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CONCENTRATION ESTIMATES FOR EMDEN-FOWLER
EQUATIONS WITH BOUNDARY SINGULARITIES AND
CRITICAL GROWTH

N. GHOUSSOUB AND F. ROBERT

ABSTRACT. We establish —among other things— existence and multiplicity of

solutions for the Dirichlet problem ", 0;;u+ % = 0 on smooth bounded
domains © of R"™ (n > 3) involving the critical Hardy-Sobolev exponent 2* =
% where 0 < s < 2, and in the case where zero (the point of singularity) is
on the boundary 9€2. Just as in the Yamabe-type non-singular framework (i.e.,
when s = 0), there is no nontrivial solution under global convexity assumption
(e.g., when Q is star-shaped around 0). However, in contrast to the non-
satisfactory situation of the non-singular case, we show the existence of an
infinite number of solutions under an assumption of local strict concavity of 92
at 0 in at least one direction. More precisely, we need the principal curvatures
of 9 at 0 to be non-positive but not all vanishing. We also show that the
best constant in the Hardy-Sobolev inequality is attained as long as the mean
curvature of 0 at 0 is negative, extending the results of [21] and completing
our result of [22] to include dimension 3. The key ingredients in our proof are
refined concentration estimates which yield compactness for certain Palais-
Smale sequences which do not hold in the non-singular case.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

We address the problem of existence and multiplicity of possibly sign-changing
solutions of the following Emden-Fowler boundary value problem on a smooth do-
main  of R", n > 3:

Au =1t i D(Q) O

u=0 on 0f.
where here and throughout the paper, A = — . 9;; is the Laplacian with minus
sign convention, and 2* := 2*(s) = % with s € [0,2]. The non-singular case,

i.e., when s = 0, is the Euclidean version of the celebrated Yamabe problem con-
sidered first by Brezis and Nirenberg [6] followed by a large number of authors.
Here again the situation is interesting since we are dealing with the correspond-
ing critical exponent in the Hardy-Sobolev embedding H? ((Q) — LP(; |z~ *dx)
which is not compact when p = 2*(s). We recall that Hf () is the completion
of C2°(Q), the set of smooth functions compactly supported in €2, for the norm
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lull a2 ) = 4 / [ [Vu|? dz, and that the above embedding follows from the Hardy-
Sobolev inequality ([9], [10], [24]) which states that the constant defined as
2 2 Juf
|Vul*dz; v € Hi o(Q2) and der =1 (2)

s () = inf{
@) o lz*

satisfies 0 < ps(€2) < +oo. This in turn allows for a variational approach for the
problem of finding solutions in Hf 4(€2) N C°(Q) for the Dirichlet problem (1).

Now the story of the state of the art in the non-singular case is quite extensive
(see for instance Struwe [38]), but for our purpose we single out the following
highlights:

1) For any domain €, the best constant 1o(£2) is the same as po(R™) and it is
never attained unless (2 is essentially R™ (i.e., cap(R™\ 2) = 0), in which case there
is an infinite number of sign-changing solutions for

Au=|u*"2u in D'(Q) 3)
u=0 on 0N.

Q

Moreover, there are no solution for (3) whenever Q is bounded convex or star-
shaped. On the other hand, there are solutions if € is not contractible (in dimension
3) and an infinite number of them [3], if the domain © has non-trivial homology
(i.e., Hq(Q,Zs) # 0 for some d > 0). Unfortunately, these topological conditions
are far from being optimal and no geometric condition that would guarantee the
existence of one or more solutions, have so far been isolated.

2) On the other hand, the addition of a linear term to the equation, such as

Au=|u 2u+AIu  inD(Q) )
u=20 on Of).

improves the situation dramatically, especially when 0 < A < A1, since there is then
a positive solution for any smooth bounded domain €2 in R™ as long as n > 4 (See
Brezis-Nirenberg [6]). The case n = 3 is more delicate and was dealt with by Druet
[13]. Most relevant to our work, are the recent results by Devillanova and Solimini
who managed in a remarkable paper [11], to establish the existence of an infinite
number of solutions for (4) in dimension n > 7.

The situation for the Emden-Fowler equations (i.e., when s > 0) turned out to
be at least as interesting, and somewhat more satisfactory. Actually, the case when
0 belongs to the interior of the domain €2 is almost identical to the non-singular
case [24] as one can prove essentially the same results with a suitable adaptation of
the same techniques. However, the situation is much different when 0 € 0.

1) Indeed, Egnell showed in [17] that for open cones of the form C = {z €
R™; 2 =7rf0,0 € D and r > 0} where the base D is a connected domain of the unit
sphere S"~! of R™, the best constant us(C) is attained for 0 < s < 2 even when
C # R™. The case where 9Q is smooth at 0 was tackled in [21] and it turned out
to be also quite interesting since the curvature of the boundary at 0 gets to play
an important role. It was shown there that in dimension n > 4, the negativity
of all principal curvatures® at 0 —which is essentially a condition of “local strict
concavity” — leads to attainability of the best constant for problems with Dirichlet

1n our context, we specify the orientation of 92 in such a way that the normal vectors of 92
are pointing outward from the domain .
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boundary conditions, while the Neumann problems required the positivity of the
mean curvature at 0.

More recently, we show in [22] that for dimension n > 4, the negativity of the
mean curvature of 9 at 0 is sufficient to ensure the attainability of ps(2). This
result is quite satisfactory, since standard Pohozaev type arguments show non-
attainability in the case where €2 is convex or star-shaped at 0. One of the results of
this paper is the extension of this attainability result to cover all dimensions (greater
than 3) including the more subtle context of dimension 3. We shall establish the
following

Theorem 1.1. Let 2 be a smooth bounded oriented domain of R™, n > 3, such
that 0 € 9Q and assume s € (0,2). If the mean curvature of O at 0 is negative,
then us(QY) is achieved by a positive function which is —a positive multiple of- a
solution for

Au = |““2;‘;2u in D'(Q)
u>0 mn (5)
u=20 on 0f).

2) As to the question of multiplicity of solutions for (1), we note that Ghoussoub-
Kang had shown in [21] the existence of two solutions under the assumption that all
principal curvatures at 0 are negative. More precisely, assuming that the principal
curvatures aq, ..., a1 of 9 at 0 are finite, the oriented boundary 0) near the
origin can then be represented (up to rotating the coordinates if necessary) by
z1 = po(2') = =3 30, i1zt +o(|2')?), where 2’ = (22, ..., z,) € Bs(0)N{z1 = 0}
for some ¢ > 0 where Bs(0) is the ball in R™ centered at 0 with radius 6. If the
principal curvatures at 0 are all negative, i.e., if

max a; <0, (6)

1<i<n—1

then the sectional curvature at 0 is negative and therefore 9 —viewed as an (n—1)-
Riemannian submanifold of R™— is strictly convex at 0 (see for instance [19]). The
latter property means that there exists a neighborhood U of 0 in 02, such that
the whole of U lies on one side of a hyperplane H that is tangent to 002 at 0 and
UNH = {0}, and so does the complement R™ \ Q, at least locally. In other words,
the above curvature condition then amounts to a notion of strict local convexity of
R™\ Q at 0. In this paper, we complete and extend these results in many ways,
since we establish the existence of infinitely many solutions under the following
much weaker assumption:

max o; <0 and min a5 < 0. (7)
1<i<n—1 1<i<n—1

which is a condition of “local concavity at 0” that is “strict” in at least one direction.
Theorem 1.2. Let Q be a smooth bounded oriented domain of R", n > 3, such that
0€ 9. Lets € (0,2) and a € C1(Q) be such that the operator A + a is coercive

in Q. If the principal curvatures of 9 at 0 are non-positive, but not all vanishing,
then there exists an infinite number of solutions u € H{ o(2) N C*(Q) for

]

Au+au = Jul” in D'(Q)
u=20 on 0f).
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We do not know if the negativity of the mean curvature at 0 is sufficient for the
above result, however it is a remarkably satisfactory once compared to what is
known in the nonsingular case and since —as mentioned above— we have no solution
when €2 is convex or star-shaped at 0.

3) All these results rely on blow-up analysis techniques where the limiting spaces
(i.e., on which the blown-up solutions of corresponding Euler-Lagrange equations
eventually live) play an important role. In the non-singular case, the limiting space
is R™ while in our framework, the limiting cases occur on half-spaces of the form
R™ = {z € R" /21 < 0}, where 1 denotes the first coordinate of a generic point z €
R™ in the canonical basis of R™. The above theorem is a corollary of a more powerful
result established below about the asymptotic behaviour of a family of solutions to
elliptic pde’s, which are not necessarily minimizing sequences. We actually study
families of solutions to related subcritical problems, and we completely describe
their asymptotic behaviour —potentially developing a singularity at zero— as we
approach the critical exponent.

More precisely, we say that a function is in C(Q) if it can be extended to a
C*—function in a open neighborhood of €, and consider a family (a.)cso € C*(Q)
and a function a € C*(Q) such that there exists an open subset & C R™ such
that a.,a can be extended to U by C'—functions that we still denote by a.,a. We
assume that they satisfy

Q CCU and lir%aezain cHu). (8)
Here is the main result of this paper.

Theorem 1.3. Let Q) be a smooth bounded oriented domain of R™, n > 3, such
that 0 € Q. Assume s € (0,2) and consider (ac)eso € C1(Q) such that (8) hold.
We let (pe)eso such that p. € [0,2* —2) for all e > 0 and lim._,g p = 0. We assume
that the principal curvatures of O at 0 are mon-positive but do not all vanish. We
consider a family of functions (ue¢)eso that is uniformly bounded in Hio(Q) and
satisfying

Aue + acue = Mue in D'(Q)
u. =0 on 0f).

1) The family (uc)eso is then pre-compact in the C'—topology. In particular,
there exists ug € Hio(ﬂ) such that, up to a subsequence, we have that lime_qgu. =
ug in C1(€).

2) Moreover, if the ue’s are nonnegative for all € > 0, then the same conclusion
holds under the sole hypothesis that the mean curvature of 02 at 0 is negative.

The proof of this last theorem uses the machinery developed in Druet-Hebey-
Robert [15] and is in the spirit of Druet [14], where the concentration analysis is
studied in the intricate Riemannian setting. The study of the asymptotic for elliptic
nonlinear pde’s was initiated by Atkinson-Peletier [1], see also Brézis-Peletier [7].
In the Riemannian context, the asymptotics have first been studied by Schoen [39]
and Hebey-Vaugon [32]. This tool turned out to be very powerful in the study of
best constant problems in Sobolev inequalities, see for instance Druet [12], Hebey-
Vaugon [32], [33] and Robert [37]). We also mention the study of the asymptotics
for solutions to nonlinear pde’s (Han [27], Hebey [29], Druet-Robert [16] and Robert
[36]). In the case of arbitrary large energies, the compactness issues become quite
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intricate, especially in the Riemannian context, see for instance the pioneer work of
Schoen [39]. We also refer to the recent work of Druet [14] and Marques [35]. One
can also find compactness results for fourth order equations in the work of Hebey-
Robert [30] and Hebey-Robert-Wen [31]. In a forthcoming paper [22], we tackle
similar questions for various critical equations involving a whole affine subspace of
singularities on the boundary.

The paper is organized as follows. In Section 2, we state general facts and two
lemmae that will be useful throughout the paper. In Section 3, we construct the
different scales of blow-up. In Sections 4 and 5, we prove strong pointwise estimates
for sequences of solutions to our problem. In Section 6, we use the Pohozaev identity
to describe precisely the asymptotics related to our problem and we prove theorem
1.3. Section 7 contains the proofs of Theorems 1.1 and 1.2. Finally, we give in the
Appendix a regularity result for solutions to a critical PDE, some useful properties
of the Green’s function and a symmetry property of solutions to some nonlinear
elliptic equations on the half-plane.

2. BASIC FACTS AND PRELIMINARY LEMMAE

Throughout the paper, 2 will be a smooth bounded domain of R™, n > 3, such
that 0 € 9. For s € (0,2), we write 2* = 2*(s) := 2(7?:25) and for each € > 0, we
consider p. € [0,2* — 2) such that

lim p. = 0. 9)

e—0

We let @ € C*(Q) and a family (a.)cso € C1(Q) such that (8) holds. For any € > 0,
we consider u. € Hf 4(€2) to be a solution to the system

2% —2—pe

Aue + AcUe = ‘UG‘TUE in DI(Q) (EE)
u. =0 on 0}

for all € > 0. Note that it follows from Proposition 8.1 of the Appendix that
ue € CH(Q) N C*(Q )\ {0})

for all § € (0, min{1,2* — s}). In addition, we assume that there exists A > 0 such
that

l[uellpz o) < A (10)

for all € > 0. It then follows from the weak compactness of the unit ball of H7 ,(€2)
that there exists ug € Hf z(2) such that

Ue — UQ (11)
weakly in H{ ((©2) when € — 0. Note that ug verifies

|UO|2*—2

————ug in D'().
jz]°

Aug + aug =
It follows from the Appendix that
ug € CH(Q) N C2(Q\ {0})

for all # € (0, min{1, 2*—s}). The following Proposition addresses the case when u.
is uniformly bounded in L*°. Note that here and in the sequel, all the convergence
results are up to the extraction of a subsequence.
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Proposition 2.1. Let Q be a smooth bounded domain of R™, n > 3, such that
0 € 990. Welet (ue), (ac) and (pe) such that (Ee), (8) and (9) hold. We assume that
there exists C > 0 such that |uc(z)] < C for all x € Q. Then up to a subsequence,
lim, o ue = ug in C1(Q), where ug is as in (11).

Proof: It follows from the proof of Proposition 8.1 of the Appendix that for any
0 € (0,min{1,2* — s}), there exists C' > 0 such that [uc[|c1,0q) < C for all € > 0.
The conclusion of the Proposition then follows. We refer to the Appendix for the
details. O

From now on, we assume that

lim fJue]| Lo () = +o00. (12)

Throughout the paper, we shall say that blow-up occurs whenever (12) holds. We
define

R"” = {z e R"/x; <0}
where x; is the first coordinate of a generic point of R™. This space will be the limit
space after blow-up. In the sequel of this section, we give some useful tools for the
blow-up analysis. We let yo € 0. Since 92 is smooth and yy € 01, there exist U, V'
open subsets of R™, there exists I an open intervall of R, there exists U’ an open
subset of R"~! such that 0 € U = I x U’ and yo € V. There exist p € C>(U,V)
and ¢ € C°°(U’) such that, up to rotating the coordinates if necessary,

i) @:U—Visa(C™ — diffeomorphism
)

(

(i ©(0) =yo
Em) Dop = Idgn
(

S

i) (U {1 < 0}) = o(U) " Q and (U N {1 = 0}) = o) A o0, 13)

v) (@1, y) =yo+ (21 + @o(y),y) for all (z1,y) e I xU' =U

(vi)  o(0) =0 and Vu(0) = 0.
Here D, denotes the differential of ¢ at x. This chart will be useful throughout
all the paper.

~

We prove two useful blow-up lemmae:

Lemma 2.1. We let Q be a smooth bounded domain of R™, n > 3. We assume
that 0 € Q2. We let (u.), (ac) and (pe) such that (E.), (8), (9) and (10) hold. We
let (Ye)eso € Q. Let
ve := [ue(ye)l "7 and B = JyelFue(y)] T
We assume that lim._gv. = 0. In particular, lim._q B = 0. We assume that
for any R > 0, there exists C(R) > 0 such that

ue(@)] < C(R)|ue(ye)| (14)
for all x € Brp,(ye) N and all € > 0. Then we have that

1— 52
Ye = 0 (Ve 2 72)

when € — 0. In particular, lim._gy. = 0.
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Proof of Lemma 2.1: We proceed by contradiction and assume that

|yl
hm

= +o0. (15)

where /. := 1/51 TTs for all € > 0. In particular, it follows from the definition of g,
and (15) that

lir% Be =0, lir%% = 400 and lim be = 0. (16)

€ =0 [yl
Case 1: We assume that there exists p > 0 such that
d(ye, 02)

fe
for all € > 0. For « € By,(0) and € > 0, we define

> 3p

o) = Ue(ye + Bex)
6( ) . ue(yé) '

Note that this is well defined since y. + Bex € €2 for all © € Bs,(0). It follows from
(14) that there exists C'(p) > 0 such that

|ve(z)| < C(p) (17)
for all € > 0 and all x € By,(0). As easily checked, we have that

_ |U6|2*_2_peve

Ave + ﬁ?ae (ye + 555[;)7}5 =

Ye Be T ®
lyel 7 Tyel
weakly in Bs,(0). Since (16) holds, we have that
Ave + B2ac(ye + Ber)ve = (1 + 0(1))‘U€|2*727PEUE (18)

o (B2,(0)). It follows from (17), (18)
and standard elliptic theory that there exists v € C(Bs,(0)) such that

weakly in Bs,(0), where lim .o o(1) = 0 in C}
Ve =V
in C},(B2,(0)) when € — 0. In particular,

v(0) = liII(lJ ve(0) =1 (19)
and v #Z 0. With a change of variables and the definition of 5., we get that

[y Y
anBys. v 121 |yel® B,(0) | e 4 Be |

lyel T Tyl
)T o2
> 7 / ——du.
€ B,(0) ‘ yel + Be

x
ly [Yel
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Using the equation (E.), (10), (15) and (16) and passing to the limit € — 0, we get

that
/ [v]?" dx = 0,
B,(0)

and then v = 0 in B,(0). A contradiction with (19). Then (15) does not hold in
Case 1.

