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Abstract

Unlike the non-singular case s = 0, or the case when 0 belongs to the interior of a domain
Ω in IRn(n ≥ 3), we show that the value and the attainability of the best Hardy-Sobolev
constant on a smooth domain Ω,

µs(Ω) := inf

{

∫

Ω
|∇u|2dx; u ∈ H1

0 (Ω) and
∫

Ω

|u|2
∗(s)

|x|s
= 1

}

when 0 < s < 2, 2∗(s) = 2(n−s)
n−2

, and when 0 is on the boundary ∂Ω are closely related to
the properties of the curvature of ∂Ω at 0. These conditions on the curvature are also
relevant to the study of elliptic partial differential equations with singular potentials of
the form:

−∆u =
up−1

|x|s
+ f(x, u) in Ω ⊂ IRn,

where f is a lower order perturbative term at infinity and f(x, 0) = 0. We show that
the positivity of the sectional curvature at 0 is relevant when dealing with Dirichlet
boundary conditions, while the Neumann problems seem to require the positivity of the
mean curvature at 0.

∗Both authors were partially supported by a grant from the Natural Science and Engineering Re-

search Council of Canada.
†The paper is part of this author’s PhD’s thesis under the supervision of N. Ghoussoub.
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1 Introduction

We consider the value of the best Hardy-Sobolev constant on a domain Ω of IRn,

µs(Ω) := inf

{

∫

Ω
|∇u|2dx; u ∈ H1

0 (Ω) and
∫

Ω

|u|2
∗(s)

|x|s
= 1

}

(1)

and the corresponding ground state solutions for






−∆u = |u|2
∗(s)−2u
|x|s

in Ω

u = 0 on ∂Ω
(2)

when n ≥ 3, 0 < s < 2, and 2∗(s) = 2(n−s)
n−2

. Unlike the non-singular case and assuming 0
is on the boundary of the domain Ω, we show that these problems are closely connected
to the curvature of the boundary ∂Ω at 0. This is in sharp contrast with the non-singular
context s = 0, or when 0 belongs to the interior of a domain Ω in IRn, where it is well
known that µs(Ω) = µ0(IR

n) for any domain Ω and that µs(Ω) is never attained unless
cap(IRn \ Ω) = 0.
The case when ∂Ω has a cusp at 0 has already been shown by Egnell [10] to be quite
different from the non-singular setting. Indeed, by considering open cones of the form
C = {x ∈ IRn; x = rθ, θ ∈ D and r > 0} where D is a connected domain of the unit
sphere Sn−1 of IRn, Egnell showed that µs(C) is actually attained for 0 < s < 2 even
when C̄ 6= IRn.
The case where ∂Ω is smooth at 0 turned out to be also interesting as the curvature at 0
gets to play an important role. Indeed, we shall show that the positivity of the sectional
curvature at 0 is needed for problems with Dirichlet boundary conditions, while the
Neumann problems require the positivity of the mean curvature at 0.
More precisely, assume that the principal curvatures α1, ..., αn−1 of ∂Ω at 0 are finite.
The boundary ∂Ω near the origin can then be represented (up to rotating the coordinates
if necessary) by:

xn = h(x′) =
1

2

n−1
∑

i=1

αix
2
i + o(|x′|2),

where x′ = (x1, ..., xn−1) ∈ B(0, δ) ∩ {xn = 0} for some δ > 0 where B(0, δ) is the ball
in IRn centered at 0 with radius δ.
If we assume the principal curvatures at 0 to be negative, that is max1≤i≤n−1 αi < 0,
then the sectional curvature at 0 is positive and therefore ∂Ω –viewed as an (n − 1)-
Riemannian submanifold of IRn– is strictly convex at 0 ([12]). The latter property means
that there exists a neighborhood U of 0 in ∂Ω, such that the whole of U lies on one side
of a hyperplane H that is tangent to ∂Ω at 0 and U ∩ H = {0}. In our context, we
specify the orientation of ∂Ω in such a way that the normal vectors of ∂Ω are pointing
inward towards the domain Ω. The above curvature condition then amounts to a notion
of strict local convexity of IRn \ Ω at 0. Indeed, setting

Pγ,δ = {x = (x′, xn) ∈ IRn−1 × IR1 : xn > γ(x2
1 + ... + x2

n−1)} ∩ B(0, δ),
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then, with the above orientation of ∂Ω, the condition that the principal curvatures are
negative, yields the existence of δ > 0 and γ < 0 such that Pγ,δ ⊂ Ω, up to a rotation.
If the principal curvatures of ∂Ω are only non-positive on a neighborhood of 0, then we
simply have that P0,δ ⊂ Ω for some δ > 0. The following result will be established in
sections 2 and 3.

Theorem 1.1 Let Ω be a C2-smooth domain in IRn with 0 ∈ ∂Ω, then µs(Ω) ≤ µs(IR
n
+).

Moreover,

1) If T (Ω) ⊂ IRn
+ for some rotation T (in particular, if Ω is convex, or if Ω is star-shaped

around 0), then µs(Ω) = µs(IR
n
+) and it is not attained unless Ω is a half-space.

2) On the other hand, when n ≥ 4, and if the principal curvatures of ∂Ω at 0 are
negative (i.e., if max1≤i≤n−1 αi < 0), then µs(Ω) < µs(IR

n
+), the best constant

µs(Ω) is attained in H1
0 (Ω) and (2) has a positive solution on Ω.

The “global convexity” assumption on Ω in 1) can be contrasted with the hypothesis on
the principal curvature in 2) which, as discussed above, can be seen as a condition of
local strict concavity of the boundary at 0 when viewed from the interior of Ω. However,
we shall see that the latter is not a necessary condition for the existence of solution for
equation (2), since we will exhibit domains Ω where µs(Ω) < µs(IR

n
+), even though ∂Ω

is “flat at zero”.
Such an analysis is relevant to the study of elliptic partial differential equations with
singular potentials of the form

−∆u =
up−1

|x|s
+ f(x, u) in Ω ⊂ IRn,

under both Dirichlet and Neumann boundary conditions. Here f is to be seen as a lower
order perturbative term at infinity and f(x, 0) = 0. We shall see that in both Neumann
and Dirichlet problems, our existence results depend on conditions on the curvature of
the boundary near 0. The following two statements summarize the situation. Slightly
more general results will be established later.
In the following Dirichlet problem, the same concavity condition around the origin will
play a key role.

Theorem 1.2 Let Ω be a bounded domain in IRn with C2 boundary and consider the
Dirichlet problem







−∆u = |u|2
∗(s)−2u
|x|s

+ λu in Ω.

u = 0 on ∂Ω.
(3)

for 0 < s < 2. Assume that 0 ∈ ∂Ω and that the principal curvatures of ∂Ω are non-
positive in a neighborhood of 0. If n ≥ 4 and if 0 < λ < λ1 (the first eigenvalue of −∆
on H1

0 (Ω)), then (3) has a positive solution.

