∫

Ω

|∆(η2)JL(u)| dx

(121)
where

A :=
4β

(β + 1)2
−

(

∫

Ω∩Supp η

(|a| · |x|s + |u|2
?−2−pε)

2?−ε
2?−2−ε

|x|s
dx

)1− 2
2?−ε

×µs(R
n)−1

(
∫

Ω

dx

|x|s

)
2ε

2?·(2?−ε)

Step 8.2: We let p0 = sup{p ≥ 1/ u ∈ Lp(Ω)}. It follows from Sobolev’s embedding
theorem that p0 ≥ 2n

n−2 . We claim that

p0 = +∞.

We proceed by contradiction and assume that

p0 < ∞.

Let p ∈ (2, p0). It follows from the definition of p0 that u ∈ Lp(Ω). Let β = p−1 >
1. For any x ∈ Ω, we let δx > 0 such that

(

∫

Ω∩B2δx (x)

(|a| · |x|s + |u|2
?−2−pε)

2?−ε
2?−2−ε

|x|s
dx

)1− 2
2?−ε

µs(R
n)−1

×

(
∫

Ω

dx

|x|s

)
2ε

2?·(2?−ε)

≤
2β

(β + 1)2
. (122)
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Since Ω is compact, we get that there exists x1, ..., xN ∈ Ω such that

Ω ⊂
N
⋃

i=1

Bδxi
(xi).

We fix i ∈ {1, ..., N} and let η ∈ C∞(B2δxi
(xi)) such that η(x) = 1 for all x ∈

Bδxi
(xi). We then get with (121) and (122) that

2β

(β + 1)2

∫

Ω

|∇(ηHL(u))|2 dx

≤
4β

(β + 1)2

∫

Ω

|η∆η||HL(u)|2 dx +

∫

Ω

|∆η2| · |JL(u)| dx. (123)

Recall that it follows from Sobolev’s inequality that there exists K(n, 2) > 0 that
depends only on n such that

(
∫

Rn

|f |
2n

n−2 dx

)
n−2

n

≤ K(n, 2)

∫

Rn

|∇f |2 dx (124)

for all f ∈ H2
1,0(R

n). It follows from (123) and (124) that

2β

(β + 1)2
K(n, 2)−1

(
∫

Ω

|ηHL(u)|
2n

n−2 dx

)
n−2

n

≤
4β

(β + 1)2

∫

Ω

|η∆η||HL(u)|2 dx +

∫

Ω

|∆η2| · |JL(u)| dx

for all L > 0. As easily checked, there exists C0 > 0 such that |JL(t)| ≤ C0 · |t|
β+1

for all t ∈ R and all L > 0. Since u ∈ Lβ+1(Ω), we get that there exists a constant
C = C(η, u, β, Ω) independant of L such that

∫

Ω∩Bδxi
(xi)

|HL(u)|
2n

n−2 dx ≤

∫

Ω

|ηHL(u))|
2n

n−2 dx ≤ C

for all L > 0. Letting L → +∞, we get that
∫

Ω∩Bδxi
(xi)

|u|
n

n−2 (β+1) dx < +∞,

for all i = 1...N . We then get that u ∈ L
n

n−2 (β+1)(Ω) = L
n

n−2 p(Ω). And then,
n

n−2p ≤ p0 for all p ∈ (2, p0). Letting p → p0, we get a contradiction. Then

p0 = +∞ and u ∈ Lp(Ω) for all p ≥ 1. This ends Step 8.2.

Step 8.3: We claim that

u ∈ C0,α(Ω)

for all α ∈ (0, 1). Indeed, it follows from Step 8.2 and the assumption 0 < s < 2
that there exists p > n

2 such that

fε :=
|u|2

?−2−εu

|x|s
− au ∈ Lp(Ω).