Case 2: We assume that, up to a subsequence,

. d(ye, 09) _
ll_I)I(lJ T =0. (20)
In this case,

lim y. = yo € 0N.
e—0

Since yo € 9N, we let p : U — V as in (13), where U, V are open neighborhoods of
0 and yo respectively. We let @, = u, o ¢, which is defined on U N {z; < 0}. For
any ¢,7 = 1,...,n, we let g;; = (9, 0j¢), where (-,-) denotes the Euclidean scalar
product on R”, and we consider g as a metric on R". We let Ay, = —div,(V) the
Laplace-Beltrami operator with respect to the metric g. In our basis, we have that

Ay =—g" (0;; —TE o),
where g% = (g71);; are the coordinates of the inverse of the tensor g and the I‘fj’s

are the Christoffel symbols of the metric g. As easily checked, we have that

~ 2*_2_p6~
Ayiic + a. 0 pla) - e = o= e

el
weakly in U N {x1 < 0}. We let z. € 0N such that
|ze = ye| = d(ye, 09). (21)
We let g, z. € U such that
@(Je) = ye and p(Ze) = ze. (22)
It follows from the properties (13) of ¢ that
lim 7 = lim % = 0, (i) < 0 and (Z)1 =0. (23)

At last, we let

bile) i Lelie  fer)
Ue(Fe)
forallz € Uﬁ_fe N{z1 < 0}. With (23), we get that 7. is defined on Br(0)N{x1 < 0}
for all R > 0, as soon as ¢ is small enough. It follows from (14) that there exists

C’(R) > 0 such that

|0e(2)] < C'(R) (24)
for all € > 0 and all x € Bg(0) N {z1 < 0}. The function ¥, verifies
512" —2=pe g
Aj ~5+ 52 € ~e+ € ~e:|v€| °
S ==

[Yel

S
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weakly in Br(0) N {z1 < 0}. In this expression, g = g(Zc + Bcx) and Ay, is the
Laplace-Beltrami operator with respect to the metric g.. With (20), (21) and (22),
we get that

90(55 + ﬁex) = Ye + OR(1)567
for all x € Br(0) N {z; < 0} and all € > 0, where there exists Cr > 0 such that
|Or(1)| < Cg for all z € BR(0) N {z1 < 0}. With (16), we then get that

Lol + Bl
=0 |y€|
in C%(Bgr(0) N {z1 < 0}). It then follows that

=1

A e + B2ac 0 p(Ze + Bew)be = (1 + o(1))[0e|* ~27P<0
weakly in Br(0)N{z1 < 0}, where lim._,g0(1) = 0 in C°(Bgr(0)N{x1 < 0}). Since
¥ vanishes on Br(0) N {z; = 0} and (24) holds, it follows from standard elliptic
theory that there exists & € C'(Bg(0) N {z1 < 0}) such that

lim v, =
e—0

in CO(Bg (0) N {x1 < 0}). In particular,

2 =0on B%(O)ﬂ{xl = 0}. (25)
Moreover, it follows from (20), (21) and (22) that

~ ge B 26 . ge B 26

Ve | =—— ) =1and lim =—— =0.
( 6& ) € 65

In particular, ©(0) = 1. A contradiction with (25). Then (15) does not hold in Case

2.

In both cases, we have contradicted (15). This proves that y. = O(f.) when ¢ — 0,
which proves the Lemma. |

Lemma 2.2. We let Q) be a smooth bounded domain of R™, n > 3. We assume
that 0 € Q. We let (u.), (ac) and (pe) such that (E.), (8), (9) and (10) hold. We
let (Ve)eso and (Le)eso such that ve,be > 0 for all € > 0 and

_ _Pe
1-555

le = Ve and lim v, = 0.
e—0

Since 0 € 9Q, we let ¢ : U — V as in (13) with yo = 0, where U,V are open
neighborhoods of 0. We let

n—2
() == ve 2 uc o p(le)
forall x € % N{z1 <0} and all e > 0. We assume that either
(L1) for all R > 0, there exists C(R) > 0 such that

|ic(2)| < C(R)
for all x € Br(0) N {z1 <0}, or
(L2) for all R > § > 0, there exists C(R,d) > 0 such that

|ie(z)] < C(R,9)
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for all € (Bg(0) \ B5(0)) N{z1 < 0}.
Then there exists i € Hf (R™) N CY(R™) such that

~|12* -9 ~
At = il . % in D'(R™)
||
and Jp—
U CL.(R") if (L1) holds
lim tie = @ in { CU®T\{0}) if (L2) holds

Proof of Lemma 2.2: Let n € C*°(R™). As easily checked, we have that

N, € Hio(Rﬁ)
for all € > 0 small enough, and

n=2
V(nie)(z) = wcVn +nleve > Do o)p[(Vue)(@(lex))],
for all € > 0 and all x € R™. In this expression, D,y is the differential of the
function ¢ at x. We get that

/ IV (i) ? di < 2 / V22 da
R™ R™

otz [ IDiearel(Tu (L)) da.
R™ NSupp 7
With Holder’s inequality and a change of variables, we get that

n—2

2
[owomopa sz ([ warar) ([ 2 2 o
RZ R™ R™ NSUpp Vn
Ye

n—2
407 ( > / |Vue?(p(lex)) da
Ce R™NSUpp 7

< 2/|Valzliac]? 2

2 (Supp V)
Pe(n—2)
Lo F / V2 da (26)
Q

With another change of variables, we get that

(n—2)pe
/ V)P de < Ov T Ol el sy

pe(n—2)

+Cve > 2 |Vu|* d (27)
Q

for all € > 0, where C is independant of e. With (10), Sobolev’s inequality and
since vP< <1 for all € > 0 small enough, we get with (27) that

||77ﬂe”H1210(R2) =0(1)
when € — 0. It then follows that there exists @, € Hfo(R™) such that, up to a
subsequence,
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Nhe — Uy
weakly in H7 (R™) when € — 0. We let 7, € C°(R™) such that g, = 1 in B1(0)
and 7, = 0 in R™ \ B3(0). For any R € N*, we let nr(z) = ni(%) for all z € R™.
With a diagonal argument, we can assume that, up to a subsequence, for any R > 0,
there exists @r € Hf o(R™) such that

NRUe = UR
weakly in Hf j(R™) when e — 0. Letting e — 0 in (27), with (10), Sobolev’s
inequality and since vP< <1 for all € > 0 small enough, we get that there exists a
constant C' > 0 independant of R such that

/ \Vig|?de < C||Vnr|? +C
R™

for all R > 0. Since ||[Vnr||2 = ||[Vm|2 for all R > 0, we get that there exists
C > 0 independant of R such that

/ |V’(~1,R|2d$§0
R™

for all R > 0. It then follows that there exists & € Hf 4(R™) such that 4r — @
weakly in Hf ;(R™) when R — +o00. As easily checked, we then obtain that @, = na
(we omit the proof of this fact. It is straightforward).

For any 4,7 = 1,...,n, we let (§e)ij = (ip(lex), 0j0(Lcx)), where (-,-) denotes the
Euclidean scalar product on R™. We consider g. as a metric on R™. We let

Ag. = =3 (9 = T35(G)k)
where §¥ := (g-!)i; are the coordinates of the inverse of the tensor g. and the
Ffj (ge)’s are the Christoffel symbols of the metric ge. With a change of variable,
equation (F.) rewrites as

- 2 _ |prud* "2 Peppic .,
Ag. (nrte)+lacop(ler)nrie = ’@(f T in D'(Br(0)N{z1 < 0}) (28)

€

for all € > 0. Passing to the weak limit ¢ — 0 and then R — +oc0 in this equation,
we get that

uim
|z[*

Since @ € H1270(R’_1), it follows from Proposition 8.1 of the Appendix that @ €
CHY(R™) for all § € (0, min{1,2* — s}).

We deal with case (L1). Since s € (0,2), (L1) and (28) hold and %, = 0 on {x1 = 0},
it follows from arguments similar to the ones developed in the Appendix that for
any 6 € (0, min{1,2* — s}) and any R > 0, there exists C(, R) > 0 independant of
€ > 0 small such that

>

At = in D'(R").

ltellcro(Bro)n{zi<0y) < C(0, R)
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for all € > 0 small. It then follows from Ascoli’s theorem that for any 6 €
(0, min{1,2* — s}),

lim ue = u

e—0
in Cllo’g (R™). The proof proceeds similarly in Case (L2). This ends the proof of the
Lemma. O

3. CONSTRUCTION AND EXHAUSTION OF THE BLOW-UP SCALES
This section is devoted to the proof of the following proposition:

Proposition 3.1. We let Q2 be a smooth bounded domain of R™, n > 3. We assume
that 0 € Q2. We let (u.), (ac) and (pe) such that (E.), (8), (9) and (10) hold. We
assume that blow-up occurs, that is

lim fJue]| o< () = +o0.
Then there exists N € N*, there exists N families of points (fie.i)e>0 such that we
have that
(A1) lime_oue = ug in C2 (Q\ {0}) where ug is as in (11),
(A2) 0 < pre1 < ... < phe,n for all e >0,
(A3)

HII(I)/J,E)N =0 and li]f%M =400 foralli=1..N —1
€— €— ,LLe,i

(A4) For alli = 1...N, there exists i; € Hi o(R™) N C*(R™) \ {0} such that

and

ol
in Cp..

(R™ \ {0}), where

n-2
Te,i(7) == Pei ue(p(ke,iv))
1—58< . - -
for all x € kL N{x1 < 0} and ke; = Hei =2 Moreover, lime_.otle1 = U1 in
Clloc(@)'

(A5)

n—2 Pe
lim lim su 2|77 Jue(x) —up(z)|' T2 =0
R ¢ O\I\ZRIk)e,N| | |ue(z) o(z)]

(A6) For any 6 >0 and any i = 1...N — 1, we have that

—1 1 3
. . n—2 n-2 T
lim lim sup lz| 2 |uc(x) — p, i1 Wit (90 ( )) ’ =0.
R—+00 €20 6k, 1> [z[> Rhe,q ’ kie.it1

(AT) For any i € {1,..., N}, there exists o; € (0, 1] such that
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: Pe _ .
fng 5 = o

The proof of this proposition proceeds in seven steps.

Step 3.1: We let .1 € Q and pi¢,1, ke,1 > 0 such that

_n=2 1— P
max el = JucCrn)| = ey ™ and ey = iy (29)

We claim that
|ze1| = O(ke,1) (30)

when € — 0, and in particular that lim._,g z. = 0. Indeed, we use Lemma 2.1 with
Ye = Te1, Ve = fe,1 and C(R) = 1. We then immediately get that |z. 1| = O(kc1)
when ¢ — 0.

From now on, we let ¢ : U — V as in (13) with yo = 0 and U,V are open
neighborhoods of 0 in R™. We then let

Te,1 = (P(aea b6)7 (31)
where a, € {z; <0}, b € R""! and (ac,b.) € U. Note that lim_q(a.,b.) = (0,0).

Step 3.2: We claim that

d(ze1,00) = (1 +0(1))|ae| = O(ke ) (32)
where lim._,g o(1) = 0.
Proof of the Claim: Indeed, since 0 € 99, we get with (30) that

d(xe1,00) < |xe1 — 0] = O(ke,1) (33)
when € — 0. We first remark that

d(we,la BQ) § d(me,la (p(oa bé)) = |a’€|'

We let 4. € R"™! such that (0,7.) € UnN {z; = 0} and Y. = ¢(0,7.) € 992 such
that d(ze1,00) = |x1 — Ye|. Since d(ze,1,09) < |ae|, we get that

be —ve = O(lacl),
when ¢ — 0. Since Vip(0) = 0 (where ¢ is as in (13)), we get that

©o(be) = o(ve) + 0o(|be = Yel) = wo(7e) + o(lae|)
when ¢ — 0. Moreover,

d(‘re,la BQ) = |me,1 - Yve|
= |(ac + wo(be) — wo(7e), be —7e)l
= [(ac+o(ac),be — )| < lac|

when € — 0. It then follows that b — v = o(|ac|) and d(z1,0) = (1 + o(1))|ac]
when e — 0. This prove (32). O

The classical Hardy-Sobolev inequality asserts that there exists C' > 0 such that
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2
*

Jul* : 2
——dz <C [Vu|® dz (34)
R |7 R
for all u € Hf j(R™). We define

Jgn |Vul? dz
ws(R™) :=inf —

(35)

w2t g\ %
(fJRg [z]° dx)
where the infimum is taken over functions u € Hf o(R™)\ {0}. The existence of
ws(R™) > 0 is a consequence of (34).

Step 3.3: The construction of the (i ;)’s proceeds by induction. This step is the
initiation.
Lemma 3.1. We let L,
te(z) = ,Ue,T e 0 p(ke17)
foralle >0 and all x € %ﬂ{wl < 0}. Then, there exists iy € HE o(R™)NC'(R™)
such that L
(B].) limeﬂo ’l~1,€11 = ’ELl m C’lloc(R’j),
(B2)

(B3)
/ Va|? de > pg(R") 2.
R™

Moreover, there exists oy € (0, 1] such that lime_¢ ,Mffl =qj.

Proof of Lemma 3.1: Indeed, since |t i(z)] < 1 for all z € % N {z; < 0},

hypothesis (L1) of Lemma 2.2 is satisfied and it follows from Lemma 2.2 that points
(B1) and (B2) hold. We let \e = —2= > 0 and 0. = kZZ—El € R, where a, b,
are defined in (31). It follows from Ste]’ps 3.1 and 3.2 that there exists Ao > 0 and
0o € R"! such that lim._o(\c, 0) = (Ao, 00). It then follows from the definition
of t¢ 1 and (29) that

[te,1(—Ae, be)| = 1.
Passing to the limit € — 0 and using point (B1), we get that |t@1(—Xo,6p)] = 1. In
particular @; # 0 and Ao # 0. Multiplying (B2) by @; and integrating by parts

over R™, we get that
2*
/ |Viiy|? do :/ [ul dzx.
R" e |T[°

Using the Hardy-Sobolev inequality (35) and that @; # 0, we get (B3). At last,
with (10), (27) and Sobolev’s inequality, we get that for any n € C°(R™), there
exists C' > 0 such that

(n—2)pe
[ WP < cn
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for all € > 0. Letting € — 0 and using that 41 # 0, we get that lim._.o Mfﬁ >0. O
Step 3.4: We claim that there exists C' > 0 such that

2] " Jue(a) 7T < © (36)
for all e > 0 and all z € Q.
Proof of the Claim: We argue by contradiction and we let (y.)eso € Q such that

sup [2]°7 Jue (2)]' T = [y T Juc(yo)|' T — +oo (37)
zEQ
when ¢ — 0. We let
2 1— P
Ve :=|ue(ye)| 72 and £e :==ve 2 72
for all € > 0. It follows from (37) that
lim luel =400 and limv, = 0. (38)
e—0 ée e—0
We let
s 2+4pe—2*
ﬁe = |ye|2 |ue(ye)|
It follows from (37) that
im be =0. (39)
=0 [ye|

We let R > 0. We let © € Bgr(0) such that y. + Bz € Q. It follows from the
definition (37) of y. that

n—2 n—2
[Ye + Be| = ue(ye + Be)| < |yel = |ue(ye)l,
and then

n—2

<|ue<ye+5€x>|>”*’"2< L)
|ue(ye)l N 1_I§Z\R

for all € > 0 and all x € Br(0) such that y. + Gz € Q. With (39), we get that
there exists e(R) > 0 such that

|ue(ye + Bew)| < 2Jue(ye)l
for all z € Br(0) such that y. + Sz € Q and all 0 < € < €(R). It then follows from
Lemma 2.1 that y. = O(f.) when € — 0. A contradiction with (38). This proves
(36). O

As a remark, it follows from (E.), (11), (36) and standard elliptic theory that
lir% ue = up in C7 (2 {0}). (40)

We let p € N*. We consider the following assertions:
(C1) 0 < e < oo < fep
(C2)

111%;%@ =0 and lim 297 — 400 for all i = l.p—-1

e=0 fheg
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(C3) For all i = 1...p, there exists @; € Hf o(R™) N C*(R™) \ {0} such that

o wl P o g2
Au; = TR in D'(R™), |V de > ps(R™ )25 =2
R™
and
lim ’(7,671' = ’L~Li

e—0

in C}(R™ \ {0}), where

n—2
Ue,i(w) = pre ] uc(@(keiw))

1P
for all z € 7= N {z1 <0} and ke :=p ;> °.