For the Neumann problem, it is the positivity of the mean curvature at 0 that is needed.
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Theorem 1.3 Let Ω be a bounded domain in IRn with C2 boundary and consider the
Neuman problem







−∆u = |u|2
∗(s)−2u
|x|s

+ λu in Ω.

Dγu = 0 on ∂Ω.
(4)

for 0 < s < 2. Assume that 0 ∈ ∂Ω and that the mean curvature of ∂Ω at 0 is positive
(i.e.,

∑n−1
i=1 αi > 0). If n ≥ 3 and λ < 0, then (4) has one positive solution.

Remark 1.4 As expected, the variational methods used in this paper lead to weak
solutions. However, since the nonlinearities g(x, u) we consider, satisfy |g(x, u)| ≤ C(1+
|u|2

∗(s)−1) on any bounded domain Ω′ such that 0 6∈ Ω′, regularity theory and the strong
maximum principle can be applied in Ω′ (cf. [20, Appendix B]). Therefore, a non-
negative solution u ∈ H1

0 (Ω) to (3) is necessarily C∞ on Ω. It satisfies u(x) > 0 for
every x ∈ Ω, but may have a singularity at 0. The same remark applies to equations
with subcritical perturbation terms as well as to the corresponding Neumann problem.

2 Best Hardy-Sobolev Constants

The best Hardy-Sobolev constant of a domain Ω ⊂ IRn (n ≥ 3) is defined as:

µs(Ω) := inf

{

∫

Ω
|∇u|2dx; u ∈ H1

0 (Ω) and
∫

Ω

|u|2
∗(s)

|x|s
= 1

}

(5)

where 0 ≤ s < 2, 2∗(s) = 2(n−s)
n−2

.
In the non-singular case s = 0, this is nothing but the best Sobolev constant of Ω

and it is well known that µ0(Ω) = µ0(IR
n) for any domain Ω and that µ0(Ω) is never

attained unless cap(IRn \ Ω) = 0.
Similar results hold in the singular case (0 < s < 2) provided 0 belongs to the interior

of the domain Ω. Indeed, as noticed by several authors [14], the best constant in the
Hardy-Littlewood-Sobolev inequality is not attained on those domain Ω containing 0
and satisfying cap(IRn \ Ω) 6= 0, while it is attained on IRn by functions of the form

ya(x) =
(a · (n− s)(n− 2))

n−2
2(2−s)

(a+ |x|2−s)
n−2
2−s

(6)

for some a > 0. Moreover, the functions ya are the only positive radial solution to

−∆u =
u2∗(s)−1

|x|s
in IRn, (7)

hence, by denoting µs := µs(IR
n), we have:

µs(
∫

IRn

|ya|
2∗(s)

|x|s
)

2
2∗(s) = ‖∇ya‖

2
2 =

∫

IRn

|ya|
2∗(s)

|x|s
= µ

n−s
2−s
s . (8)
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In this section, we deal with the more interesting case when 0 belongs to the boundary
of the domain Ω. We shall see that the situation is completely different as it very much
depends on the smoothness and the curvature of the boundary at 0

The case when ∂Ω is not smooth at 0 has been well analysed by Egnell [10]. Starting
with the case where Ω is a half-space IRn

+ or more generally an open cone of the form
C = {x ∈ IRn; x = rθ, θ ∈ D and r > 0} where D is a connected domain on the unit
sphere Sn−1 of IRn, Egnell [10] showed that µs(C) is actually attained for 0 < s < 2 even
when C̄ 6= IRn, and therefore there exists a positive solution for















−∆u = u2∗(s)−1

|x|s
in C,

u = 0 on ∂C,
u(x) = o(|x|2−n) as |x| → ∞ in C.

(9)

A consequence of Egnell’s result is that µs(C) 6= µs(IR
n) whenever IRn\C is non-negligeable.

For otherwise, we can find a u ∈ H1
0 (C), u ≥ 0 in C, which attains µs(IR

n). Such a so-

lution u satisfies −∆u = λ |u|2
∗(s)−2u
|x|s

in IRn, where λ > 0 is a Lagrange multiplier. By
the strong maximum principle u > 0 in IRn, which is a contradition. One obtains in
particular that, µs(IR

n
+) > µs(IR

n), and more generally that

µs(C1) > µs(C2), (10)

whenever Ci are cones such that C1 ⊂ C2.
The main ingredient in this analysis comes from the fact that the quantities ||∇u||L2(IRn)

and
∫

IRn
|u|2

∗(s)

|x|s
dx are invariant under scaling u(x) 7→ r

n−2
2 u(rx). This means that when-

ever 0 ∈ ∂Ω, we have µs(Ω) = µs(λΩ) for any λ > 0. It is also clear that µs is invariant
under rotations. These observations combined with the fact that µs(Ω1) ≥ µs(Ω2) if
Ω1 ⊆ Ω2, yield that the best constant for any finite cone (that is, the intersection of an
infinite cone with a bounded connected open set) is the same as the best constant for
the corresponding infinite cone.

In the sequel, we deal with the distinct and more interesting case where 0 is a smooth
point of the boundary of the domain Ω as stated in Theorem 1.1. In contrast to Egnell’s
result on pointed cones, we have in particular the following examples which give a totally
different picture when the “cones” are smooth at 0.

Proposition 2.1 Assume n ≥ 4 and define, for each γ ∈ IR, the open paraboloid

Pγ = {x = (x′, xn) ∈ IRn−1 × IR : xn > γ|x′|2}.

1) If γ ≥ 0, then µs(Pγ) = µs(IR
n
+).

2) If γ < 0, then µs(Pγ) = µs(IR
n).

It follows that µs(Pγ) is not attained unless Pγ = IRn or IRn
+.
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Proof: (1) If γ ≥ 0, then Pγ ⊂ IRn
+ and obviously µs(Ω) ≥ µs(IR

n
+). We shall prove

below that the reverse inequality µs(Ω) ≤ µs(IR
n
+)holds whenever ∂Ω is smooth at 0.

For (2), notice that for λ > 0, λPγ = P γ

λ
. On the other hand, if γ < 0, then

M := IRn\{x = (0, xn); xn ≤ 0} = ∪0<λ<1λPγ. Choose uε ∈ C∞
0 (M), such that

∫

M
|uε|2

∗(s)

|x|s
dx = 1, and

∫

M |∇uε|
2 ≤ µs(M) + ε. There exists δ > 0, such that for all

λ < δ, uε ∈ C∞
0 (P γ

λ
), which implies that µs(P γ

λ
) ≤ µs(M) + ε. It leads immediately

to infλ µs(P γ

λ
) ≤ µs(M). Since infλ µs(P γ

λ
) = µs(Pγ) by scaling invariance, we have

µs(Pγ) = µs(M). That µs(IR
n) = µs(M) follows from the fact that M = IRn \ L where

L = {x = (0, xn); xn ≤ 0} is a 1-dimensional subspace of IRn, whose capacity is zero as
soon as n ≥ 4 ([17], p. 397).