It follows from standard elliptic theory that, in this case, u ∈ C0,α(Ω) for all
α ∈ (0, min{2− s, 1}). We let

α0 = sup{α ∈ (0, 1)/ u ∈ C0,α(Ω)}.
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We let α ∈ (0, α0). Then u ∈ C0,α(Ω). Since u(0) = 0, we then get that

|u(x)| ≤ |u(x) − u(0)| ≤ C|x|α. (125)

We then get with (125) that

|fε(x)| =

∣

∣

∣

∣

|u(x)|2
?−1−εu

|x|s
− au

∣

∣

∣

∣

≤
C

|x|s−(2?−1−ε)α

for all x ∈ Ω. We distinguish 2 cases:

Case 8.3.1: s− (2? − 1− ε)α0 ≤ 0. In this case, for any p > 1, up to taking α close
enough to α0, we get that

fε ∈ Lp(Ω).

Since ∆u + au = fε and u ∈ H2
1,0(Ω), it follows from standard elliptic theory that

there exist exists θ ∈ (0, 1) such that u ∈ C1,θ(Ω). It follows that α0 = 1. This
proves the claim in Case 8.3.1.

Case 8.3.2: s − (2? − 1 − ε)α0 > 0. In this case, for any p < n
s−(2?−1−ε)α0

, up to

taking α close enough to α0, we get that

fε ∈ Lp(Ω).

We distinguish 3 subcases.

Case 8.3.2.1: s − (2? − 1 − ε)α0 < 1. In this case, up to taking α close enough to
α0, there exists p > n such that

fε ∈ Lp(Ω).

Since ∆u = fε and u ∈ H2
1,0(Ω), it follows from standard elliptic theory that there

exist exists θ ∈ (0, 1) such that u ∈ C1,θ(Ω). It follows that α0 = 1. This proves
the claim in Case 8.3.2.1.

Case 8.3.2.2: s − (2? − 1 − ε)α0 = 1. In this case, for any p < n, up to taking α
close enough to α0, we get that

fε ∈ Lp(Ω).

Since ∆u + au = fε and u ∈ H2
1,0(Ω), it follows from standard elliptic theory that

u ∈ C0,α̃(Ω) for all α̃ ∈ (0, 1). It follows that α0 = 1. This proves the claim in Case
8.3.2.2.

Case 8.3.2.3: s − (2? − 1 − ε)α0 > 1. In this case, it follows from standard elliptic
theory that u ∈ C0,α̃(Ω) for all

α̃ ≤ 2 − (s − (2? − 1 − ε)α0).

It follows from the definition of α0 that

α0 ≥ 2 − (s − (2? − 1 − ε)α0),

and then

0 ≥ 2 − s + (2? − 2 − ε) α0 > 0,

a contradiction since s < 2 and ε < 2? − 2. This proves that Case 7.3.2.3 does not
occur, and we are back to the other cases.

Clearly, theses cases end Step 8.3.

Step 8.4: We claim that there exists θ ∈ (0, 1) such that

u ∈ C1,θ(Ω).
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We proceed as in Step 8.3. We let α ∈ (0, 1) (note that α0 = 1). We then get that

|fε(x)| =

∣

∣

∣

∣

|u(x)|2
?−1−εu

|x|s

∣

∣

∣

∣

≤
C

|x|s−(2?−1−ε)α

for all x ∈ Ω. We distinguish 2 cases:

Case 8.4.1: s − (2? − 1 − ε) ≤ 0. In this case, for any p > 1, up to taking α close
enough to α0, we get that

fε ∈ Lp(Ω).

Since ∆u + au = fε and u ∈ H2
1,0(Ω), it follows from standard elliptic theory that

there exist exists θ ∈ (0, 1) such that u ∈ C1,θ(Ω). It follows that α0 = 1. This
proves the claim in Case 8.4.1.

Case 8.4.2: s− (2? − 1− ε) > 0. In this case, for any p < n
s−(2?−1−ε) , up to taking

α close enough to 1, we get that

fε ∈ Lp(Ω).

As easily checked,

1 − (s − (2? − 1 − ε)) = 2 − s + (2? − 1 − ε) − 1 > 2? − 2 − ε.

We the get that there exists p > n such that fε ∈ Lp(Ω). Since ∆u + au = fε and
u ∈ H2

1,0(Ω), it follows from standard elliptic theory that there exists θ ∈ (0, 1)

such that u ∈ C1,θ(Ω). This proves the claim in Case 8.4.2.

Combining Case 8.4.1 and Case 8.4.2, we obtain Step 8.4. Proposition 8.1 then
follows from Step 8.4. �
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