(C4) For any i € {1, ..., p}, there exists a; € (0,1] such that

: Pe __ .
iyt = o

We say that H,, holds if there exists p families of points (fte;)e>0, ¢ = 1,...,p such
that (te,1)e>0 is as in (29) and points (C1), (C2) (C3) and (C4) hold. Note that it
follows from Step 3.4 that H; holds with the improvement that the convergence in
(C3) holds in C} _(R™).

Step 3.5: We prove the following proposition:

Proposition 3.2. Let Q be a smooth bounded domain of R™, n > 3, such that

0 € 090. We let (uc), (ae) and (pe) such that (Ee), (8), (9) and (10) hold. Let
p > 1. We assume that H, holds. Then either

lim lim sup |$|%2|ue($) —uo(gg)|1*2—f%2 -0
R—400 €e—0 |&|>Rke ,
or Hp41 holds.

Proof of Proposition 3.2: We assume that
lim lim sup |x|¥|u€(x) —up(z)['TF= £0.
R—+00 €e—0 |z|> Rke.p
It then follows that there exists a family (y¢)eso € € such that
: |y€| _ . n=2 1— e
lim ~— = 400 and hrr(l) lyel = |ue(ye) —uo(ye)| "2 =a > 0. (41)
e—

e—0 €,p

We claim that lim. gy = 0. Otherwise, it follows from (40) that lim._o |uc(ye) —
uo(ye)| = 0. A contradiction.

Since ug € C°(Q) and lim, o y. = 0, we get that

lim e = e ()|~ 77 = o> 0. (42)
In particular, lim¢_,q |uc(yc)| = +00. We let

__2_ 1— 8=
He,p+1 = |u€(ye)| =2 and k¢ py1 = Me,pj—l 2

As a consequence, lim¢_.g fte p+1 = 0. We define
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n-2
U pt1() = Me,127+1u6(90(k67p+1$))

for all x € % N{z1 < 0}. It follows from (36) that

+1
n—2 _ pe
(ke )| e (ko)) 7757 < €
for all # € —Y— N {21 < 0}. With the definition of 7,1 and the properties (13)

ke pt+1

of , we get that there exists C' > 0 such that

2] e pra (2)) T <

for all z € —Y— N {x; < 0}. It then follows that hypothesis (L2) of Lemma 2.2

ke, pt1
is satisfied. It then follows from Lemma 2.2 that there exists t,41 € H7 o(R™) N

C*(R™) such that

~ 2F -2~
- Up+1 Up+1 .
Auerl = |;D||x—|sp m D/(Rﬁ),

and

lim ﬂ57p+1 = ﬂ57p+1 (43)
e—0

in C}_(R™ \ {0}). It follows from (42) and the definition of k41 that

lim ﬂ =a>0.
e—0 ké,erl

We let g € {z1 < 0} such that y. = p(ke pt17). It then exists §io € R”™ such that
lime_,0 Je = go # 0. It then follows from (43) that

|ap+l(90)| = 21_1% |a67p+1@6)| =1,

and then ,41 # 0. With arguments similar to the ones developed in the proof of
Lemma 3.1, we then get that

/ Vit dz > iy (R )22
R™

and there exists a1 € (0,1] such that lime .o ¢, = apt1. Moreover, it follows
from (42), (41) and the definition of e 41 that

lim HePtt _ +oo and lim fie py1 = 0.
e—0 He,p e—0
As easily checked, the families (e ;)es0, ¢ € {1,...,p + 1} satisfy Hp11. O

Step 3.6: Next proposition is the equivalent of Proposition 3.2 at smaller scales.

Proposition 3.3. Let Q be a smooth bounded domain of R™, n > 3, such that
0 € 00. We let (uc), (aec) and (pe) such that (Ee), (8), (9) and (10) hold. Let
p > 1. We assume that H, holds. Then either for anyi € {1,...,p—1} and for any
4>0
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n—2
lim hr% sup |z ™2
n _
——+00 €— I€B5ké,i+l(0)\BRké’i(0)

or Hp41 holds.

_n=2 o (x)
ue(w) — ,Ue,i.fl Ui+1 <

ke it1

Proof of Proposition 3.3: We assume that there exist ¢ < p —1, § > 0 such that

Pe

_n=2 Nz RELE
Ue(x) = pe i fy Uiy (S‘;ﬂ il)> ’ > 0.
€,

. . n—2
lim hH(l) sup |x| 2
R p—
oo e 16B5k511+1 (0)\BR7€511(0)

It then follows that there exists a family (y¢)eso € € such that

lin% |ky€| = o0, [ye| < Oke g1 for all € >0 (44)
. n—2 _n=2 ~ -1 € 172?52

lim |ye|T ue(ye) — M if1 Ui+1 (M) =a>0. (45)
€0 ’ keit1

We let g € R™ such that y. = @(keit17c). It follows from (44) that |g.| < 26 for
all € > 0. We claim that lim._,o §. = 0. Indeed, we rewrite (45) as

. ~ =2 ~ - ~ — pe_

21—1%|ye| 2 iiei1(fe) — @ira(f)] T2 = a > 0.
A contradiction with point (C3) of H,, in case e #» 0 when € — 0. Since %41 €
CY(R™), we then get that

—n2 o ' (ye)
Heith Bit1 < -

ke it1
when € — 0. We rewrite (45) as

1P e e
_0< Ye > = o(1)

ke iv1

n—2

|ye| =

lim [ye] 2" Juc(ye)['~ 2= = a > 0. (46)
We let
— 2 1—gPs
Ve :=|uc(ye)| "2 and b :=ve ¥ 72
We define

n—2
te(r) == ve ™ ue(p(lex))
for all z € % N{z1 < 0}. It follows from (36) that

lp(le)| "7 Juc(p(Lex)) |72 < C

for all z € £ N {2y < 0}. With the definition of @ and the properties (13) of ¢,
we get that there exists C' > 0 such that

o] *F Jie(a)| "= < C
for all z € % N {z; < 0}. Tt then follows that hypothesis (L2) of Lemma 2.2 is
satisfied. It then follows from Lemma 2.2 that there exists @ € Hf o(R™) N C*(R™)

such that
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|2*—2~

A= T 0 e,
ER
and
lim @, = (47)

in CL_(R™ \ {0}). It follows from (46) and the definition of £, that

lim vl
e—0 fe

We let g, € {x; < 0} such that y. = ©(fy.). It then exists 7o € R”™ such that
lime—0 e = 5o # 0. It follows from (47) and the definition of @, and g, that

=a>0.

()| = lim |i1c(5.)| = 1.
and then @ # 0. With arguments similar to the ones developed in the proof of
Lemma 3.1, we then get that

[ 19> @)
R™

and there exists € (0, 1] such that lim._,g vP< = a. Moreover, it follows from (46),
(44) and the definition of v, that

Ve

. . Mejit1
lim = +o00 and lim ———
e—0 e i e—0 Ve

:+OO

As easily checked, the families (fe1),. (fei)s (Ve), (Beyit1)yeers (fe,N)e>0 satisfy
Hpt1. ]

Step 3.7: This last Step is the proof of Proposition 3.1.

Proposition 3.4. Let Q be a smooth bounded domain of R™, n > 3, such that
0 € 90. We let (ue), (ac) and (pe) such that (E.), (8), (9) and (10) hold. We let
No = max{p/ H, holds}. Then Ny < +occ and the conclusion of Proposition 3.1
holds with N = Nj.

Proof of Proposition 3.4: Indeed, assume that H, holds. Let J, R > 0. Since
tei = O(pieiq1) for all i € {1,..., N — 1}, we then get with a change of variable and
the definition of @, ; (see (C3)) that

N
/|Vu€|2dx > / |Vu|? do
Q i=1 Y #(Bri, ; (0\Bsx, ,; (0))
N 77.72p
e Va2, dv,..
; ’ Br(0)\Bs(0) ge
N
> / |Viie, |2, dvg, ,
; Br(0\B5(0) g e

where g.; is the metric such that (ge;)qr = (9g¢(ke i), Orp(kex)) for all ¢, r €
{1, ...,p}. Passing to the limit ¢ — 0 and using point (C3) of H,, we get that
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/ |V |* dov > pus(Rﬁ)% +0(1)
Q
when e — 0. With (10), we get that there exists C' > 0 such that
p < A2 (RM) 7=
It then follows that Ny < +oo exists.
We let families (fe,1)e>0,--5 (fe,Ng)e>0 such that Hy, holds. We argue by con-
tradiction and assume that the conclusion of Proposition 3.1 does not hold with
N = Ny. Assertions (A1), (A2), (A3) (A4) and (A7) hold. Assume that (A5) or

(A6) does not hold. It then follows from Propositions 3.2 and 3.3 that H 1 holds.
A contradiction with the choice of N = Ny, and the proposition is proved. |

4. STRONG POINTWISE ESTIMATES, PART 1

The objective of this section is the proof of the following strong pointwise esti-
mate:

Proposition 4.1. Let Q be a smooth bounded domain of R™, n > 3. We let
s € (0,2). We let (pe)eso such that pe € [0,2* —2) for all € > 0 and (9) holds.
We consider (uc)eso € H7 o(Q) such that (8), (Ec) and (10) hold. We assume that
blow-up occurs, that is

L [Juel| oo () = 00

We let pie 1, ..., e, N as in Proposition 3.1. Then, there exists C > 0 such that

2
/J’e,i|x|

[ue(z)| < C Y ———r
=1 (2 + |2P)?

+ Clz| (48)

for all e >0 and all x € Q.

The proof of this estimate goes through seven steps. Welet s € (0,2). We let (pe)eso
such that p, € [0,2* —2) for all € > 0 and (9) holds. We consider (uc)cs0 € Hf o(€2)
that satisfies the hypothesis of Proposition 4.1. Welet pc 1, ..., fte, v as in Proposition
3.1.

Step 4.1: We claim that for any v € (0,1) and any R > 0, there exists C(v, R) > 0
such that

}Lﬁ&y(nil)d(-r, 10
|x|n(1—u)

|ue(z)| < C(v, R) - + d(x, 00)' (49)

for all 2 € O\ Bgg, ,(0) and all € > 0.

Proof of the Claim: Since A is coercive on €2, we let G be the Green’s function for
A in Q with Dirichlet boundary condition. We let

H(z) = -0,G(z,0)
for all x € Q\ {0}. Here v denotes the outward normal vector at 9. It follows
from Theorem 9.2 of the Appendix that H € C%(Q\ {0}), that

AH =0 (50)
in  and that there exist d1,Cy > 0 such that
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d(z, 00)

Cylz|™

Chd(z, 09)

<H(@) < 29 (51)

and
|VH(z)| 1 1
>

>
H(z) — Cid(z,00Q) — Ci|z]

(52)

for all € QN Bag, (0).

Since A is coercive, we let A\; > 0 be the first eigenvalue of A on 2, and we let
1 € C%(Q) be the unique eigenfunction such that

A= iy inQ

P >0 in Q
=0 on 99
Jou?de=1

It follows from standard elliptic theory and Hopf’s maximum principle that there
exists C%, d2 > 0 such that

1

z,00) < Y(x) < Chd(x,00Q) and ar < |Vy(z)] < C%
2

for all x € QN Bas, (0). Consequently, there exists Co > 0 such that

Vol . 1 1
Y(x) T Cad(x,00) — Calz|

1
—d
"

Oid(wﬁQ) < P(z) < Cad(x,00) and (53)
2

for all x € QN Bas, (0). We let the operator

2* —2—p.
a0
|z|

Step 4.1.1: We claim that there exist dg > 0 and Ry > 0 such that for any v € (0,1)
and any R > Ry, § € (0,dp), we have that

L.H™" >0, and L'~ >0 (54)
for all z € QN Bs(0) \ Br, 5 (0) and for all € > 0 sufficiently small. Indeed, with
(50), we get that

L.H'-" |VH|? |ue(z)|2 —27Pe
—is @) = ac(@) + vl —v)—m—(2) - P (55)
for all z € Q\ {0} and all € > 0. We let 0 < 9 < min{dy, 2} such that
262 supg, |a.| < %
(56)

241 52—s 2% _9 v(l—v)
2 60 ||u0HL°°(Q) < 4-max{C?,C3}

for all e > 0. This choice is possible thanks to (8). It follows from point (A5) of
Proposition 3.1 that there exists Ry > 0 such that for any R > Ry, we have that

2| " Jue (z) — uo(z)|"~ = < ( v(1—v) })2*12

27 +1 2 (2
22"+l max{C%, Cj

for all z € O\ Bgy, , (0) and all € > 0. We then get that
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P (@) 2 < 9T T (@) — o)
_'_22*717;05 I|275|UO($)|2*727PE

. v(l—v)

4 -max{C?,C3}

_’_22*—1—;06 52—5 HUO ||i*oo_(29—)176

|

271’

IN

for all z € Q\ Bgg, , (0) and all € > 0. We get with the choice (56) of &y that for
any 0 € (0,dp) and all R > Ry

s o v(l—v) ‘1o .
I e (¢ - AN L )
v(l—v)

2 -max{C%,C3}

for all z € (B5(0) \ Bk,  (0)) N2 and all € > 0 small enough. With (55) and (56),
we get that

L .HY™" v(l —v) v(l—v)
W= o e Some
v(1 —v) = 2CF|z[*|ac(x)|
- 2C71a]? =Y

for all z € (Bs(0) \ Brk. (0)) N and all € > 0 small enough. We deal with the
second inequality of (54). We have that

Ly~
1/}171)
for all z € Q. With (53) and (56) we get that
Lez/Ji_” (2) > v(l—v)— 26’22|a€(:6)|262 +2(1 — )\ |z|*C3 -
Pty 203 |=[?
for all z € (Bs(0) \ Brk. 5 (0)) N and all € > 0. This proves the last inequality of
(54).

Step 4.1.2: Tt follows from point (A4) of Proposition 3.1 that there exists C1(R) > 0
such that

V[
1/}2

I G

|[*

(2) = ac(z) + (1 =)\ +v(1 - ) ()

0

uc(x)] < C1(R) e,y (x, 09) (57)
for all z € QN OBRrk, ,(0) and all € > 0. It follows from point (A1) of Proposition
3.1 that there exists C(d) > 0 such that

|uc(2)| < C(0)d(z, 092) (58)
for all x € QN 0B;s(0) and all € > 0. We let

Der5 = (Bs(0) \ Bri, x(0)) N Q.
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We let
1—v pn—(n—1) —EE A (e
ac =20 (R)CI VR (Vg BN
and
Be := 26”02(5)0217”,
and

() = acH 77 (2) + B ()
for all x € D. s and all € > 0. Here, ay is as in point (A7) of Proposition 3.1.
We claim that
|ue(z)] < @e(x) (59)
for all € > 0 and all x € 9D, g s. Indeed, with inequalities (51) and (57), we get
that for any € Q N IBRrg,  (0),

n—(n—1v
v(n—1)—n v n—nv - * =
@) _ mey ", 09)|al v
acH(z)t=v — n—(n—1)v e = e =
2R o 200y
when € — 0 with point (A7) of Proposition 3.1. Similarly, we have with (53) and
(58) that

Pe

luc(x)| _ d(z,00)”
<
Beyp(z)t—v = 20v
for all x € QN 9B5(0) and all € > 0. On 9NN (B5(0) \ Brk, 5 (0)), we clearly have
Ye(x) > |ue(x)] = 0. As easily checked, these assertions prove (59).

<1

Step 4.1.3: We claim that L. verifies the following comparison maximum: if ¢ €
C?(D¢ rs)NC%De gs), then

{ LE</) > 0 in De,R,é

S0
0 >0 on D, p.s }:> @ > 0in D¢ Rs.

Indeed, we let Uy be an open subset of R™ such that  CC Up. Since the operator
A is coercive in Uy (with boundary Dirichlet condition), we let G € C?(Uy x Uy \
{(z,z)/x € Up}) be the Green’s function for A with Dirichlet condition in Uy. In
other words, G satisfies
AG(z,-) = 6,

weakly in D(Up). For the existence, we refer to Theorem 9.1 of Appendix B.
Moreover, since 0 € Uy is in the interior of the domain, there exists 50 > 0 and
Cp > 0 such that

and _

[VG(0,x)]| - Cy
G0,z) |z
for all € > 0 and all x € B, (0) \ {0}. The proof of these estimates goes as in the
proof of points (G9) and (G10) of Theorem 9.2. We refer to [15] for the details.
With the same techniques as in Step 4.1.1, we get that for R > 0 large enough and

0 > 0 small enough, then

GV >0and L.G'V >0
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in D, g for all € > 0. It then follows from [5] that L. verifies the above mentioned
comparison principle.