Behind these examples lies a more general phenomenon summarized in Theorem 1.1
whose proof will be given in various parts throughout this section. First, we prove that
µs(Ω) ≤ µs(IR

n
+). Note that µs(IR

n
+) = µs(Bδ) for all δ > 0, where

Bδ = {x = (x′, xn) ∈ IRn
+; |x′|2 + (xn − δ)2 < δ2}.

Indeed, since Bδ ⊂ IRn
+, we have that µs(IR

n
+) ≤ µs(Bδ) for all δ > 0, hence µs(IR

n
+) ≤

inf
δ
µs(Bδ). On the other hand, choose uε ∈ C∞

0 (Rn
+), such that

∫

IRn
+

|uε|2
∗(s)

|x|s
dx = 1, and

∫

IRn |∇uε|
2 ≤ µs(IR

n
+)+ ε. There exists mε ∈ N, such that for all m > mε, uε ∈ C∞

0 (Bm),
which implies that µs(Bm) ≤ µs(IR

n
+) + ε. This leads immediately to infδ µs(Bδ) ≤

µs(IR
n
+), hence to equality. Since λBδ = Bλδ for all λ, δ > 0, we get the conclusion

from scaling invariance. Now by the smoothness assumption on the domain Ω, there
exists –modulo a rotation– a ball Bε ⊆ Ω centered at (0, ε). This means that µs(Ω) ≤
µs(Bε) = µs(IR

n
+). Assertion (1) of Theorem 1.1 is then obtained by monotonicity and

by the rotation invariance of µs(Ω).

Theorem 2.2 If the principal curvatures of ∂Ω at 0 are negative, and if n ≥ 4, then
µs(Ω) < µs(IR

n
+).

As seen in the introduction, if the principal curvatures of ∂Ω at 0 are negative, then
there is γ < 0 and δ > 0 such that the set

Pγ,δ = {x = (x′, xn) ∈ IRn−1 × IR : xn > γ(x2
1 + ...+ x2

n−1)} ∩ B(0, δ),

is included in Ω, up to a rotation. We also note that if the principal curvatures of ∂Ω
are non-positive on a neighborhood of 0, then P0,δ ⊂ Ω.
By Egnell’s result [10], the problem







−∆u = |u|2
∗(s)−2u
|x|s

in IRn
+

u ∈ H1
0 (IRn

+), u > 0
(11)

has a positive solution φ, which, up to a multiplier, also attains the best constant

µs(IR
n
+). We may assume that φ ∈ H1

0 (IRn
+), that

∫

IRn
|φ|2

∗(s)

|x|s
= 1, and ||∇φ||22 = µs(IR

n
+).

6



We shall also extend φ to all of IRn by letting it equal 0 on the complement of IRn
+. For

these extremal functions, there holds the following estimates (see ([10], or appendix in
[16]):

|φ(x)| ≤
C

|x|n−2
and |∇φ(x)| ≤

C

|x|n−1
, ∀x 6= 0. (12)

To prove the theorem, it is sufficient to find a function u ∈ H1
0 (Ω) such that

∫

Ω |∇u|2dx

(
∫

Ω
|u|2

∗(s)

|x|s
)

2
2∗(s)

< µs(IR
n
+).

Following Jannelli and Solimini [16], we shall “bend”, cut-off and rescale φ, to get it into
Ω while still controlling its various norms. Indeed, denote x′ = (x1, ..., xn−1, 0), while
x = x′ + xnen.
For any σ > 0, the change of variables θσ(x) = x − γ

σ
|x′|2en is measure-preserving, in

other words, if Jθσ is the Jacobian matrix related to θσ, then |det(Jθσ)| = 1. Define the
bending φ(σ)(x) = φ(θσ(x)). By direct computations, we know that for sufficiently large
σ > 0,

∫

IRn
|φ(σ)(x)|2

∗(s)

|x|s
=
∫

IRn
|φ2∗(s)(x)|

|θ−1
σ (x)|s

dx

=
∫

IRn
+

|φ2∗(s)(x)|
|x+ γ

σ
|x′|2en|s

dx

=
∫

IRn
+

φ2∗(s)(x)
|x|s

dx− s γ
σ

∫

IRn
+

φ2∗(s)(x)|x′|2xn

|x|s+2 dx + o(σ−1)

= 1 − C1
γ
σ

+ o(σ−1),

(13)

where C1 > 0 is independent of the “curvature” γ and the scaling factor σ. Here we
used a Taylor expansion and the fact that

∫

IRn
+

φ2∗(s)(x)|x′|2xn
|x|s+2

dx ≤
∫

IRn
+∩{0<xn≤1}

φ2∗(s)(x)

|x|s
dx+

∫

|x|>1

φ2∗(s)(x)

|x|s−1
dx < +∞,

by the estimate on φ given in (12).

Consider now the functional I0(v) = 1
2

∫

IRn
+
|∇v|2dx− 1

2∗(s)

∫

IRn
+

|v|2
∗(s)

|x|s
dx. By a variant of

Pohozaev identity ([11], [16]), one has

d

dε
[I0(φ(x− εk|x′|2en))]ε=0 =

k

2

∫

{xn=0}
|∇φ|2|x′|2 = C2k,

where C2 := 1
2

∫

{xn=0} |∇φ|
2|x′|2 > 0, again which is independent of γ and σ.

Therefore, for sufficiently large σ > 0, we have

I0(φ
(σ)) =

1

2
µs(IR

n
+) −

1

2∗(s)
+ C2

γ

σ
+ o(σ−1). (14)

Combining (14) with (13), we obtain

∫

IRn |∇φ(σ)|2 = 2I0(φ
(σ)) + 2

2∗

∫

IRn
|φ(σ)(x)|2

∗(s)

|x|s

=
∫

IRn |∇φ|2 + 2(C2 −
1

2∗(s)
C1)

γ
σ

+ o( 1
σ
)

= µs(IR
n
+) + 2(C2 −

1
2∗(s)

C1)
γ
σ

+ o( 1
σ
).
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Note that for γ = 0, we have φ(σ) = φ, which means that there is no any error term in
the above estimates.
Define now a cut-off function ψσ, such that ψσ ≡ 1 for |x| ≤ 1

2
δσ and ψσ ≡ 0 for

|x| ≥ δσ, ψσ is radially symmetric, and |ψ′
σ(r)| ≤ C 1

σ
.

By direct computations, we know

∫

IRn |∇(φ(σ)ψσ)|
2 =

∫

IRn |∇φ(σ)|2ψ2
σ + 2

∫

φ(σ)ψσ∇φ
(σ) · ∇ψσ +

∫

|φ(σ)|2|∇ψσ|
2

=
∫

IRn |∇φ(σ)|2 +
∫

IRn |∇φ(σ)|2(ψ2
σ − 1) +

∫

|φ(σ)|2|∇ψσ|
2

+2
∫

φ(σ)ψσ∇φ
(σ) · ∇ψσ.

From (12), there holds

∫

|∇φ(σ)|2(1 − ψ2
σ)dx ≤

∫

|x|≥ 1
2
δσ
|∇φ(σ)|2 ≤ C

∫ +∞

1
2
δσ

rn−1

r2n−2
dr = O(σ2−n),

∫

|∇ψσ|
2(φ(σ))2 ≤ C

∫ δσ

1
2
δσ

rn−1

r2n−2
dr = O(σ2−n).

For
∫

φ(σ)ψσ∇φ
(σ) · ∇ψσ we have a similar estimate. Hence for n ≥ 4,

∫

IRn
|∇(φ(σ)ψσ)|

2 = µs(IR
n
+) + 2(C2 −

1

2∗(s)
C1)

γ

σ
+ o(σ−1).

Similarly,
∫ |φ(σ)ψσ|

2∗(s)

|x|s
=
∫ |φ(σ)|2

∗(s)

|x|s
+
∫ |φ(σ)|2

∗(s)(1 − ψ2∗(s)
σ )

|x|s
.

From the estimate (12), since s < 2, we know that

∫ |φ(σ)|2
∗(s)(1 − ψ2∗(s)

σ )

|x|s
≤ C

∫ ∞

1
2
δσ

rn−1

r2∗(s)(n−2)+s
dr = C

∫ ∞

1
2
δσ
rs−n−1dr = O(σs−n) = o(σ−1).

It follows that
∫ |φ(σ)ψσ|

2∗(s)

|x|s
= 1 − C1

γ

σ
+ o(σ−1).

Set now
φσ(x) ≡ σ

n
2∗ φ(σ)(σx)ψσ(σx).

and note that supp(φσ) ⊂ Pγ,δ ⊂ Ω for every σ > 0. Since ||∇u||L2(IRn) and
∫

IRn
|u|2

∗(s)

|x|s

are invariant under the scaling u(x) 7→ r
n−2

2 u(rx), the following estimates then hold:

∫

Ω
|∇φσ|

2 = µs(IR
n
+) + 2(C2 −

1

2∗(s)
C1)

γ

σ
+ o(

1

σ
), (15)

∫

Ω

|φσ|
2∗(s)

|x|s
= 1 − C1

γ

σ
+ o(

1

σ
). (16)
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Now we claim that for σ large enough,

∫

Ω |∇φσ|
2dx

(
∫

Ω
|φσ|2

∗(s)

|x|s
)

2
2∗(s)

< µs(IR
n
+).

From the estimates (15) and (16), the above is equivalent to:

µs(IR
n
+) + 2(C2 −

C1

2∗(s)
)
γ

σ
+ o(

1

σ
) < µs(IR

n
+)(1 −

2C1

2∗(s)

γ

σ
) + o(

1

σ
),

which, in view of the negativity of γ, reduces to verifying that

2C2 >
2C1

2∗(s)
(1 − µs(IR

n
+)).

It is therefore sufficient to show that µs(IR
n
+) > µs(IR

n) > 1, which is done in the
following lemma.

Lemma 2.3 For n ≥ 4, we have µs(IR
n) > 1.

Proof. By the Hardy, Sobolev and Hölder inequalities, for any u ∈ H1(IRn), u 6= 0, we
have

∫

IRn
|u|2

∗(s)

|x|s
=
∫

IRn
|u|s

|x|s
· |u|2

∗(s)−s

≤ (
∫

IRn
|u|2

|x|2
)

s
2 (
∫

IRn |u|(2
∗(s)−s) 2

2−s )
2−s
2

= (
∫

IRn
|u|2

|x|2
)

s
2 (
∫

IRn |u|2
∗
)

2−s
2

≤ [µ2(IR
n)]

−s
2 (
∫

IRn |∇u|2)
s
2 [µ0(IR

n)]−
2∗

2
· 2−s

2 (
∫

IRn |∇u|2)
2∗

2
· 2−s

2

= [µ2(IR
n)]

−s
2 [µ0(IR

n)]−
2∗

2
· 2−s

2 (
∫

IRn |∇u|2)
n−s
n−2 ,

which implies
∫

IRn |∇u|2dx

(
∫

IRn
|u|2

∗(s)

|x|s
)

2
2∗(s)

≥ [µ2(IR
n)]

s
2∗(s) · [µ0(IR

n)]
n(2−s)
2(n−s) .

By minimizing over u, we get µs(IR
n) ≥ [µ2(IR

n)]
s

2∗(s) · [µ0(IR
n)]

n(2−s)
2(n−s) .

Since n ≥ 4, the Hardy constant µ2(IR
n) = (n−2

2
)2 ≥ 1 and the optimal Sobolev constant

µ0(IR
n) = 1

4
(ωn)

2
n [n(n− 2)] > 1.

Exterior Domains:

The “strict concavity of Ω at 0” (implied by the strict negativity of the principal
curvatures of ∂Ω at 0) is not necessary for the existence of the solution to (2), since
there are domains Ω that are flat at 0, yet satisfying µs(Ω) < µs(IR

n
+). These examples

are based on the following observations:

Proposition 2.4 If Ω is an exterior domain with 0 ∈ ∂Ω, then µs(Ω) = µs(IR
n).

9



Indeed, the hypothesis means that IRn\Ω is connected and bounded. In this case, we
have IRn\{0} = ∪0<λ<1λΩ. Because C∞

0 (IRn\{0}) is dense in H1(IRn) for n ≥ 2 (cf.
[8, Lemma 2.2]), we also have µs(IR

n) = µs(IR
n\{0}). Combining these two facts with

scaling invariance, yields easily that µs(Ω) = µs(IR
n).

The above remark allows the construction of various interesting examples. Indeed,
let Ω0 be any exterior domain with 0 ∈ ∂Ω and define Ωr := Ω0 ∩B(0, r), where B(0, r)
is the standard Euclidean ball with radius r > 0, centered at 0. Obviously ∂Ωr is smooth
at 0 and µs(Ωr1) ≤ µs(Ωr2) if r1 > r2. We have the following

Proposition 2.5 There exists r0 ≥ 0 such that r → µs(Ωr) is left-continuous and
strictly decreasing on (r0,+∞). In particular, µs(IR

n) < µs(Ωr) < µs(IR
n
+) for all

r ∈ (r0,+∞).