Step 4.1.4: Tt follows from (54) and (59) that

Le‘pe > 0= Leu in De,R,6

Pe = 0= ue on 8DE,R,6
Le<ﬂe > 0= _Leue in DE,R,(Y
Ye > 0= —u, on 0D, g

It follows from the above comparison principle that

uc(2)] < pe()
for all x € D, gs. With (51), we then get that (49) holds on D, rs = (Bs(0) \
Bri. v (0)) N for R large and ¢ small. It follows from this last assertion, (51) and
points (A1) and (A4) of Proposition 3.1 that (49) holds on Q\ Bgy,  (0) for all
R>0. O

Step 4.2: Leti € {1,..., N—1}. We claim that for any v € (0,1) and any R, p > 0,
there exists C'(v, R, p) > 0 such that

i7"V, 00) 7
|’LLE(CC)| SO(V7R7P) :

|x|n(17u)

+ ol d(e, 39)1“> (60)

for all « € Bgy, ., (0) \ Bk, (0) and all € > 0.

Proof of the Claim: We let i € {1,..., N — 1}. We follow the lines of the proof of
Step 4.1. We let H and v as in Step 4.1. Recall that we then get that there exists
61 > 0 and C7 > 0 such that

d(z, 09) Cyd(z,00)
— < < ' 7 61
Gilapr =110 = oy
" V(@)
VH(x 1 1
> > 2
) = Crd(z,09) = Cila] (62)
for all € Bas, (0) \ {0}. Moreover there exists Cq, d2 > 0 such that ¢ verifies
1 V()] 1
—d(x,00) < YP(x) < Cad(xz,00) and > 63

for all € QN Bas, (0). We let the operator
2* —2—p.
e (o )
||

Step 4.2.1: We claim that there exist pp > 0 and Rg > 0 such that for any v € (0, 1)
and any R > Rg, p € (0, p0), we have that

LH™ >0and L™ >0 (64)

for all z € QN (Bpk,,,,(0) \ Brk.,(0)) and for all € > 0 sufficiently small. Indeed,
as in Step 4.1, we get that
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L.H™Y |VH|? |ue(z)|2 —27Pe
Hi-v (I) = G’E(‘r) + V(l - V) H2 (CC) - |(E|S (65)
for all z € Q\ {0} and all € > 0. We let 0 < py < 1 such that
22 +l I/(]‘ — V) (66)

0 sl Gy oy < max{C%, C3}

for all € > 0. It follows from point (A6) of Proposition 3.1 that there exists Ro > 0
such that for any R > Ry

n—2 n=-2 (pfl €T
#ute) T (52)

| | n
T
ke,i+1

e L B v(1 - v) 73
— \ 22"t max{C%,C?}

for all 2 € QN (By, ., (0) \ Brk.,(0)) and all € > 0. We then get that

22~ [ue () 2P

* n—2 sp—l(x) 2*727;06
< 2T ) = i (52
’ ke iyt
*2 2% _9).(1— —Pe_
2771 Pl ou ez+1 ( i) sup |ai-|-1|2*_2_p6

Bz (0)NR™

- v(l-v) 2% —1— |z| e 2*—2—
< 2 Pe 2 DPe i oo Pe "
- 4-max{C},C3} * ke it1 I +1”L (B2(0)NR™)

for all z € QN (By, .., (0) \ Brk,,(0)) and all € > 0. We then get with the choice
(66) of po that for any p € (0, pp) and all R > Ry

. . o v(l—v) « s
|27 |ue ()| 2P < —4.max{0127022}+22 o5 i 1y 0y + (D)
v(l—v)

2 -max{C%,C3}

for all # € (B, .,,(0) \ Brk.,(0)) NQ and all € > 0 small enough. Since (8) holds,
we get with (65) that

L .H™Y v(l—v) v(l —v)
> - _
a2 GEp T " e
1- 2|z|*C%a.
> U V)+2\x\ fac(@) _
207 [z

for all z € QN (Bpk. .., (0) \ Brk.,(0)) and all € > 0 small enough. The proof of
the second inequality of (64) goes similarly (see Step 4.1 for details). This proves
(64).

Step 4.2.2: Tt follows from point (A4) of Proposition 3.1 that there exists C;(R) > 0
and Cy(p) such that
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lue(z)| < C4 (R)M;l%d(gc7 0Q)  for all z € QN IBgk. ,(0)

luc(z)| < Calp)p, fyd(z,02)  for all z € QN OB, ., (0).

We let o
D57R7P = (Bpke,i+1 (O) \ BRké,i (O)) naQ.
We let
1—v pn—v(n—1) _% 2—v(n—1)

ae =201 (R)CLI VR V(g 2,

and )
—v v T oF—3 —o5tV
Be = 202(P)021 pla T e RAR

and

Pe(w) 1= aeHl_V(x) + ﬁewl_u(x)
for all z € D, g s and all € > 0. Here, the o;’s are as in Point (A7) of Proposition
3.1. Similarly to what was done in Step 4.1, we then get that

|ue(2)] < @e(x) (67)
for all € > 0 and all z € 0D, g ,. The operator L. verifies the comparison principle
on D¢ g, as in Step 4.1.3. It then follows that

[ue(@)| < @e()
for all z € D, g ,. With (61), we then get that (60) holds on D¢ g , for R large and
p small. It follows from this last assertion and point (A4) of Proposition 3.1 that
(60) holds on (Byk, ., (0) \ Brk,,(0)) N for all R, p > 0. O

Step 4.3: As easily checked, it follows from (49), (60) and Proposition 3.1 that for
any v € (0,1), there exists C,, > 0 such that

(n 1)V| |1 v
lue(z)] < Cy Z
i=1 (p’ez +| | )
for all z € Q and all € > 0. Note that we have used that d(z,0) < |z — 0| = ||
for all z € Q. We let G be the Green’s function of A on Q with Dirichlet boundary
condition. It follows from Green’s representation formula and (68) that

oy + Colal™ (68)

uc(z)] =

mam(W@W*zmqm—%@mwodﬁ (69)

Q |yl

2* —1—p.
C’/Gwy (%—i—l) dy

—(n— 1)u| |1 v

/'l’éz
d
Z/ i (2, +1yP) F !

+C, [ Gl (1007 1) ay (70)

IN

2* —1—pe

IN

Step 4.4: We claim that there exists C' > 0 such that

| G (=07 1) ay < Clal ()
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Proof of the Claim: Indeed, we let 1. € HY 3(€2) (1 < p < Z) such that

Awe = |y|(1_’/)(2*_1_pe)_s + 1 in D/(Q)
Here, HY ((£2) denote the completion of C2°(Q2) for the norm || - || := ||V - [|,,. Since

€ (0,2), it follows from standard elliptic theory that for v > 0 small, 1. € C*(Q)
and that there exists C' > 0 such that

el < C.
Since 1.(0) = 0, we get that
[¢e(2)| < Clz|

for all z € Q. Moreover, since s € (0, 2), we get with Green’s representation formula
that

vile) = [ Gl (0 1) ay
Q
for all z € Q and all € > 0. Inequation (71) then follows. O
Step 4.5: We let ¢ € {1,..., N}. We claim that there exists C' > 0 such that

(n—v, 11_, 2" —1-pe
/ G(z,y) u“ Iyl ay
s (1—v)
o W\ (2 +1y?)
< C% (72)
(:u’e,i + |‘T| ) :

for all € Q such that |z| > pe ;.

Proof of the Claim: Indeed, with point (G6) of Theorem 9.1 on the Green’s function,
we get that

2% —1—pe
1)
Gy [ nii " Tl .
|y|s (1—v) Y
e (12, + lyf2) *
2* —1—pe
—(n=1v, 11,
< O/ |%1|—1 s ME . |:Z|(17u) dy
Q |I_y| |y| (/Lei+|y|2)2

< Il,é('r) + 12,€(I)'
Here,

2* —1—p.
—(n-1) —
ly| pl Ty

Q) [z —y[" Tyl (12, + |y|2)%(1—1’)

Ii)e(x) =C

where
Q) = QN {Jz — y| > |o]/2} and Qu(x) = QN {2 — y| < |z]/2}.

We compute these two integrals separately. We let R > 0 such that Q C Bg(0).
We have that
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2% —1—pe
pk 1)Vlyll v
Le@) < Clef™" / jyl1-? S dy
Br(0) (ue +ly?) &
1—-n 5 1—s |y|171/ 2*717]06
< Claf u;i/ |yl Y g dy
B_gr (0) (1+1[y[? )2

He,i

/ 1-n, %
< C |I| :u:,i

(73)

since s € (0,2) and up to taking v > 0 small enough. Note that we have used here

point (A7) of Proposition 3.1.

We deal with the second integral. Note that when |z — y| < |z|/2, we have that

bl gy 3
2
Taking v > 0 small enough, we then get that

1276(1')

IN

{lz—yl<|=|/2}

2—(n—-1)v 1y 2" —1—pe
o Lo —n [ 1 ||
< Ol ™"wg - 2" <‘“|x|n'<1—_u> )

< Cal' g,
since |z| > p.,;. Plugging together (73) and (74), we get that

*_1—
—1)v 2" —1-p.

G Z; 1—v n
/ (1'753/) ,u |y|(1_ ; dy < C|x|1_nﬂ€2i
oyl (Ne,i + |y]?) Y 1

Since |z| > fici, we get (72).

Step 4.6: We let ¢ € {1,..., N}. We claim that there exists C' > 0 such that

2% —1—p.
1)
Gla,y) [ ni " ”|y|1 v .
vl =) !
Q (12, R
SCL'Q
(lue,i+ |‘T| )2

for all x € Q such that |z| < ;.
Proof of the Claim: Indeed, let p € (1,n/s). We let . ; € HY ((£2) such that

%—("—1)V|x|1—u 7 —1-pe

1 p’e,i
ol \ (2, 4 [2p) 20

in D'(Q).

A‘Pe,i -

2—(n—1)v 1—v 2" —1—p.
o [ e || _
Claf'= <W> / o —y[' ™" dy
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We let ¢ : U — V defined in (13) with yo = 0. We let

n—2
Pe,i(T) =[] Pei © P(He,iT)
for all z € U NR”. We let R > 0 such that Q C Bg(0). It follows from Green’s

representatlon formula and the estimate (G5) on the Green’s function that for any
T € U - NRZ, we have that

, G( ( ) ) M n 1)V|y|1 ” 2*,17Pe
~ = P e, i), Y
|Gei(@)] < p.? o o = dy
o vl (12, + yP?) &
2* —1—pe
ne2 1 e
< Cp.; dy

v Ja le(peiz) — y|m 2|yl (12, + lyl? ) =)

1 1—v 2" —1—p.
< c/ — ( vl = )> dy.
Br/u,,;(0) ‘M _ | ( + |y| )2 v

He,i Yy |y

Since s € (0,2) and with the properties (13) of ¢, we get that there exists C' > 0
such that

|Pei()] < C (77)
for all x € B3(0) NR™ and all € > 0. We let the metric (§e)r = (Orp, O1p) (the,i)
for k,l =1,...,n. Equation (76) rewrites as

Bealw) ) 1)
(L a)2) 27000

where ¢; c € R for all € > 0 and lim._,g ¢;,c = ¢; > 0.
PHe, i
Beala) o= | Eeit)
He,i
for all z € B3(0) NR™. In particular, there exists C' > 0 such that

A, Pe,i = Cie in D'(Bs(0) NR™),

lz]

C
for all z € B3(0) NR™. Since (77) holds, s € (0,2) and ¢.; = 0 on {x1 = 0}, it
follows from standard elliptic theory and the equation satisfies by ¢ ; that there
exists C' > 0 such that

< 551( ) < O|$|

16e.illor (Ba(oynmm) < €
for all € > 0. Since @¢;(0) = 0, we get that
|2¢(x)] < O]
for all z € B2(0) NR™ and all € > 0. Coming back to the definition of @, ;, we then
get that there exists C' > 0 such that

uml z|
(:ue,i+ |CC| )E

for all 2 € QN By, ,(0). Inequality (75) then follows from Green’s representation
formula. g

|pei(a)] < C
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Step 4.7: Plugging together (71), (72) and (75) into (70), we get that

N
‘LLEl
|uc(z Z z + Clz|
im (2 + V
for all z € Q and all € > 0. This proves (48). O

5. STRONG POINTWISE ESTIMATES, PART 2
This section is devoted to a refinement and a derivation of Proposition 4.1:

Proposition 5.1. Let Q be a smooth bounded domain of R™, n > 3. We let
€ (0,2). We let (pe)eso such that p. € [0,2* —2) for all € > 0 and (9) holds.
We consider (uc)eso € Hf o(Q) such that (8), (Ec) and (10) hold. We assume that

blow-up occurs, that is

1. ) - .
Elj%Hue”L Q) = +o0

We let pie 1, ..., e, N as in Proposition 3.1. Then, there exists C > 0 such that

N
mJI
luc(z)] < C Ziwq | (78)
1=1 (/’L51+|x| )
:uei
[Vue(z)| < C ’ +C (79)

=1 (/Lz,i + |z[?)
for all e >0 and all x € Q.
Inequality (78) was proved in Proposition 4.1. We prove inequality (79). We let G

be the Green’s function for the operator A on 2 with Dirichlet boundary condiction.
Derivating Green’s representation formula (69) that

Vule) = [ 9.6ty (2 )'Z];Tf“ﬁ(y) e wulo)) do

for all z € Q and all € > 0. It then follows from (78) that

2* —1—pe
Vil <€ [ 19aGp) (PP 1) g
G By N
<CZ V. wy)|< péily E) "
o I\ (2 + P
+C/ VoG, )| - (JyI* P + 1) dy (80)
Q
for all x € Q and all € > 0.
Step 5.1: We claim that there exists C' > 0 such that
[ va6t)- (1 1) dy< (s1)
Q

for all x € Q and all € > 0.
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Proof of the Claim: Indeed, it follows from property (G7) of Theorem 9.1 that there
exists C' > 0 such that

VoG, y)| < Clo —y|'™ (82)
for all z,y € Q such that x # y. Since s € (0,2), we then obtain that there exists
C > 0 such that

[ 9.6l (e 1) dy< e [ ey (P 1) a0
Q Q

for all x € Q and all € > 0. This proves (81).
Step 5.2: We let i € {1,..., N}. We claim that there exists C' > 0 such that

n 2" —1—p. n
|va(-Tay)| (( Me,l|y| )n> dy < ( ME,l
2

o |yl i+ lyl? pdi+ |x?)2

for all € Q such that |z| < p.,; and all € > 0.
Proof of the Claim: We let 0, := #L Note that with our assumption, we have that

0] <1. We let R > 0 such that 0'c Bpr(0). With (82), and a change of variables,
we get that

(83)

n 2% —1—pe
o Ik (W2, +1y?)*
By N
<c |w—y|1-”|y|-s< Feid ) dy
Br(0) (n2;+1yl?)?
o T n |Z|2*71757pé
< 2 n * dz
> Cpe s /BL(O) 0 — z|"~1(1 + |z|2)7(2 —1—p.)

He,i

Since s € (0,2) and |0.] < 1, we get that there exists C' > 0 such that

2% —1—pe

VIG 9 E%’L —_n
REC AT L dy < O f.
o (2 +1y1)* |

Since |z] < fie 4, inequality (83) follows. O
Step 5.3: We let i € {1,..., N}. We claim that there exists C' > 0 such that

n 2% —1—p. n
V.G, y)| ( pily] ) 1y < e

o lyP (12, + |y|2)% T (it laP)E
for all € Q such that |z| > p.,; and all € > 0.
Proof of the Claim: We split the integral in two parts:

vaGu,y)I( iyl )

o W\ (2 4+ 1y?)?

(84)

2% —1—pe

dy = I (x) + Ic 2 (x) (85)
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where
V.G, y)| Ewl \TTT
T z,y Me,i Yy
) = | : ( 2 ) dy
Q@ Yl (n2;+ [y[?)?
and
Qéyl(:c)_Qﬂ{|x—y|2%} and Q¢ 1(z) = {|x—y|< |32:|}

Step 5.3.1: We deal with I. 1(z). It follows from point (G8) of Theorem 9.1 that
there exists C' > 0 such that

A.09) _ ., Iy

N

for all z,y € Q, © # y. We let R > 0 such that Q@ C Br(0). With a change of
variable, we get that

VoG(z,y)| < C

1y| 2" —1-p.
Ie,l(CC) < 0/ |y|n - /J‘e iy _ dy
an{jz—y|> 21} |z =yl |yl (12, +y?)?

W\

_n s KNy

Clel / ! <7> dy
Br(0) (n2;+1yl?)?

o=

Clz|™ %/ — dz.
Ay o T P

He,i

IN

IN

Since |z| > e and s € (0,2), we then get that

n M%-
I.1(z) < Cla|™"u2. <C'—— | 86
11( )— | | :ue,z = (,U'g)l_F |I|2)7 ( )
Step 5.3.2: We deal with I, o(x). As easily checked, we have that
] 3|
— < < — 87
< (57)
for all y € Q. 2(x). With (82) and (87), we get that

/'Lé'L

2% —1— p6
Lea(z) < [z —y|' " dy
‘ |£L‘| |‘T|n ! |ac y|<%}

n 2 —1— —Pe
1— y’e,z
CY|‘T| ° <|$|n—1

<
71(2* 2 pé)
S C|(If| n lLLeZ

M€Z| |n(2* 1-pe)—(2*—1—pe)—n—1+s"

Since |z| > e and s € (0,2), we then get that
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n
2
:ue,i

S R (88)
(n2; + |2]?)2

Iea(x) < Cla| "l <

Plugging (86) and (88) into (85), we get (84). O

Step 5.4: Plugging (81), (83) and (84) into (80), we get inequality (79).

6. POHOZAEV IDENTITY AND PROOF OF COMPACTNESS

This section is mainly devoted to the proof of the following proposition:

Proposition 6.1. Let Q be a smooth bounded domain of R™, n > 3, such that
0 € Q. We let (ue), (ac) and (p.) such that (E.), (8), (9) and (10) hold. We
assume that blow-up occurs, that is

lim fJue]| o< () = +o0.
Then we have that

(n—s)/ IIy(z, )| Viy|* dx
AR™

lim Pe _

=0 fle N (n=D(n-2) N = (2?2
(n— 2)2aN 2Ez-e) g a, 279 / |Vﬂi|2 dx
R™

i
i=1

when n > 3. In this expression, 11y is the second fondamental form at O of the
oriented boundary 02 and OR™ is the oriented tangent space of 02 at 0. The
sequences and families pe n > 0, oy, U4, © € {1,..., N} are as in Proposition 3.1.
In addition, if ue > 0 for all e > 0, we have that

(n—s)/ 22| Vi | da
OR™
lim L5 = - - H(0)
e—0 fle, N (n=1(n=2) N (22
n(n —2)2a, **7° Zai 2(27”/ |V |? da
i=1 R™

when n > 3. In this expression, H(0) is the mean curvature at 0 of the oriented

boundary 0N2.

We prove the proposition in Steps 6.1 to 6.3. We prove Theorem 1.3 in Step 6.4.
Step 6.1: We provide a Pohozaev-type identity for u.. It follows from Proposition
8.1 that u. € C'(Q) and that Au, € LP() for all p € (1,2). We let

We := QN (B (0)), where re = \/leN- (89)

In the sequel, we denote by v(z) the outward normal vector at x € OW, of the
oriented hypersurface OW, (oriented as the boundary of W,). Integrating by parts,
we get that
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/ 2 OucAu, dz

= —/ ' Oiu O, uc do —|—/ 0 (Iiaiué)(?jué dx
oW, We

. . 2
= _/ 2" OueOyue do + / |Vue|? de + / ' 0; V| dx
oW, 2

€ €

2
= (1 — E) / |Vu|* da —I—/ <(:c,1/)M — :ci(?iueﬁ,,ué) do
2/ Jw. oW, 2
= (1 — ﬁ) (/ U0, Ue do +/ UeAle dx)
2 OW. s
2
+/ ((a:, V) [V - ziaiué(?l,m) do.
OWe 2

Using the equation (E.) in the RHS, we get that

_ 2% —pe
/ ' OuAu dr = (1 — E) </ L dr — / aeuf dz)
W, 2/ \Uw, |zl W,

2
+ ~/8W€ ((1 — g) ucOyue + (2, V)% - miﬁiueﬁ,jm) do.

On the other hand, using the equation (F.) satisfied by u., we get that

|u |2*—2—eu
) . . . )
/ ' O;uc Auc dr = / ' Oe——————— dx — / ' 0;ucacue dx

|[*
€ € €

i —s |uc|* P i
= x|z 700, o de — 2" 0iUc Qe dT
W, — DPe .

€

i e P i
= — O;(2'|x| 7)) ———— + 2’ Qiucacuc | dx
We

2*_pe

N
17}

w,. 2% — De |z[®

n—s |ue? P 1 -
= - /Wé T . ﬁ dx + 3 /W (na. + z'Oiac)u? dz

€

2" —pe
+/ (*:va) el do —/ () acu? do.
ow, 2* —pe |zl ow. 2
Plugging together (90) and (91), we get that
-9 — |27 P .
n _n-—s / ] d:c—|—/ aé+(a:,Va) 2 da
2 2*=pe) Jw, |zf® W, 2
-2 . 2
- / <_n ucdyue + (, ,,)M
oW, 2 2

. 2*_175
—2'0;u0y Ue — (z,v) . e ) do —|—/ (2, ) acu? dx
2% — pe |x|S oW, 2

(90)

(91)
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for all € > 0. Since
oW, = [p(B,(0)) N0 U 2N (0B, (0))]

and since u. = 0 on 02, we get that

- 2 € € 2**p5 ) v €
7(71 - )P / L | — dx —/ (ae + (z,Va )> u? dx
2-(2* = pe) Jo,. 0)ne 7] ©(Br (0))NO 2

1
= —/ (z,v)|Vuc|? do
2 Jo(,. (0)nog

—9
_ / (_n Uy ue + (z,V)
QN (9B, (0)) 2

2 —pe

@) P ), g
2* — pe |z]® 2

It follows from (78) and (79) that there exists C' > 0 such that

2
u .
—E| — 2" O;uc 0, U

lue(x)| < Cre and |Vu(z)] < C

for all x € QN p(9B,.(0)) (recall that re = ,/fic.v). We then get that
2

—2 . _
/ <_n Uy ue + (z, 1/)M — 2'O;uc Oy U
QN (9B, (0)) 2 2

(CC,I/) |ut‘-|2*7pé (:Z?,V) 2 5
— . — € d = O 2 = € 93
2* _pe |x|5 2 a ue o (Iu’e,N) O(IU’ 1N) ( )

when € — 0 since n > 3. With (78) and Proposition 3.1, we get that

/ (a€+M>ufd1¢ §C’/ ufd:c
(Br, (0)NQ 2 (B, (0)NQ

N n
/’l’ .
<C / Adu’c—kC’/ |z|? dz
Z o(Br.(o)ne (12 + |z[?)n—1 @(By. (0))NQ

i=1

N
dx
<C 2/ ——_dx+ Cr"t?
= g“ p (L a2yt ST
(94)

= o(He,N)
when € — 0 since n > 3. Plugging (93) and (94) in (92), we get that

— 2)p. . 2% —pe 1
_(n=2)pc_ - Jp / Juc” 7 —dx = —/ (2,v)|Vue|* do + o(pie,n)
2- (2" =pe) JoBr )ne |7l 2 Jo(B.. ()00

(95)

when ¢ — 0 and n > 3.
Step 6.2: We deal with the LHS of (95). We let ¢ as in (13). Since

Te

:+OO

lim
e—0 He, N
(see (89)), with a change of variables, we get for any R > « > 0 that
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2*—p€ 2" —pe
/ Le' - d:zc:/ Lel —dx (96)
p(B )N |2 o(B,. (0)R") ||
2% —pe
:/ %'Uac o(@)| dz
B, (0)NR™ lo(z)|

2" —pe
:/ %'Uac o(z)| dz
BRry N (0)NR™

o ()]
DY

i=1

/ |uc o p(x)[* P
(Brk sy 0\Ba, ,py )nrn |9(2)]°

2" —pe
+/ Jue o pl@)l” 77 |[Jac ¢(z)| dx
(Bar. ;41 (0\Bri, ; (0)NRT lo(x)]*

|ue 0 p()|* P

- |Jac p(z)| dz

+/ - |Jac p(x)| dz
(Bro (O\B ik, y (0)NRT lp(2)]*
It follows from Proposition 3.1 that
2% —pe _(n—2)? ~ 2"
lim lim —|u€ ° p(2)] -|Jac p(z)|dr = o, 2Em) / [t dx
R—tooe=0 /gy, (0)nR" lo(z)|® o |2l®
(97)
and for any i € {1,..., N — 1} that
2% —pe
lim lim lim % - |Jac p(z)| dzx
R—+o00 a—0e—0 (BRke,i+1 (0)\§ak€ﬂ+1 (0))QRE |QD(.'17)|
—goat |Gy |*
_%QQJ/JTﬁ—M. (98)

It follows from the pointwise estimate (78) that there exists C' > 0 such that
[uc(e)] < Cpéylal! ™" + Clal

for all x € €. It then follows that there exists C' > 0 independant of R > 1 such
that

Juc 0 ()P

- |Jac ¢(z)| dx
/(Bre (O\B g,y (0))NR™ lp()]®

z 2% —pe
/J‘e,N
s | | n—1 dy
By (0\Brp,, y (0) |y| ]

—s— 52" —(n— *—pe)—s
<o wErayeond [ ey,
B, (0) By, (0)\Brk, y (0)

C
R(n—l)(2* —pe)—n+s’

<C

<Cr? +

Since lim¢_,g re = 0, we get that
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2% —Pe
lim lim —|u6 ° ()]

-|Jac p(x)|dx = 0. (99)
Rorboe =0 (B, 0\ B, oz [P

We let ¢ € {1,..., N — 1}. Using the pointwise estimate (78), we get that

n
M;i
|x|n71

uc(z)] < C

13
+Cue i

for all x € 2 and all € > 0. With computations similar to the ones provided for the
proof of (99), we get that

2" —pe
lim lim lim Jue o @) T 5 (@) da = 0. (100)
Rtooa=0e=0 (g, . (O\Ba, ke (@)
Plugging together (97), (98), (99) and (100) in (96), using point (A4) of Proposition
3.1, we get that

* N n—2)2 - *
lirn/ Jud® 7 Za.‘%/ [l®
=0 o, opne  |TI* —~ no |zl
N 7(7172)2
= > q 2<H>/ Vi |? da (101)
i=1 R™

Step 6.3: We deal with the RHS of (95). We have that

/ (z,v)|Vuc|*do = / (z,0)|Vuc|* do
@(Br(0))N09 @(Brk, , (0))NOQ

N-2
+ / (z,v)|Vue|* do
im1 7 #(Bri, ;41 (0\Brx, ,;(0)N2

(z,v)|Vuc|* do

+

/sa Bak, n (O\Brik, y_,(0))NoQ2

(z,v)|Vuc|* do

+

/<P(BRk€,N (O\Bak,  (0))N8Q

+ (z,0)|Vuc|* do (102)

/s@(Bre (O\Brk, y (0)NIN
Using the expression of ¢ (see (13)), we get that

Solan — (L=0200(@), - —Onipo ()
o V143, 0ip(@))?

for all x € U N {x; = 0}. With the expression of ¢, we then get that

(v o (), p(x)) = (1+0(1)[z[*) - (soo(iv) - Z wi@i%(ﬂﬂ)) (103)



38 N. GHOUSSOUB AND F. ROBERT

for all z € UN{xz1 = 0}. In this expression, there exists C' > 0 such that |O(1)| < C
for all z € U N {x; = 0}. Since ¢p(0) = 0 and V¢(0) = 0 (see (13)), we then get
that there exists C' > 0 such that

|(p(@), v 0 p(x))] < Claf? (104)
for all x € U N {x1 = 0}.

Step 6.3.1: We deal with the second term in the RHS of (102). Welet i € {1,..., N—
2}. Tt follows from the pointwise estimate (79) that

Vue(x)| < Culilal ™ + Cu_ 2y, (105)
for all x € Q. With (104) and (105), we get that

/ (z,0)|Vuc|* do
©(BRirg ;41 (0\Bri, ; (0)N0Q

<c/ _ of? (2 2" + By )
Bark, ;11 (O\Brk, ;/2(0)N{z1=0}
< Cieyi + Clieyiv1 = o(fte,N) (106)

when ¢ — 0 when n > 3. Here, we have used that ¢ + 1 < N and point (A3) of
Proposition 3.1. With the same type of arguments, we get that

/ (z, 1/)|Vu6|2 do = o(fe,N) (107)
(p(BRke,l(O))ﬂaQ

when ¢ — 0 as soon as N > 2.

Step 6.3.2: We deal with the third term of the RHS of (102). It follows from the
pointwise estimate (79) that

Vue(z)| < Cpfy_ |2 + Cu_ i (108)
for all z € Q. With (104) and (108), we get that

/ (2, )|V do
@(Bak, n (O\Brk, y_,(0))Nd0

=¢ 5 Jof? (MZNAI:EI‘% + u;}@) da
B2D‘ke,N (0)\BRI¢€,N71/2(0)0{11:0}
<Cpen—1+ Ca"+1M€7N

since n > 3 and where C' > 0 is independant of o and € > 0. With point (A3) of
Proposition 3.1, we get that

(z,0)|Vu|* do = 0. (109)

lim lim ,u_}v/
a=0e=0" " Jo Bk, (O\Bre, y_,(0)N0Q

Step 6.3.3: We deal with the fifth term of the RHS of (102). It follows from the
pointwise estimate (79) that

Vue(z)] < Oul gl ™ +C (110)
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for all x € Q. With (104) and (110), we get that

/ (x;V)|VU€|2 dO'
@(Br. (0\Brr, y (0)NOQ

= O/ |z* (u? n|x| 7" + C) da
Bar (0)\B i,y /2(0)N{z1=0}
< CR" ™pen + Critt

since n > 3 and where C' > 0 is independant of R and ¢ > 0. With the definition
(89) of r., we get that 7" = o(pe v) when € — 0. It then follows from point (A3)

€

of Proposition 3.1 that

(z,v)|Vuc* do = 0 (111)

lim lim ,Lfl /
R—+400 e—0 &N (p(BTE (O)\ERICE’N (0))089

when n > 3.

Step 6.3.4: We deal with the fourth term of the RHS of (102). Since ¢q(0) = 0 and
Vo (0) = 0, it follows from the definition (13) of ¢ and (103) that

(p(ken), v 0 (ke n))

= (14 O(kZ x|z|?)) <¢o(ke,N!E) — k. Z iCi@iSDO(ke,NiU))

=2

1 - -
= —gkin D 0ipo(0)2'a? 4 0c r(2)k2 y, (112)

4,J=2

foralle > 0 and allz € Br(0)N{z1 = 0} and where limc—.0 Supg , (0)n{z, =0} |0, 7| =
0 for any R > 0. With a change of variable, (112) and the definition of @, n (see
Proposition 3.1), we have that

=y (2, Vu 2 do
7 @(Bri, n (0\Bak, y(0)NIQ

k€ N ) n-t 1 / - i, ~ 2
= u - le ai -wo(I)|qu7N|~€ dv~€
<Me,N 2 J(Br(0)\Ba(0)n{z:1=0} ZJZZQ ’ o

+o(1)

when € — 0. In this expression, (G¢)ij = (0ip, 0;¢)(ke,nx) for all 4,5 = 2,...,n. It
follows from (110) and the definition of @, y that there exists C' > 0 such that

C

U <
Vin () < 73w

(113)
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for all z € R™. With points (A4) and (A7) of Proposition 3.1 and inequality (113),
we get that

lim lim lim

—1 2
it ti L [ _ (@) Vuf? do
—toca=le #(Brk, y(0)\Bak, y (0))NOQ

n—1
2% o n
/ > a'ad 00 (x)|Viiy|? do (114)

ig=2

an

when n > 3. Plugging (106), (107), (109), (111) and (114) in (102), we get that

n—1
2% _5 n
/ Z 2'29 05500 (x) | Vi | do

=2

Ay

lim ,ue_jlv/ (z,)|Vuc|*do = —
=0 7 Jo(B,, (0)no0

(115)
We consider the second fondamental form associated to 92, namely

Iy(z,y) = (dvpz,y)
for all p € 9Q and all z,y € T,00 (recall that v is the outward normal vector at
the hypersurface 9€2). In the canonical basis of OR"™ = T,02, the matrix of the
bilinear form Ily is —D3¢q, where D3¢y is the Hessian matrix of ¢ at 0. With
this remark, plugging (101) and (115) into (95), we get that

11 Vay|?d
) n_s  _tpeea /aw o(z,2)|Vin|® dx

lim L = 170 4T 116
open (22 N (n-2)>2 (16)

N
E a; 7Y |Vl da
i=1 RZ

when n > 3. This proves the first part of Proposition 6.1.

We prove the second part of the Proposition and assume that u. > 0 for all e.
It follows that the limit function %y is nonnegative, and then positive on R™.