Proof. Using similar arguments as above (scaling invariance and approximation of
smooth functions), combined with the smoothness assumption on ∂Ω0, one can easily
observe that:

µs(Ω0) = inf
r>0

µs(Ωr) and µs(IR
n
+) = sup

r>0
µs(Ωr).

Now we claim that for all r > 0, µs(Ωr) > µs(IR
n). Indeed otherwise, by Corollary

3.2, there is some r∗ > 0, such that µs(Ωr∗) = µs(IR
n) is attained by some function

u ∈ H1
0 (Ωr∗) with u ≥ 0. In other words, µs(IR

n) is also attained by this function u,
hence u satisfies the corresponding Euler-Lagrange equation in the whole space, while
by the Strong Maximum Principle, we know u > 0 in IRn, which is a contradiction.

The argument for the left-continuity of µs(Ωr) goes like this: For a fixed r > 0
and arbitrarily small ε > 0, one can always choose a function u ∈ C∞

0 (Ωr), such that
∫

Ω |∇u|2dx ≤ µs(Ωr) + ε, and
∫

Ωr

|u|2
∗(s)

|x|s
dx = 1. Since supp(u) is compact, the distance

dist(∂B(0, r), supp(u)) =: δ > 0. It follows that supp(u) ⊂ Ωr′ , where r − δ < r′ < r,
hence µs(Ωr′) ≤ µs(Ωr)+ε, for r−δ < r′ < r, which means that µs(Ωr) is left-continuous.
This implies that there must be some r > 0, such that µs(IR

n
+) > µs(Ωr) > µs(IR

n).
Now define r0 := inf{r > 0;µs(IR

n) < µs(Ωr) < µs(IR
n
+)}.

It is clear that for every r > r0, µs(IR
n) < µs(Ωr) < µs(IR

n
+). Suppose now there exist

r2 > r1 > r0, but µs(Ωr1) = µs(Ωr2). Using Corollary 3.2, there exists a nonnegative
function u1 ∈ H1

0 (Ωr1), where µs(Ωr2) is attained. Hence u1 satisfies the corresponding
Euler-Lagrange equation in Ωr2 , and again this violates the Strong Maximum Principle,
hence the strict monotonicity.

Remark 2.6 In the above situation, both cases r0 > 0 and r0 = 0 could happen.
Indeed,

a) If IRn\Ω0 = B(0, r∗)∩ IRn
+, then r0 ≥ r∗. Notice that in this case, we have µs(Ωr) <

µs(IR
n
+) whenever r > r0, and therefore there exists a solution to (2), though ∂Ω

is flat near 0.

b) If IRn\Ω0 = Bδ := {x = (x′, xn) ∈ IRn : (xn − δ)2 + |x′|2 < δ2}, then r0 = 0.
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3 Blow-up Analysis and Attainability of Best Con-

stants

In this section, we show that some aspects of the well known blow-up techniques are
still valid in our context. The novelties here –when there is a singularity at 0 ∈ ∂Ω– are
the fact that the energies are not translation invariant, and that the limiting case is the
half-space IRn

+ as opposed to all of IRn. Consider the Dirichlet problem

{

−∆u = λuq−1 + |u|p−2u
|x|s

in Ω

u = 0 on ∂Ω
(17)

where Ω is a bounded domain in IRn, 0 ∈ Ω̄, 0 < s < 2 < n, p = 2∗(s) and 2 ≤ q <
2∗(0) = 2n

n−2
. Here λ > 0, if q > 2, but we can take λ ∈ IR, if q = 2.

The following discussion applies to the case where 0 ∈ Ω and also to the case where
0 ∈ ∂Ω, a boundary that is smooth near the origin. The “limiting problem” will be:

{

−∆u = |u|p−2u
|x|s

on M

u(x) → 0 as ‖x‖ → ∞,
(18)

where

M =

{

IRn, if 0 ∈ Ω,
IRn

+, if 0 ∈ ∂Ω.

The energy functional for (16) is well defined on H1
0 (Ω) by

Iλ(u) =
1

2

∫

Ω
|∇u|2 −

λ

q

∫

|u|q −
1

p

∫

Ω

|u|p

|x|s
dx,

while (17) corresponds to the functional I0

I0(u) =
1

2

∫

M
|∇u|2 −

1

p

∫

M

|u|p

|x|s
dx

defined on D1,2(M), which is the closure of C∞
0 (M) under the norm ‖u‖D1,2(M) =

∫

M
|∇u|2.

In view of Egnell’s result, both limiting problems have a solution corresponding to a
critical point of I0. The following is a direct extension of the known case when s = 0,
established by Struwe.

Theorem 3.1 Suppose (um)m is a sequence in H1
0 (Ω) that satisfies Iλ(um) → c and

I ′λ(um) → 0 strongly in H−1(Ω) as m→ ∞. Then, there is an integer k ≥ 0, a solution
U0 of (16) in H1

0 (Ω), solutions U 1, . . . , Uk of (17) in D1,2(M) ⊂ D1,2(IRn), sequences of
radii r1

m, . . . , r
k
m > 0 such that for some subsequence m→ ∞, rkm → 0 and

1) um → U0 weakly in H1
0 (Ω),

11



2) ‖Um − U0 −
k
∑

j=1

(rjm)
2−n

2 U j((rjm)−1·)‖ → 0, where ‖ · ‖ is the norm in D1,2(IRn),

3) ‖Um‖
2 →

k
∑

j=0

‖U j‖
2
,

4) Iλ(Um) → Iλ(U
0) +

k
∑

j=1

I0(U
j).

Recalling that a functional I is said to have the Palais-Smale condition at level c (P-S)c,
if any sequence (um)m in H1

0 (Ω) that satisfies Iλ(um) → c and I ′λ(um) → 0 in H−1(Ω) as
m → ∞, is necessarily relatively compact in H1

0 (Ω), we can immediately deduce from

the above theorem that Iλ satisfies (PS)c for any c < 2−s
2(n−s)

µs(M)
n−s
2−s . This implies the

following:

Corollary 3.2 Suppose that 0 ∈ ∂Ω and that ∂Ω is smooth near the origin.

1) If µs(Ω) < µs(IR
n
+), then µs(Ω) is attained.

2) If the principal curvatures of ∂Ω at 0 are negative, and if n ≥ 4, then there is a
positive solution to (2).

Proof: The above theorem yields that I0 satisfies (PS)c for any c < 2−s
2(n−s)

µs(IR
n
+)

n−s
2−s .

If µs(Ω) < µs(IR
n
+), then

β := inf
p∈P

sup
t∈[0,1]

I0(p(t)) =
2 − s

2(n− s)
µs(Ω)

n−s
2−s <

2 − s

2(n− s)
µs(IR

n
+)

n−s
2−s ,

where
P =

{

p ∈ C0
(

[0, 1] : H1
0 (Ω)

)

: p(0) = 0, I0(p(1)) ≤ 0
}

.