Moreover, we have that
~o* 1
_ U
A’LLN = N
|[*

in R™. It follows from (78) that there exists C' > 0 such that

<9
=14 |zt
for all x € R”. It then follows from Proposition 10.1 of Appendix C that there
exists v € C2(R* xR) such that @y (z1,2") = v(z1, |2']) for all (z1,2) € R* xR~
In particular, |Van|(0,2") is radially symmetrical wrt 2’ € OR™. Since we have
chosen a chart ¢ that is Euclidean at 0, we get that

" (I)
/ IIo(z,2)|Vay|?dz = M/ 22| Vay|? dz
OR™ n OR™

|an ()|

H(O
- HO )/ 2| Viin |2 da.
n Jorr
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Note that we have used here that in the chart ¢ defined in (13), the matrix of the
first fundamental form at 0 is the identity. The second part of the Proposition then
follows.

Step 6.4: Proof of Theorem 1.3: We let (u.), (ac) and (p.) such that (E.), (8),
(9) and (10) hold. Assume that

li_r)r(l) [[tell oo () = +o0. (117)

Then we can apply Proposition 6.1, and (116) holds. Since the principal curvatures
of 00 at 0 are nonpositive, but do not all vanish, we have that ITy(x,2) < 0 for all
x € OR™, but I1y # 0. In particular, the RHS of (116) is negative. A contradiction
since pe > 0, and then the LHS of (116) is nonnegative. Then (117) does not hold,
and there exists C' > 0 such that |u.(z)| < C for all € > 0 and all x € Q. The first
part of Theorem 1.3 then follows from Proposition 2.1. In the case u. > 0 for all
€ > 0, we apply the second part of Proposition 6.1 to recover compactness as soon
as H(0) < 0, and the second part of Theorem 1.3 is proved.

7. PROOF OF EXISTENCE AND MULTIPLICITY

7.1. Proof of Theorem 1.1. For any subcritical p, i.e., 2 < p < 2*(s) we define
the corresponding best constant

p
ts,p() == inf {/ |Vul|*dx; u € Hf 4(2) and / ful dx = 1} . (118)
Q

o lzl*

Because of the compactness of the embedding H7 () into LP(Q;|z|~*dx), the
infimum p, ,(£2) is attained at a positive extremal v, satisfying

Au = “IZF in D'(Q2)
u>0 in Q (119)
u=0 on 0f.

Moreover, the family (vp) is uniformly bounded in Hf ;(2) when p — 2*. Part 2 of
the main compactness Theorem 1.3 for positive sequences now yields a nontrivial
limit v that is an extremal for ().

7.2. Proof of Theorem 1.2. For each 2 < p < 2*(s), consider the C?-functional

/|V 2 da / ||“I dx (120)

on H7 ;(2) whose critical points are the weak solutions of

p—2
{ Auzwigﬁ% on

(121)
u=~0 on O0f2.

First note that for a fixed u € H 120(9) we have since

p
p(Au) = Q [Vul™d |17|S
that limit .o/ (Au) = —o0, which means that for each finite dimensional subspace

Ey C E := H{ ((Q), there exists Ry > 0 such that
sup{I,(u);u € Ey,||ul| > Rx} <0 (122)
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when p — 2*. Let (E;)2, be an increasing sequence of subspaces of H7 4(£2) such
that dim By, = k and U2 | B}, = E := H{ ;(2) and define the min-max values:
— inf I(h(z)),
cpk = inf sup Ip(h(z))

where
H;, ={h e C(E,E); hisodd and h(v) = v for ||v|| > Ry for some Ry > 0}.

Proposition 7.1. With the above notation and assuming n > 3, we have:
(1) For each k €N, ¢, > 0 and lir121 Cpk = Cor | i= Ck.
p—2*
2) If 2 < p < 2%, there exists for each k, functions u,, € HZ,(Q) such that
D, 1,0
I;é(up,k) =0, and Ip(up,k) = cpk-
+1 2
3) For each 2 < p < 2*, we have ¢, i satisfy ¢, > Dy kv—Tn where D,,>0
D, iz P D
is such that lim,_.or D, p, = 0.
(4) lim ¢, = lim cov j = +00.
k—oo k—oo

Proof: (1) First note that in view of the Hardy-Sobolev inequality, we have
L) > SVl — OVt = [Vall3 (£ — CIVulZ?) = a >0
p(w) 2 SIVullz = CllVully = [[Vullz { 5 = ClIVulz™ | 2 a >

provided [luf g2 (o) = p for some p > 0 small enough. A standard intersection
lemma gives that the sphere S, = {u € Ejl[lullgz (o) = p} must intersect every
image h(E})) by an odd continuous function h. It follows that
cp e > Inf{I,(u);u e S,} > a>0.

In view of (122), it follows that for each h € Hy, we have that

sup I, (h(z)) = sup I,(h(z))

TE€E) €Dy
where Dy, denotes the ball in Ej, of radius Ry. Consider now a sequence p; — 2* and

note first that for each u € E, we have that I, (u) — Iz« (u). Since h(Dy) is compact

and the family of functionals (I,,), is equicontinuous, it follows that sup I,(h(z)) —
rEF}

sup Io«(h(z)), from which follows that limsupc,, < sup Iz« (h(z)). Since this
r€F} €N zeF)

holds for any h € Hy, it follows that

limsup ¢p, 1 < cax k= C.
i€N
On the other hand, the function f(r) = %7‘” — 2%7“2* attains its maximum on [0, +00)

at 7 = 1 and therefore h(r) < % — o for all 7 > 0. It follows

I (u) = .r,,(u)+/Q ﬁ (%m(x)v’ - 2—1*|u(x)|2*> dr < 1rp(u)+/Q ﬁ (% - 2i> da

from which follows that ¢; < lim ian Cpi.k, and claim (1) is proved.
1€

If now p < 2*, we are in the subcritical case, that is we have compactness in
the Sobolev embedding H? () — LP(Q;|z|~*dz) and therefore I, has the Palais-
Smale condition. It is then standard to find critical points u, j for I, at each level
¢p,k (see for example [20]). Now there are many ways to establish growth estimates
for ¢p 1 as k — 400, and we shall use here the one based on the Morse indices of
these variationally obtained solutions, a method first used by by Bahri-Lions [4]
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and independently by Tanaka [41]. We need the following key estimate of Li-Yau
[34].

Lemma 7.1. Let V € L™?(Q) and denote by m* (V) the number of non-positive
eigenvalues of the following eigenvalue problem:

Au—Vu= A onf?
u=20 on 0N).

If n > 3, then there is a constant Cy, > 0 such that m* (V) < C, HVHn/2

To prove the growth estimates on the critical values ¢, x, one can follow [41] (see
also [20]) and identify a cohomotopic family of sets Fy of dimension k in such a way
that if Dy, denotes the ball in Ej of radius Ry and if v € Hy, then v(Dg) € Fx. It
then follows that there exists v, € Hi o(€2) such that I, (v k) < cpr, I'(vp ) =0
and m*(vp i) > k, where m*(vp ) is the augmented Morse index of I, at vy ;. In
other words, since

I/ (v)(h, ) :£|Vh|2dm—(p—1)gf‘ o 212 dy

]

= (A - (- DEE)nn),

2
in H=1(€), this means that the operator (A — (p — 1) IUPI’;J: ) possesses at least

k non-positive eigenvalues. Applying the above lemma, we get that the number of

these non-positive eigenvalues is bounded above by C,, [ [(p — 1)%]5 dx).
Q

Since p < %, we have ¢ := % > 1, as well as its conjugate ¢’. Moreover, since

p < 2(::23), we have that 21)72;% < n. It then follows from Holder’s inequality
that:
s p—2)%
ko< /|p |”P|’“||S * da (123)
1 n(p—2)
o 1 p
< Culp-113 /7% prl” o
|x| 2p—npt2n |f17|S
Q Q
n(§72)
P
Up.k P
< Cnp %dw

Q

ES

where C,, , = Cy|p — 1|2 <f%d:c)q )

Q ‘I‘QP np+2n

Since (I'(vpk), vpk) = 0, it follows that f |Vup|? de = f IUF " dx, which finally
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implies that

1 1 0y [P
a2 1) = 5 [ Voo [ %d
Q a
1 1 P
= (_ — _> / |vp. k] do
2 p |.’II|5
Q
2p
> Dy ke,
__2p
where D,, , = (% — %)Cn)z’,‘(p’”

To prove 4) we proceed by contradiction and assume that (ci)x is bounded so
that a subsequence of which converges to some real number c. Using the first claim
of the proposition, there exists for each k € N, 2 < pi < 2* such that |c,, r—ci| < %
in such a way that limy_, { oo pr, = 2* and

li = i = 124
lim cpp= lim cp=c (124)

k

As above, there exists vy, r € H7 o(Q) such that I, (vp, k) < pyks 1y (Up ) =0
and m*(vp, k) > k, where m*(vp, 1) is the augmented Morse index of I, at vp, k.

But (124) gives that the energies of (vp, k)x are uniformly bounded and therefore
(Upy k)& is bounded in HF 5(€2). It follows from Proposition 8.1 and the compactness
Theorem 1.3 that they converge to a solution v of (121) with energy below level c.

In particular, there exists C' > 0 such that
|vpy s (2)] < C (125)
for all z € Q and all k € N. With (123) applied to v, x, we get that

(r—2)%
n

k< cn/lpk el
Q

]2

With (125), we get that there exists a constant C' > 0 independant of k such that
dz

Ek<C | —&.
Q|72

In particular, since s € (0,2), the integral is finite and there existe C' > 0 such that
k < C for all k € N. A contradiction, and we are done with the proposition.

To complete the proof of Theorem 1.3, notice that since for each k, we have
lin% Iy, (up, k) = lir% Cpi.k = Ck, it follows that the sequence (up, x); is uniformly
pi—2* pi—2*

bounded in Hf (). Moreover, since I, (up, 1) = 0, it follows from Proposition 8.1

and the compactness Theorem 1.3 that by letting p; — 2*, we get a solution uj of

(121) in such a way that I« (uy) = lir121 I(up k) = 1iII21 Cpkk = Ck. Since the latter
p—2* p—2*

sequence goes to infinity, it follows that (121) has an infinite number of critical
levels. The result for the equation Au + au = ‘"l‘z ‘;2“ when A + a is coercive goes

the same way, and Theorem 1.2 is proved.
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8. APPENDIX A: REGULARITY OF WEAK SOLUTIONS

In this appendix, we prove the following regularity result. Note that such a
Cl—regularity was first proved out by Egnell [17]. We include the proof for com-
pleteness.

Proposition 8.1. Let §) be a smooth domain of R", n > 3. We assume that either
Q is bounded, or @ =R". We let s € (0,2) and a € C°(Q). We let € € [0,2* — 2)
and consider u € HY (() a weak solution of

|u|2*727€u

|z]*
Thenu € CH9(Q) for all § € (0, min{1,2*—e—s}) if Q is bounded, and u € C'llo’g(@)
for all 0 € (0,min{1,2* — e — s}) if @ = R™. In addition, in all the cases, we have
that u € C2(Q\ {0}) if a € C**(Q) for some a € (0,1).

Au+ au = in D' ().

Proof. We prove the result when € is bounded. The arguments and the results are
basically local, and the proof goes the same way when 2 = R™.

Step 8.1: We follow the strategy developed by Trudinger ([42], and [28] for an
exposition in book form). Let 8 > 1, and L > 0. We let

[t]P—1¢ if [t| <L
Grt)={ BL 't —-L)+L° ift>1L
BLPY(t+L)—LP ift<-L
and
It| =t if |t| <L
Hy(t)y=14 8H1% (- L)+ L% ift>1L
BEALS 4+ L) - L7 ift<-L
As easily checked,
0 < GL(0) < Hult)? and Gi(t) = (7 (400

forallt € Rand all L > 0. Let n € C°(R™). As easily checked, n?Gp,(u),nHp(u) €
H? ,(Q). With the equation verified by u, we get that

|u|2*727€

/ VuV (n*Gr(u)) de = nuG'r(u) dr — / an*uGr(u)dr.  (126)
Q

ozl Q

We let Ji(t) = fot Gpr(7)dr for all t € R. Integrating by parts, we get that

/VuV(nQGL(u))dx:/nQG’L(u)|Vu|2d:c—|—/Vn2VJL(u)dz
Q Q Q

7i 2 u 2 - 9 " .
a (ﬁ+1)2/977 IVHL(u)|"d +/Q(A’7 )Jr(u)d
__4 I .
= (ﬂ+1)2/9|v(77HL( )7 d (6+1)2/§277A17|HL( )2 d

—I—/Q(AnQ)JL(u) dx (127)
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On the other hand, with Holder’s inequality and the definition of ps(R™), we get

that
W N > :
ASErT uGr(u) de < A |a|+T - (nHr(u))” da
.. 1— 52—
([ G )
QnSupp n ||
2 2
H 2% ¥ d 2% (2% —¢)
([l (]
Q || anSupp » 17[*
<a [ VL) ds (128)
Q
where
. 1— 52—
a = / (laf - |2 + |ul? 7275)227276 dx 2
' QNSupp 7 ||®

2e
s (R™) 71 / dw \ T
’ QnSupp 7 ||

Plugging (127) and (128) into (126), we get that

46
A [ V)R de < =g [P+ | |A<n2>JL<u>|Ez;9)

where
1 -

*_ e — *275
A= P / (lal - Jo]* 4+ [uf* 72797\
(B+1) QnSupp n Fak

2e
i ([ )T
° anSupp » |Z[*

Step 8.2: We let

po =sup{p = 1/u € L*(Q)}.
It follows from Sobolev’s embedding theorem that py > % We claim that

Do = +00.

We proceed by contradiction and assume that

Po < 0.

Let p € (2,p0). It follows from the definition of pg that u € LP(Q2). Let B =p—1 >
1. For any z € Q, we let d, > 0 such that
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1—

2
*_o_ 2% —¢ 2% —¢
PR P R
S
QNBays, () |yl

2e
dy \7 7 2
x / Y < 762 (130)
QN Bas, (z) |yl (B+1)
Since € is compact, we get that there exists x1,...,zx € € such that
N

QcC U B5zi (,TZ)
i=1
We fix i € {1,..., N} and let n € C°°(Bas,, (z;)) such that n(z) = 1 for all z €
Bs,, (xi). We then get with (129) and (130) that

(6+1 5 [ VoL @) dr

< e | iR o+ [ ARG de (31

Recall that it follows from Sobolev’s inequality that there exists K(n,2) > 0 that
depends only on n such that

n—2
([ ) T <k [ wira (132)
Rn
for all f € Hf o(R™). It follows from (131) and (132) that

2 T
(ﬁfl 7 ([ ot )
S /|nAn||HL< e dat [ 1877 p()]da

for all L > 0. As easily checked, there exists Cy > 0 such that |J(t)| < Colt|?*!
for all t € R and all L > 0. Since u € L°T(Q), we get that there exists a constant
C =C(n,u,,Q) independant of L such that

/ ()| 22 dzs/ InHy (u)[722 dz < C
QI'-WB(;I (Il) Q

for all L > 0. Letting L — 400, we get that

/ |u|ﬁ(ﬁ+1) dxr < 400,
QﬁBin (Il)

for all i = 1..N. We then get that v € L72FD)(Q) = L72P(Q). And then,
—Lop < po for all p € (2,po). Letting p — po, we get a contradiction. Then
po = +oo and u € LP(2) for all p > 1. This ends Step 8.2.

Step 8.3: We claim that

u € C"*(Q)
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for all a« € (0,1). Indeed, it follows from Step 8.2 and the assumption 0 < s < 2
that there exists p > 7 such that

|u|2*—2—eu

fe =

It follows from standard elliptic theory that, in this case, u € C%%(Q) for all
a € (0,min{2 — s,1}). We let

—au € LP().

oo =sup{a € (0,1)/u e C**(Q)}.
Note that it follows from the preceding remark that g > 0. We let a € (0, vg).
Then u € C%%(Q). Since u(0) = 0, we then get that

u(@)| < fu(z) —u(0)] < Clz|*. (133)
We then get with (133) that
@) c
|fe()] = — S ¢

for all x € Q. We distinguish 2 cases:

Case 8.8.1: s —(2* — 1 —€)a < 0. In this case, for any p > 1, up to taking « close
enough to ag, we get that

fe € LP(Q2).
Since Au = f. and u € H 1270(9), it follows from standard elliptic theory that for

any 6 € (0,1), we have that u € C19(Q). Tt follows that ag = 1. This proves the
claim in Case 8.3.1.

Case 8.3.2: s — (2 — 1 — €)ayg > 0. In this case, for any p < e

72*_”1_6)a , up to
0
taking a close enough to ayp, we get that

fe € LP(2).
We distinguish 3 subcases.

Case 8.3.2.1: s — (2* — 1 — €)ap < 1. In this case, up to taking « close enough to
Q, there exists p > n such that

Je € LP(Q).
Since Au = f. and u € H{ ((Q), it follows from standard elliptic theory that there

exist exists § € (0,1) such that u € C*?(Q). Tt follows that ag = 1. This proves
the claim in Case 8.3.2.1.

Case 8.3.2.2: s — (2* — 1 —€)ag = 1. In this case, for any p < n, up to taking «
close enough to ag, we get that

fe € LP(2).
Since Au = f. and u € H7(Q), it follows from standard elliptic theory that

u € C%4(Q) for all & € (0,1). It follows that ag = 1. This proves the claim in Case
8.3.2.2.

Case 8.3.2.3: s — (2 — 1 — €)ap > 1. In this case, it follows from standard elliptic
theory that u € C%%(Q) for all
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a<2—(s—(2"—1-¢€)ay).
It follows from the definition of «q that

ag>2—(s— (2" =1 -¢)ay),

and then

0>2—54+(2"=2—¢€)ag >0,
a contradiction since s < 2 and € < 2* — 2. This proves that Case 8.3.2.3 does not
occur, and we are back to the other cases.

Clearly, theses cases end Step 8.3.

Step 8.4: We claim that

ue CH(Q)

for all 8 € (0,min{1,2* — ¢ — s}). We proceed as in Step 8.3. We let @ € (0,1)
(note that ag = 1). We then get that

|u|2*—1—eu C
= | — — [
|f6(‘r)| |$|S au| >~ |x|57(2*717€)04 + c
for all x € Q. We distinguish 2 cases:

Case 8.4.1: s — (2* — 1 —¢) < 0. In this case, for any p > 1, up to taking « close
enough to ag, we get that

fo € LP().

Since Au = f. and u € H1270(Q), it follows from standard elliptic theory that
u € CH9(Q) for all § € (0,1). It follows that ag = 1. This proves the claim in Case
8.4.1.

Case 8.4.2: s —(2* —1—¢€) > 0. In this case, for any p <
« close enough to 1, we get that

ﬁ, up to taklng

fe € LP(Q2).
As easily checked,

l—(s—(2"—1—€)=2—-s4+(2"—1—€)—=1>2"-2—¢>0

We then get that there exists p > n such that f. € LP(Q). Since Au = f. and
u € Hiy(R), it follows from standard elliptic theory that v € C%?(Q) for all
0 € (0,min{1,2* — e — s}). This proves the claim in Case 8.4.2.

Combining Case 8.4.1 and Case 8.4.2, we obtain Step 8.4. Proposition 8.1 follows
from Step 8.4. O
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9. APPENDIX B: PROPERTIES OF THE GREEN’S FUNCTION

This section is devoted to the proof of some useful properties of the Green’s
function for a coercive operator. Concerning notations, for any function F' : X X
Y — Rand any z € X, we let F, : Y — R such that F(y) = F(z,y) forally € Y.
We prove the following:

Theorem 9.1. Let Q be a bounded domain of R, n > 3. Let K,\ > 0. Lel
0 € (0,1) and a € C*%(Q) such that

la(2)| < K and |a(z) - a(y)| < K|z —y/’ (134)
for all x,y € Q and

/Q(|V<p|2 + ap?) dx > A/Q ©? dx (135)

for all o € C(Q). Then there exists G : Q x Q\ {(x,2)/z € Q} — R such that
(G1) For any x € Q, G, € L}(Q) and G, € C*%(Q\ {z}).

(G2) For any x € Q, Gz > 0 in Q\ {z} and G; =0 on 0.

(G3) For any p € C?(Q) such that ¢ =0 on 99, we have that

() = /Q G, 9)(Dp + ag)(y) dy

for all x € Q.
(G4) G(z,y) = G(y,) for all z,y € Q, x # y.
(G5) There exists C = C(Q, K, \) > 0 such that

|I - y|n72|G(‘T’ y)| < C(Q7Ka )‘)
forallz,y € Q, z #y.
(G8) There exists C = C(Q2, K, X) > 0 such that

|z = y|" G (x,y)| < C(Q, K, N)d(y, 00)
forallz,y e Q, x #y.
(G7) There exists C = C(Q, K, \) > 0 such that

|z = y" T VGa(y)] < C(Q, K, )
forallz,y € Q, z #y.
(G8) There exists C = C(Q2, K, X) > 0 such that

forallz,y e Q, x#y.

Some similar properties are available for the normal derivative of G at the boundary.
Namely,
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Theorem 9.2. Let Q be a bounded domain of R™, n > 3. We assume 0 € 0f).
Let KA > 0. Let 0 € (0,1) and a € C%%(Q) such that (134) and (135) hold. We
let G as in Theorem 9.1. We let H(z) = —0,G.(0) for all z € Q\ {z}. Then the

following assertions hold:

(G9) H € C?(Q\ {0}), H>0inQ and H =0 on 0N\ {0},
(G10) AH +aH =0 in 9,

(G11) There exists C = C(Q, K, ) > 0 such that

d(z, 08) < H(z) < Cd(z,00)
Clal [
for all x € Q.
(G12) There exists C = C(Q, K,\) >0 and § = 6(Q, K, \) > 0 such that
1 c
< |VH(z)] < —
Clal™ |z["

for all x € Bs(0) N Q.

The proof of Theorem 9.1 is very close to the proof of the existence of the Green’s
function on a compact manifold without boundary provided in [15]. We just give
the main steps of the proof and outline the difference with [15] when necessary. We
prove Theorem 9.2 in details.

Step 9.1: This Step is devoted to the proof of points (G1)-(G5) of Theorem 9.1.
We only sketch the proof. Details are available in [15]. We define

1
(n—2)wp_1|z —y|"2

H(CC,y) =

for all z,y € R™ such that z # y. In this expression, w,_; denotes the volume of
the standard (n — 1)—sphere. The function H is the standard Green kernel of the
Laplacian in R™. We define the functions I';’s by induction. Given z,y € Q, = # vy,
we let

Ty (z,y) = (y)H(w y)
Diy1(z,y) = [oTi(x,2)l1(2z,y)dz  foralli > 1.

As easily checked, I'; € C°(Q x Q\ {(z,2)/x € Q}) for all 4 > 1. Standard
computations yield that there exists C'(2,n, K) > 0 such that

ITi(z,y)] < C(Qyn,K)|lz —y/*" itf2i<n
Ti(z,y)| <CQn,K)(1+ |Injz—y||) if2i=n
ITi(z, )| < C(Q,n, K) if 2i >n, i <n.

for all z,y € Q, x # y. In addition, T'; can be extended to a continuous function in
Q x Q forall i >n/2. We let z € Q. We let U, € Hf 4(€2) such that

AU, +aU, =Tyt (z,-) in D'(Q).
Since I';, 41 is uniformly bounded in L*°, it follows from standard elliptic theory

that U, € HY(2) for all p > 1 and that there exists C'(£2, K, \) > 0 such that

Ul ey < C(2, K, A)
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for all z € Q. We let V,, € HZ(2) such that
AV, +aV, = 0 in D'(Q)
Valy) = —H(z,y) — >y Jo T (z,y)dz for all y € 9.

It follows from standard elliptic theory that for any z € Q, V,, € C1(Q). Moreover, it
follows from the explicit expression of H and the I';’s that there exists C(2, K, \)’ >
0 such that V,,(y) < C(Q, K, \) forallz € Q and all y € 9. Since A+a is coercive,
it follows from the comparison principle that there exists C(Q, K, A) > 0 such that

Va(y) < C(Q, K, A)
for all x € Q and all y € Q. We let

Galy) = a:y+z/ H(z, ) dz + Un(y) + Va ()

for all y € Q. Tt follows from the construction of G that there exists C'(2, K, A) > 0
such that

G(I,y) < C(Q7Ka )‘) : ‘I - y‘an
for all z,y € Q, x # y and that G, vanishes on 0f2 for all x € Q. This prove point
(G5). We let p € C?(Q) such that ¢ =0 on dQ. Noting that

:/H(z,y)Ag&(y)dy—F/ H(z,y)0up(y) do(y)
Q o

for all z € Q, we get with some integrations by parts that

z) = / G, y)(Dp + ap)(y) dy.
Q

This proves point (G3). It then follows that
AG, +aG, =01in D'(Q\ {z}).
Since G, = 0 on 99, we get that G, € CEY(Q1\ {z}). It the follows from the

loc
construction and the maximum principle that G, > 0 in @\ {z}. This proves

points (G2) and (G1). Point (G4) is standard, we refer to [2] or [15].

Step 9.2: We prove points (G6) and (G7) of Theorem 9.1. We proceed by contra-
diction and assume that there exists a sequence (ax)reny € C%?(Q) and sequences
(K )ken, (Yk)ken € 2 such that (134) and (135) hold and

. _ zp — Y"1 Gay (yi)
1 — " VG + | .
Sz = gl VGa, (yk)] Ayr 0%
where G, is the Green’s function for A + ay at z,. We let 2o = limy_,4 oo o and
Yoo = limg— 100 Y (these limits exist up to a subsequence).

Case 1: Too # Yoo Welet 0 < 0 < |Zoo — Yoo|/4. Tt follows from point (G5) that
there exists C' > 0 independant of k such that |G, (y)| < C for ally € QN B,__(26).
Since AG,, +arGy, = 0and G, = 0 on 01, it follows from standard elliptic theory
that

= 400 (136)

||sz”cl(§m3ym ) = o(1)
when & — +oo. Since G, vanishes on 02, we get that there exists C > 0 such
that
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|Gz, (y)| < Cd(y,09Q) and [VG,, (y)| < C
for all y € QN B, () and all € > 0. A contradiction with (136).
Case 2: Too = Yoo-
Case 2.1: We assume that

d(:vk, o) > 2lyx, — xk| (137)

up to a subsequence. We let

Gu(2) = lyn — " 2Glar, r + lye — zx]2)
for all z € Bs/5(0). With our assumption, this is well defined. It follows from (G5)
that there exists C' > 0 such that

Gr(2)] <C
for all z € Bs/5(0) \ By,4(0). Moreover, G}, verifies the equation

AGy, + [y — m[ar(wr + lyr — 21]2)Gr(2) = 0
in Bs/5(0) \ B14(0). It follows from standard elliptic theory that

||Gk ||CI(B5/4(0)\§1/2(0)) - 0(1)

when k£ — +o00. Taking z = \Zi:;:l and coming back to G, , we get that

|z =yl VG, ()] = O(1) (138)

when & — 4o00. Moreover, it follows from point (G5) of Theorem 9.1 and (137)
that there exists C' > 0 such that

2 — ye" " Gay (yr) < Cd(yr, 09) (139)

when k — +o00. Inequations (138) and (139) contradict (136).
Case 2.2: We assume that

d(zy, 00) < 2|yr — x| (140)
up to a subsequence. In particular, o, € 0Q2. We let a chart ¢ : U — V as in (13)
with yo = o and where U,V are open neighborhoods of 0 and x, respectively.
We let Zk, gx € U N {x1 < 0} such that zx = p(Zx) and yr = ©(Jx). As a remark,
limp— oo Tk = limg— 400 Y = 0. We let 1 < 0 be the first coordinate of Zj. As
in Step 3.2, we have that d(xy,9Q) = (14 0(1))|Zx,1| when k — +o0o. We then get
with (140) that &1 = O(|gx — Zx|) when k — +o0o. We let

_ Th,1
|Gk — Tk
(this limit exists up to a subsequence). We let R > 0 and we let

Pk and poo = lim py
k—-+o0

Gr(2) = |G — T 2Glar, 0 (Fx + [Gx — Tx| (z = 1))
for all k£ and all z € Br(0) N {z; < 0}. Here &) denotes the first vector of the

canonical basis of R”. Note that Gy, vanishes on Br(0)N{z; = 0}. It follows of the
pointwise estimate (G5) that for any R, > 0, there exists C'(R,d) > 0 such that
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|Gi(2)] < C(R,6)
for all z € [Br(0) \ Bs((poo;0,...,0))] N {z1 < 0}. The function G}, verifies the

equation

B G + |5k = rPar (@ (@x + [k — Tx] (2 = (o5, 0,.,0)))) G = 0
in [Br(0) \ Bs((pso;0,...,0))] N {z1 < 0}. It then follows from standard elliptic

theory that HGk||Cl([BR/2(0)\§25(poo,...,0)]ﬂ{21§0}) = O(1) when k¥ — +oo. As in
Case 2.1, we get that

|2 — ye" TV Gay ()] = O(1) (141)
when k — 400. Moreover, since G}, vanishes on dR™ , there exists C' > 0 such that
|Gr(2)] < Clz|

for all z € [Br/2(0) \ B2s(poc, -, 0)] N {z1 < 0}. Taking z = (py, ..., 0) + ézigz‘, we
get that

|‘T1€ - yk|n71sz (yk) < Cd(ykv aQ) (142)
for all k large enough. A contradiction with (136).
In all the cases, we have contradicted (136). This proves points (G6) and (G7) of
Theorem 9.1.

Step 9.3: We prove point (G8) of Theorem 9.1. More precisely, we claim that
there exists C' = C(Q, K, A) > 0 such that

|z —y|"G(z,y) < Cd(y, 0N)d(z, IN) (143)
and
lz —y|"|VyG(z,y)| < Cd(z,00)
for all z,y € Q, = # Q. Indeed we proceed as in the proof of points (G6) and (G7).

We proceed by contradiction and assume that there exist a sequence (ax)ren €
C%?(Q) and sequences (2 )ren, (Yr)ren € 2 such that (134) and (135) hold and

, n__ |G(@k, yr)| VG, ()l
lim |z — yi| ke
k—+o00 d(:vk, 8Q)d(yk, 69) d(:vk, 8(2)
where G, is the Green’s function for A + ay at z,. We let 2o = limy_,4 o0 2 and
Yoo = limp 100 Y (these limits exist up to a subsequence).

Case 1: Too # Yoo Welet 0 < § < |Zoo — Yoo|/4. We let

+ |z — yal? =400 (144)

~ _ Gr(zk, 2)
Gez) = T o)
for all z € Q. As in Case 1 of the proof of (G6)-(G7), using (G6), we get that

||C~*'lc||cl(ﬁmgyoo @y =0@1)
when k — +o00. It then follows that

Grlyr) < Cd(yr, 09) and [VGi(ye)| < C
when k — +00. A contradiction with (144).
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Case 2: Too = Yoo-
Case 2.1: We assume that

d(wg, 082) > 2|y — o]

up to a subsequence. We then obtain that |z — yx| < d(yx, 9). This inequality
and (G6)-(G7) yield to a contradiction with (144).

Case 2.2: We assume that

d(wg, 02) < 2|y — w|

up to a subsequence. In particular, xo, € Q. We let a chart ¢ : U — V as in (13)
with yo = 2o and where U,V are open neighborhoods of 0 and x, respectively.
We let Zx, g € U N{x1 < 0} such that z = p(Zx) and yr = (gx). We let

s (- i)
d(xg, 00Q)

for all z € [Br(0) \ Bs(poo,0,...,0)] N {21 < 0}. As in Case 2.2 of the proof of
(G6)-(GT), we get with (G6) that for any R > 46 > 0, we have that

Gr(2) = | — @x" "

Gkl c1(1B )20\ Bas (9 0, 0N g1 <0py = O)

when k — 400, where poo = limg_, 400 Iﬂfi—%k‘ Since G}, vanishes on {z1 = 0},
it then follows that there exists C' > 0 such that |Gy (2)| < C|z] for all z €
[Br/2(0) \ B2s(pos, 0, ...,0)] N {z1 < 0}. Coming back to the definition of G} and
noting that d(yx, 9Q) = (1+0(1))|gk,1| when k — 400, we get a contradiction with
(144) as in Case 2.2 of Step 9.2.

In all the cases, we have contradicted (144). This proves the claim and ends Step
9.3.
The proof of Theorem 9.1 is complete. We prove Theorem 9.2.

Step 9.4: We let H(x) = —9,G,(0) for any x € Q\ {0}. It follows from (143) that
there exists C' = C(Q, K, A) > 0 such that

Cd(x,00) < C
[ T fan et
for all z € Q. Since AG, + aG, = 0in Q\ {z}, using the symetry (G4) of G and

(145), we get that H € C?(Q2\ {0}) and that AH +aH = 0 in Q and H(z) = 0 for
all z € 90\ {0}. Derivating (G3), we get that

0<H(x) < (145)

9 p(0) = — . H(z)(Ap + ap)(z) dz (146)

for all ¢ € C2?(Q2) such that ¢ = 0 on 9.