That β = 2−s
2(n−s)

µs(Ω)
n−s
2−s can be proved using the similar argument for s = 0 [20, p.178].

The mountain pass theorem yields a sequence uk ∈ H1
0 (Ω) such that

I0(uk) →
2 − s

2(n− s)
µs(Ω)

n−s
2−s and dI0(uk) → 0 in H−1(Ω).

The (P-S) condition yields that uk → u in H1
0 (Ω), I0(u) = 2−s

2(n−s)
µs(Ω)

n−s
2−s and dI0(u) =

0; that is
∫

Ω |∇u|2 =
∫

Ω
|u|p

|x|s
, so that

sup
t>0

I0(tu) = sup
t>0

{

t2

2

∫

Ω
|∇u|2 −

tp

p

∫

Ω

|u|p

|x|s

}

= I0(u).

But

sup
t>0

I0(tu) =
2 − s

2(n− s)







∫

Ω |∇u|2
(

∫

Ω
|u|p

|x|s

)2/p







n−s
2−s

,
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which implies that
∫

Ω |∇u|2
(

∫

Ω
|u|p

|x|s

)2/p
= µs(Ω)

is attained at u.
For 2), it is enough to combine assertion 1) with Theorem 2.2.

The proof of Theorem 3.1 requires several lemmas, some of which are quite standard,
like the following Brezis-Lieb type lemma (when s = 0)

Lemma 3.3 Assume {um} ⊂ H1
0 (Ω) is such that um → u a.e. on Ω and um → u

weakly in H1
0 (Ω). Then,

1)
∫

Ω
|um|p

|x|s
−
∫

Ω
|um−u|p

|x|s
→
∫

Ω
|u|p

|x|s
as n→ ∞

2)
∫

Ω |∇um|
2 −

∫

Ω |∇um −∇u|2 →
∫

Ω |∇u|2 as n→ ∞.

3) If um → u weakly in D1,2(IRn), then |um|p−2um

|x|s
− |um−u|p−2(um−u)

|x|s
→ |u|p−2u

|x|s
in

H−1(IRn).

Proof: The first two assertions are standard. Here is a proof of 3). By the mean value
theorem, we have

∣

∣

∣

∣

∣

|um|
p−2um
|x|s

−
|um − u|p−2(um − u)

|x|s

∣

∣

∣

∣

∣

≤ (p− 1) [|um| + |u|]p−2 |u|

|x|s
.

For R > 0 and w ∈ D(IRn), we get from Hölder’s inequality:

∣

∣

∣

∣

∣

∫

|x|>R

(

|um|
p−2

|x|s
um −

|um − u|p−2

|x|s
(um − u)

)

w

∣

∣

∣

∣

∣

≤ C
∫

|x|>R

|um|
p−2 + |u|p−2

|x|s
|u||w|

= C
∫ |um|

p−2|u||w|

|x|
s(p−2)

p
+ s

p
+ s

p

+ C
∫ |u|p−2|u||w|

|x|
s(p−2)

p
+ s

p
+ s

p

≤ C





(

∫

|x|>R

|um|
p

|x|s

)
p−2

p

+

(

∫

|x|>R

|u|p

|x|s

)
p−2

p



 ·

(

∫ |u|p

|x|s

)1/p

·

(

∫ |w|p

|x|s

)1/p

≤ C‖w‖

(

∫ |u|p

|x|s

)1/p

.

Here we have used the Hardy-Sobolev inequality:

(

∫

Ω

|w|p

|x|s

)1/p

≤ C‖w‖.
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We also have that
∣

∣

∣

∣

∣

∫

|x|>R

|u|p−2u

|x|s
w

∣

∣

∣

∣

∣

≤
∫

|x|>R

|u|p−1

|x|s·(1−
1
p
)
·
w

|x|
s
p

· dx

≤

(

∫

|x|>R

|u|p

|x|s

)

p−1
p

·

(

∫ |w|p

|x|s

)1/p

≤ C‖w‖

(

∫ |u|p

|x|s

)1/p

.

By the dominated convergence theorem, for every ε > 0, there exists R > 0 and k > 0
such that for all n > k, we have

∣

∣

∣

∣

∣

∫

|x|>R

(

|um|
p−2u

|x|s
−

|um − u|p−2(um − u)

|x|s
−

|u|p−2

|x|s

)

w

∣

∣

∣

∣

∣

≤ ε‖w‖.

As in [14, Lemma 4.3], we have on B(0, R),

∫

|x|<R

|um − u|p−2(um − u)

|x|s
w → 0 as n→ ∞

and
∫

|x|<R

|um|
p−2umw

|x|s
→
∫

|x|<R

|u|p−2

|x|s
w as n→ ∞.

Hence

∫

|x|<R

(

|um|
p−2

|x|s
um −

|um − u|p−2

|x|s
(um − u)

)

w −→
n→∞

∫

|x|<R

|u|p−2u

|x|s
w,

which completes the proof.

Lemma 3.4 Consider (um)m in H1
0 (Ω) such that Iλ(um) → c, and dIλ(um) → 0 in

H−1(Ω). For (rm) ∈ (0,∞) with rm → 0, assume that the rescaled sequence vm(x) :=

r
n−2

n
m um(rmx) is such that vm → v weakly in D1,2(IRn) and vm → v a.e. on IRn.

Then, dI0(v) = 0 and the sequence

wm(x) := um(x) − r
2−n

2
m v

(

x

rm

)

satisfies I0(wm) → c−I0(v), dI0(wm) → 0 in H−1(Ω) and ‖wm‖
2 = ‖um‖

2−‖v‖2+o(1).

Proof. Easy computations yield the dilation invariance:

‖vm‖
2 =

∫

IRn

∣

∣

∣

∣

∇
(

r
n−2

2
m um(rmx)

)
∣

∣

∣

∣

2

dx =
∫

IRn
|∇um|

2 dx = ‖um‖
2,

∫

IRn

|vm|
p

|x|s
=

∫

IRn
rn−sm

|um(rmx)|
p

|x|s
dx =

∫

IRn

|um|
p

|x|s
dx,
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therefore I0(vm) = I0(um), i.e., the functional I0 is invariant under dilation. Since
vm → v in D1,2(IRn), it is clear that

‖wm‖
2 = 〈∇wm,∇wm〉L2(IRn) = 〈∇vm −∇v,∇vm −∇v〉

= ‖vm‖
2 + ‖v‖2 − 2〈∇v,∇vm〉 = ‖vm‖

2 − ‖v‖2 + o(1)

= ‖um‖
2 − ‖u‖2 + o(1),

Since vm → v weakly in D1,2(IRn), dI0(um) → 0 in H−1(Ω), Lemma 3.3 leads to

I0(wm) = I0(vm) − I(v) + o(1) = I0(um) − I0(v) + o(1)

= c− I0(v) + o(1)

Since rm → 0, we have dI0(v) = 0, and again by Lemma 3.3, we finally obtain

dI0(wm) = dI0(um) − dI0(r
2−n

2
m v(

·

rm
)) + o(1) = o(1).

We also need the following:

Lemma 3.5 If u ∈ D1,2(IRn) and v ∈ C∞
0 (IRn), then

∫ v2|u|p

|x|s
≤ µs(IR

n)−1

(

∫

supp v

|u|p

|x|s

)

p−2
p ∫

|∇(vu)|2.

Proof. By Hölder’s inequality,

∫

v2|u|p

|x|s
=
∫ |u|p−2

|x|s(1−
2
p
)
·
|uv|2

|x|
2s
p

≤

(

∫

supp v

|u|p

|x|s

)1− 2
p

·

(

∫ |uv|p

|x|s

)
2
p

.

Now apply the Hardy-Sobolev inequality.

Proof of Theorem 3.1: Let um → u be inH1
0 (Ω) such that Iλ(um) → c, and dIλ(um) →

0 in H−1(Ω). That such a (PS)-sequence is bounded, is well known and can be found in
[14, Lemma 4.4]. Note that when q = 2, λ can be chosen to be any real number. There
exists therefore a subsequence, still denoted by (um) such that for some U0 ∈ H1

0 (Ω),
um → U0 weakly in H1

0 (Ω) and ∇um → ∇U0 a.e. An easy consequence of Lemma 3.3 is
that dIλ(U0) = 0. Moreover, the sequence u1

m := um − U0 satisfies

(∗)











‖u1
m‖

2 = ‖um‖
2 − ‖U0‖

2 + o(1)
dI0(u

1
m) → 0 in H−1(Ω)

I0(u
1
m) → c− Iλ(U0).
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Case (1): If u1
m → 0 in Lp(Ω, |x|−s dx), then 〈dI0(u

1
m), u1

m〉 =
∫

Ω |∇u1
m|

2 −
∫

Ω
|um|p

|x|s
→ 0,

since dI0(u
1
m) → 0. It follows that u1

m → 0 in H1
0 (Ω), and we are done.

Case (2): If u1
m 6→ 0 in Lp(Ω, |x|−s dx), then from

〈dI0(u
1
m), u1

m〉 =
∫

Ω
|∇u1

m|
2
−
∫

Ω

|um|
p

|x|s
= o(‖u1

m‖)

and
∫

Ω
|∇u1

m|
2
≥ µs(IR

n)

(

∫

Ω

|u1
m|

p

|x|s

)2/p

,

we have
(

∫

Ω

|u1
m|

p

|x|s

)1− 2
p

>
µs
2
,

for large n and we may therefore assume that

∫

IRn

|u1
m|

p

|x|s
> δ for some 0 < δ <

(

µs
2

)
n−s
2−s

.

Define an analogue of Levy’s concentration function,

Qm(r) =
∫

B(0,r)

|u1
m|

p

|x|s
.

Since Qm(0) = 0 and Q(∞) > δ, there exists a sequence r1
m > 0 such that for each n,

δ =
∫

B(0,r1m)

|u1
m|

p

|x|s
.

Define v1
m(x) := (r1

m)
n−2

n u1
m(r1

mx). Since ‖v1
m‖ = ‖u1

m‖ is bounded, we may assume

v1
m → U1 in D1,2(IRn) weakly, v1

m → U1 a.e. on IRn and δ =
∫

B(0,1)
|v1m|p

|x|s
dx. We now

show that U1 6≡ 0.
Define Ωm = 1

r1m
Ω, and let fm ∈ H1

0 (Ω) be such that for any h ∈ H1
0 (Ω), we have

〈dI0(u
1
m), h〉 =

∫

Ω ∇fm · ∇h. Then gm(x) := (r1
m)

n−2
2 fm(rmx) satisfies

∫

Ωm
|∇gm|

2 =
∫

Ω |∇fm|
2 and 〈dI0(v

1
m), h〉 =

∫

Ωm
∇gm · ∇h for any h ∈ H1

0 (Ωm).
If U1 ≡ 0, then v1

m → 0 in Lp1oc(B(0, 1), |x|−s dx). Choosing h ∈ C∞
0 (IRn) such that supp

h ⊂ B(0, 1), we get from Lemma 3.5,
∫

B(0,1)
|∇(hv1

m)|
2

=
∫

B(0,1)
∇v1

m · ∇(h2v1
m) + o(1)

=
∫

h2|v1
m|

p

|x|s
+
∫

∇gm · ∇(h2v1
m) + o(1)

≤ µs(IR
n)−1 ·

(

∫

B(0,1)

|u1
m|

p

|x|s

)1− p

2 ∫ ∣

∣

∣∇(hv1
m)
∣

∣

∣

2
+ o(1)

= µs(IR
n)−1δ

2−s
n−s

∫

∣

∣

∣∇(hv1
m)
∣

∣

∣

2
+ o(1)

≤
1

2

∫

∣

∣

∣∇(hv1
m)
∣

∣

∣

2
+ o(1).
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Hence ∇v1
m → 0 in L2

1oc(B(0, 1)) and v1
m → 0 in Lp(B(0, 1), |x|−s dx), which contradicts

the fact that
∫

B(0,1)
|v1m|p

|x|s
= δ > 0. Thus we have proved that U1 6≡ 0.

Since Ω is bounded, we can assume that r1
m → r1

∞ ≥ 0. If r1
∞ > 0, the fact that u1

m → 0

weakly in H1
0 (Ω) will imply that v1

m(x) :=
(

r1
m

)
n−2

2 u1
m(rmx) → 0 weakly in D1,2(IRn),

which contradicts that U1 6≡ 0, and therefore r1
m → 0.

By (∗) and Lemma 3.4, dI0(U1) = 0, and U1 is a weak solution of

{

−∆u = |u|p−2u
|x|s

in M

u→ 0 as |x| → ∞

where M = IRn if 0 ∈ Ω and where M = IRn
+ if 0 ∈ ∂Ω. Indeed, to show the latter case,

we can assume without loss of generality that ∂IRn
+ = {xn = 0} is tangent to ∂Ω at 0,

and that −en = (0, ...,−1) is the outward normal to ∂Ω at that point. For any compact
K ⊂ IRn

−, we have for m large enough, that Ω
r1m

∩K = ∅, as r1
m → 0. Since supp v1

m ⊂ Ω
r1m

and v1
m → U1 a.e. in IRn, it follows that U1 = 0 a.e. on K, and therefore suppU1 ⊂ IRn

+.

The sequence u2
m(x) := u1

m(x) − (r1
m)

2−n
2 U1

(

x

r1
m

)

also satisfies

‖u2
m‖

2
= ‖um‖

2 − ‖U0‖
2 − ‖U1‖

2 + o(1)
I0(u

2
m) → c− Iλ(U0) − I0(U1)

dI0(u
2
m) → 0 in H−1(Ω).