Step 9.5: Assume that there exists a sequence (ax)r=o € C%Y(Q) such that
(135) and (134) hold, that there exists a sequence (7)r>0 € R such that r, > 0,
limg—, oo 7, = 0 and
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Hy,(z)|=]"
d(z,00)

where Hj, comes from the Green’s function of A + ar. We claim that in this
situation, we have that

lim sup
h=F00 |g|=r,

207

Hi(z)[=["

lim sup (d(:c %)

k=00 Lre <]z <3ry

+ |:c|"|VHk(:c)|> =0. (147)

Indeed, we let ¢ : U — V as in (13) where U,V are open neighborhoods of 0. We
let

Hy () = rii~ Hi(p(ryz))
for all z € = ﬂ {z1 < 0}. Tt follows from (145) that for any R > § > 0, there exists
C(R,9) >~O such that |Hy(z)| < C(R,¥) for all z € [Br(0) \ Bs(0)] N {z; <0}. In
addition Hj vanishes when x; = 0. Moreover, we have that

Ay, Hy, + r2ag(p(rpx))Hy = 0,
where (gx)i; = (0@, 0j¢)(rix) for i,j € {1,...,n}. It then follows from standard

elliptic theory that there exists H € C?*(R™ \ {O}) such that AH = 0 in R” \ {0}
and

lim E[k = E[
k—+o0
in C2 _(R™ \ {0}). As easily checked, we have that
Hi(z)]x]"
lim sup (7 + |z|" |\ VHg(2)]
k—+o0 17’)@<‘:E‘<3T’k d(I,aQ)
H(z)|z ~
= sup % + |z|"|VH ()] (148)
$<|z|<3 |21
and
Hi(z)]x]" H(x)|z|"
0= lim sup ——F—=sup | —— | . 149
k—+o0 |z|=rp d(cc 89) |z|=1 |ZE1| ( )

Assume that H # 0. Then, since H > 0 vanishes on 9R™, we have that H > 0 in
R” and 8;H < 0 on dR™ \ {0}. It then follows that the RHS of (149) is positive.

A contradiction, since the LHS is 0. Then H = 0, and (147) follows from (148).
This ends Step 9.5.

Step 9.6: We claim that there exists €(€2, K, ) > 0 such that
H(@)|al"
lim inf > e(), K, N). 150
ern_}n Iilﬁ_pT d(z, 08) =z e K, A) (150)

Indeed, we argue by contradiction and assume that there exists a sequence (ax)x>0 €
C%%(Q) such that (135) and (134) hold, that there exists a sequence (1 )r>0 € R
such that rg > 0, limg_— 400 7% = 0 and
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Hy(z)[z]" _
P imoq)

=7y

lim su
k——+o0 ||

where Hj comes from the Green’s function of A + ai. It then follows from Step
9.5. that

lim my = 0. (151)

k—-+oo

where
Hi (x)]x]"
my = sup ————— + |z|*|VH(z)| | .
%rkg\z\gi%rk ( d(I,@Q)
We let 7 € C*°(R") such 7 = 0 in B;(0) and 7 = 1 in R™ \ B2(0). We let
nk(z) = 7(x/ry) for all z € R™ and all k > 0. We let ) € C?(Q) such that

Ay, + arpr, =1 1in Q and ¢ = 0 on 9N.

It follows from standard elliptic theory that limg . oo or = ¢ # 0 in C%(Q). It
then follows from Hopf’s maximum principle that

8,(0) < 0. (152)

Integrating by parts and using that AHy + ax Hy = 0, we obtain that

Hy(z)(Agr + arpr)(z) de = / (e Hie) () (Apk + arr) (z) dz + o(1)
Q Q

/Q<A<nkﬂk> - amHy o i + o(1)

/Q((A’I]k)Hk — 2V?7kVHk)g0k dx + 0(1)

/ (Aq)Hy, — 290V Hy )y do
QN B2y, (0)\B,, (0)

+o(1)

where limy_ 1 o 0o(1) = 0. Since 4(0) = 0 and limy_ 1o Y = @ in C*(Q), using
the definition of mj, we get that

A Hy(2)(Agr + arpr)(z)de = O (Tg(mkrk_%",lg_"rk)) +0(1) = O(my) + o(1).

With (151), letting k — 400, and using (146) we get that

9,0(0) = 0,0 (0) + 0(1) = — 5 Hi(2)(Agk + arpr)(z) dz + o(1) = 0.

A contradiction with (152), and the claim is proved.
Step 9.7: We claim that there exists €(€2, K, A) > 0 such that

e Hz)la]”
—_— > .
llirilglfli?:fr ERD) > e(Q, K, ) (153)
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Indeed, we argue by contradiction and assume that there exists a sequence (ax)k>0 €
C%%(Q) such that (135) and (134) hold, that there exists a sequence (ry)r>0 € R
such that r; > 0, limg_— 400 7% = 0 and

e Hi (@) )"

1 f ———— =0
where Hj, comes from the Green’s function of A + aj. Mimicking the proof of Step
9.5, we obtain that Hy(z) := r}" ' Hy(¢(riz)) converges to H in CL (R™ \ {0}).

We get that

f[(:v)|:v|": lim inf

Hy(x)]z"
le|=1 || k—too |z|=ry d(z,0)

= 0.

Since H > 0 is harmonic and vanishes on JR™ \ {0}, it follows from Hopf’s maximum
principle that H = 0. We then get that

H, " H "
e A@ll
d(CC,(?Q) |z|=1 |I1|

A contradiction with Step 9.6. This proves the claim.

Step 9.8: We claim that there exists C' = C(Q, K, A) > 0 such that

lim sup

ko0 |z|=rk

d(z, 00) < H(z) < Cd(z,00)
Clal |z
for all x € Q\ {0}. Indeed, this claim is a consequence of (145), Step 9.7 and
standard elliptic theory. This proves point (G11).

Step 9.9: We claim that there exists C(€, K, A) > 0 such that

|z|"|VH (x)| < C(Q, K, \) (154)
for all z € 2\ {0}. We proceed by contradiction and assume that that there exists
a sequence (ag)r>o € C%?(Q) such that (135) and (134) hold, that there exists a
sequence (zr)r>o € € such that

k1n+n |2k ||V Hy (x1)| = 400, (155)

where Hj, comes from the Green’s function of A + ay.

Case 1: limg_, oo xx # 0. In this case, since AHy +axHy = 0, it follows from (145)
and standard elliptic theory that |V Hy(xy)| = O(1) when k — +o0.

Case 2: limg_, o0 x = 0. We consider ¢ : U — V as in (13) with yo =0 and U,V
are open neighborhoods of 0. We let ), = ¢(Zx). We let

Hy(x) = |2x|" " Hi(p(|Zx|2))
for all z € % N{x; <0}. Asin Step 9.5, we get that there exists C' > 0 such that

[l ot (21 <030 B2 (0)\ By 2 (0)) < C-
Estimating the gradient at Zx/|Zx|, we get that

|z |V Hy (zx)] = O(1)

when k& — +o0.
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In both cases, we have contradicted (155). This proves (154).
Step 9.10: We claim that there exists §(Q2, K, \), C(2, K, A) > 0 such that

|2[*|VH (2)| > C(Q, K, A) (156)
for all z € Q\ {0} such that |z| < 6(Q2, K, ). We proceed by contradiction and
assume that that there exists a sequence (ax)r>o € C%%(Q2) such that (135) and
(134) hold, that there exists a sequence (xx)g>0 € € such that limy_ ooz = 0
and

where Hj, comes from the Green’s function of A 4+ a;. We let 2 = ¢(%x) and
Yk = (p(gk) We let

Hy,(x) = [&4[" " Hi(p(|7x 7))
for all x € \i_Ukl N {z1 < 0}. Mimicking the proof of Steps 9.5 and 9.9, we get that
there exists H € C?(R™ \ {0}) such that

lim H,=H (158)
k—+o0
in C2_(R™ \ {0}). In particular, we have that H is harmonic. It follows from Step

9.8 and (158) that there exists C' > 0 such that

for all x € R™ \ {0}. It then follows from the rigidity Property 9.1 below that
VH(z) # 0 for all z € R™ \ {0}. It follows from (157) and (158) that there exists
& € R™ \ {0} such that VH (%) = 0. A contradiction. This proves (156).

Clearly Theorem 9.2 is a consequence of Steps 9.4 to 9.10.
Step 9.11: Our last step is the proof of the following rigidity result:

Proposition 9.1. Let h € C?(R™ \ {0}). We assume that h is nonnegative in a
neighborhood of 0, harmonic and vanishes on OR™ \ {0}. We assume that there
exists C > 0 such that |h(z)| < Clz|*™™ for all z € R™ \ {0}. Then there exists
o > 0 such that

|71

h(z) = a—

(z) PE
for all z € R™ \ {0}.

Proof. Up to rescaling, we assume that h > 0 in B2(0) \ {0}. We let

= max{)\ >0/ h(z) > )\% for all x € R™ 051(0)}.
T

We let h(z) = h(z) — a% for all z € R™. The new function % satisfies the

hypothesis of Proposition 9.1. In addition, it follows from the definition of o and
Hopf’s maximum principle that
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;L n
lmint nf 2@
r—0 |z|=r —x1

Mimicking what was done in Steps 9.5 and 9.7, we get that

E n
liminf  sup M =0.
r—0 |z|=r, x€R™ —I1
We let R
- _ h(z1, ) if 1 <0and (z1,2) #0
h = = ’
(21,7) { —h(—21,%) if 21 > 0.

As easily checked, we have that A € C2(R" \ {0}) and Ah = 0 in R™ \ {0}. With
the definition of i, we immediately get that

h@)| - o

O

liminf sup ———— =
r—0 |z|="r |I1|

We let (rg)r>o such that limg_, ;o0 7 = 0 and

liminf sup

k—+o0 Iml:r,c

We let 77 € C*°(R™) such that 77 = 0 in B1(0) and 77 = 1 in R™ \ By(0). We let
e (z) := 7(z/rr). Mimicking what was done in Step 9.6, we let ¢ € C2°(R™) and
get that

/ﬁAcpdm = /nkﬁAgodx—&-o(l)

. A(ngh) - (¢ = (0)) dz + (0) . Alnh) da + o(1)

= o) +¢(0) [ A(h)da
R’n
We let R > 3, and choose kg such that 0 < r; < 1 for k > kg. We then get that

A(nph)dz| = / A(nph) dz| = / Ay (nxh) do
R™ Br(0) OBR(0)
= / dyhvdo| < CR R < €
081 (0) R
Letting R — +00, we get that [5, A(nih) dz = 0. We finally get that

/ iLA(pdz =0

for all ¢ € C°(R™). As a consequence, Ak = 0 in D'(R™), and h € C2(R"). Since
there exists C' > 0 such that |h(z)| < C|z|'™", we then get that h is uniformly
bounded on R™. Since Ah = 0, we get that h = 0. In particular,
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_
|2|™

for all x € R™ \ {0}. O

h(z)

10. APPENDIX C: SYMMETRY OF THE POSITIVE SOLUTIONS TO THE LIMIT
EQUATION

This section is devoted to the proof of a symmetry property for the positive
solutions to the limit equations involved in Proposition 3.1.

Proposition 10.1. Let n > 3 and s € (0,2). We let u € C*(R™) N CH(R™) such
that

Au = % m R™
u >0 in R™ (159)
u = O on 3R71,

where 2* = % We assume that there exists C > 0 such that u(z) < C(1 +
|z|)1=" for all x € R™. Then we have that u o o = u for all isometry of R™ such
that o(R™) = R™. In particular, there exists v € C*(R* x R) N C*R_ x R) such
that for all x1 < 0 and all 2’ € R"™1, we have that u(z1,2') = v(x1,|2|).

We prove the Proposition in the sequel. We let v € C?(R") N C'(R™) that
verifies the system (159) and such that there exists C' > 0 such that

C

< B 160
1S T e oo
for all x € R™. We &} be the first vector of the canonical basis of R™. We let the
open ball
1
D = B1/2 (—551) .
We define

o(x) = |z "y <51 + #) (161)
for all z € D\ {0}. We prolongate v by 0 at 0. Clearly, this is well-defined.
Step 10.1: We claim that

ve C*D)nCHD) and % <0ondD (162)
where 0/0v denotes the outward normal derivative.

Proof. Tt follows from the assumptions on u that v € C#(D) N CY(D \ {0}). More-
over, v(z) > 0 for all x € D and v(z) = 0 for all x € 9D \ {0}. It follows from the
estimate (160) that there exists C' > 0 such that

v(z) < Clzl (163)

for all z € D\ {0}. Since v(0) = 0, we have that v € C°(D). The function v verifies

the equation
. .
2 -1 2 1

Av = =
|z + [z?e]s Jz)® |z + el

(164)



62 N. GHOUSSOUB AND F. ROBERT

in D. Since —€; € 9D\ {0} and v € C1(D\ {0}) N C°(D), there exists C' > 0 such
that

v(z) < Clz + & (165)
for all z € D. It then follows from (163), (164), (165) and standard elliptic theory
that v € C'(D). Since v > 0 in D, it follows from Hopf’s Lemma that 3% < 0 on
oD. (]

We prove the symmetry of w by proving a symmetry property of v, which is
defined on a ball. Our proof uses the moving plane method. We take largely
inspiration in [25] and [8]. Classically, for any g > 0 and any z = (2/,2,) € R”
(z' € R"! and z,, € R), we let

z, = (2',2p—z,) and D, = {x € D/ z,, € D}.

It follows from Hopf’s Lemma (see (162)) that there exists g > 0 such that for any
1 € (3 — €0, 3), we have that D, # 0 and v(z) > v(z,) for all z € D, such that
xn < pr. We let 11> 0. We say that (P,) holds if D,, # 0 and

v(@) = vle,)
for all x € D,, such that x,, < pu. We let

A := min {u >0/ (P,) holds for all v € (u, %) } . (166)

Step 10.2: We claim that A = 0.

Proof. We proceed by contradiction and assume that A > 0. We then get that
D) # 0 and that (Py) holds. We let

w(x) :=v(z) —v(z))
for all x € Dy N {x, < A}. Since (Py) holds, we have that w(xz) > 0 for all
x € DynN{z, < A}. With the equation (164) of v and (Py), we get that
U(m)z*—l U@)\)T—l

Aw = -
|z + |z[2€1]*  |za + [2a]?én]

. 1 1
> oo (e - e e
for all x € Dy N{z, < A}. With straightforward computations, we have that
|2Al* = [2]* = 4A\ — @)
[x + a2 — o 0262 = (a2 — Jol?) (1 a2 o+ Jaf? + 200))

for all x € R™. It follows that Aw(x) > 0 for all z € Dy N {x, < A}. Note
that we have used that A > 0. It then follows from Hopf’s Lemma and the strong
comparison principle that

0
w>OinD>\ﬂ{xn<)\}anda—Z)<OonD>\ﬂ{zn:)\}. (167)
By definition, there exists a sequence ()\;);en € R and a sequence (z%);eny € D such
that \; < A, 2° € Dy, (2%), < A\, lim;_ 1 oo A\; = A and
v(z') <w((z')x,) (168)

for all « € N. Up to extraction a subsequence, we assume that there exists = €
(Dx N {x, < A}) such that lim; ., 2* = x with z, < . Passing to the limit
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i — 400 in (168), we get that v(z) < v(zy). It follows from this last inequality and
(167) that v(z) — v(zy) = w(xz) =0, and then x € (D N {z, < A}).

Case 1: We assume that x € dD. Then v(zy) = 0 and x\ € 9D. Since D is a
ball and A > 0, we get that x = z, € 0D. Since v is C!, we get that there exists
7 € ((29)n, 2\ — (2%),,) such that

v(z') = v((@')x,) = Onv((@)', i) % 2((2")n = Ai)

Letting i — +o00, using that (z%),, < \; and (168), we get that d,,v(z) > 0. On the
other hand, we have that

_Ov A ov

Owo(e) = 5, (@) W@llen) = a7 5,

) < 0.

A contradiction.

Case 2: We assume that © € D. Since v(zy) = v(z), we then get that z) € D.
Since z € 9(Dy N {x, < A}), we then get that z € D N {x,, = A}. With the same

argument as in the preceding step, we get that d,v(x) > 0. On the other hand,

since x, = A, we get with (167) that d,v(z) = 8"“’7(1) < 0. A contradiction.

In all the cases, we have obtained a contradiction. This proves that A = 0. O

Step 10.3: Here goes the final argument. Since A = 0, it follows from the definition
(166) of A that v(a’, z,) > v(a’, —z,) for all z € D such that z,, < 0. With the
same technique, we get the reverse inequality, and then, we get that

(2, ) = v, —x,)

for all x = (2/,2,) € D. In other words, v is symmetric with respect to the
hyperplane {z, = 0}. The same analysis holds for any hyperplane containing €j.
Coming back to the initial function wu, this proves the Theorem.
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