Moreover, any nontrivial critical point u of I0 on H1
0 (M) satisfies

µs(M)

(

∫

M

|u|p

|x|s

)
2
p

≤
∫

M
|∇u|2 =

∫

M

|u|p

|x|s
,

so that

I0(u) =

(

1

2
−

1

p

)

∫

M

|u|p

|x|s
≥ c∗ :=

2 − s

2(n− s)
µs(M)

n−2
2−s .

By iterating the above procedure, we construct similarly sequences (Uj), (rjm) with the
above properties. Since for every j ≥ 1, I0(Uj) ≥ c∗, the iteration must necessarily
terminate after a finite number of steps.

Remark 3.6 This type of blow-up result also holds for domains Ω with a conic singu-
larity at 0. More precisely, consider an infinite open cone of the form C = {x ∈ IRn; x =
rθ, θ ∈ D and r > 0} where D is a connected domain of the unit sphere Sn−1 of IRn,
and assume the domain Ω satisfies C ∩ Ω = C ∩ (Ω ∩ Br) for every ball Br (centered at
0) with radius r < r0, where r0 is some positive number (i.e., Ω has a conic singularity
at 0), then Theorem 3.1 remains true, with M –in this case– being the corresponding
infinite cone C.

Behind our analysis, is the fact that (PS)-sequences either converge or concentrate at
0. This is due to the fact that the embedding H1

0 (Ω′) ↪→ L2∗(s)(Ω′, |x|−sdx) is compact
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whenever 0 6∈ Ω′, which means there are no bubbles away from the origin. The following
corollary can also be obtained by combining Corollary 3.2 with Egnell’s analysis, which
imply that limr→0+ µs(Ω ∩ Br) = µs(IR

n
+).

Corollary 3.7 Suppose that 0 ∈ ∂Ω and that ∂Ω is C2 at 0. If µs(Ω) is not attained,
then there exists r0 > 0 such that Ω ∩ Br0 6= ∅ and µs(Ω) = µs(Ω ∩ Br) for every
r ∈ (0, r0).

Note that Theorem 1.1 implies that µs(Ω) is not attained whenever Ω is star-shaped
around 0, and therefore there is no ground-state solution for (2). The following standard
Pohozaev-type identity, gives a stronger result:

Proposition 3.8 If the domain Ω is star-shaped around 0, then problem






−∆u = |u|2
∗(s)−2u
|x|s

in Ω

u ∈ H1
0 (Ω)

(19)

has no non-trivial solution.

Proof. The assumption Ω is star-shaped around 0 simply means that x · γ > 0 on
∂Ω \ {0}, where γ is the outward unit normal to ∂Ω. Multiply the equation (19) by
x · ∇u on both sides and integrate by parts, we obtain

1

2

∫

∂Ω
|∇u|2x · γdσ +

n− 2

2

∫

Ω
|∇u|2dx =

n− s

2∗(s)

∫

Ω

|u|2
∗(s)

|x|s
dx.

On the other hand, multiplying the equation by u and integrating, we have

∫

Ω
|∇u|2dx =

∫

Ω

|u|2
∗(s)

|x|s
dx.

Combining these two identities, one gets
∫

∂Ω |∇u|2x · γdσ = 0, which concludes the
proposition.

Remark 3.9 Unlike the case s = 0 , we can have solutions to (2) for star-shaped
domains. Indeed, consider a bean-shaped domain with vertex at 0. Since the principal
curvatures are strictly negative at 0, there exists a solution to (2). Note that this is not
contradictory to Proposition 3.8, since the domain is not star-shaped at 0, though it is
star-shaped at some other point.

4 Least Energy Solution To The Perturbed Dirichlet

Problems

Throughout this section, we assume that Ω is a bounded domain in IRn and that 0 ∈ ∂Ω,
∂Ω is Lipschitz continuous, ∂Ω is C2 at the origin. Consider the functional

Iq(v) =
∫

Ω
[
1

2
|∇v|2 −

1

2∗(s)

v
2∗(s)
+

|x|s
−
λ

q
|v|q]dx

18



on H1
0 (Ω), where 2 ≤ q < 2∗ := 2n

n−2
.

We shall deal first with the case of linear perturbations.

Theorem 4.1 Let Ω be a bounded domain in IRn with Lipschitz boundary and consider
the Dirichlet problem







−∆u = |u|2
∗(s)−2u
|x|s

+ λu in Ω

u = 0 on ∂Ω.
(20)

for 0 < s < 2 and n ≥ 4. Assume that 0 ∈ ∂Ω and that ∂Ω is C2-smooth at 0. If
∂Ω has non-positive principal curvatures on a neighborhood of 0 (in particular, if ∂Ω
has negative principal curvatures at 0), then for any 0 < λ < λ1, (20) has a positive
solution.

Proof: The results of the last section give that Iq satisfies the Palais-Smale condition

(PS)c for any c < 2−s
2(n−s)

µs(IR
n
+)

n−s
2−s . So, we need to find a critical level below that

threshold, for the functional

I(v) =
∫

Ω
[
1

2
|∇v|2 −

λ

2
|v|2 −

1

2∗(s)

v
2∗(s)
+

|x|s
]dx

on the space H1
0 (Ω).

To use a mountain-pass argument, note that since λ < λ1, then 0 is clearly a strict local
minimum for I. The condition on the curvature at 0 implies that –modulo a rotation–
there is some Pγ,δ ⊂ Ω, where γ ≤ 0 and δ > 0. Since µs(Ω) ≤ µs(IR

n
+), we only need to

consider two cases:
Case 1: µs(Ω) < µs(IR

n
+).

By Corollary 3.2, there exists then a function w ∈ H1
0 (Ω), such that

∫

Ω |∇w|2 = µs(Ω)

and
∫

Ω
|w|2

∗(s)

|x|s
dx = 1. Without loss of generality we can assume that w is nonnegative

by replacing w with |w|. Since λ is positive, we have the following inequality:

sup
t>0

I(tw) < sup
t>0

J(tw), where J(v) =
∫

Ω
{
1

2
|∇v|2 −

1

2∗(s)

v
2∗(s)
+

|x|s
}dx.

Since supt>0 J(tw) = 2−s
2(n−s)

µs(Ω)
n−s
2−s , the conclusion follows.

Case 2: µs(Ω) = µs(IR
n
+).

This means that γ = 0 in view of Theorem 2.2. In this case, we will closely follow the
strategy used in Theorem 2.2 where we start from an extremal function φ ∈ H 1

0 (IRn
+),

and through cutting and scaling, we get a test function φσ on Ω, whose various norms
are controllable perturbations of those of φ. Note that bending is not required here,
therefore we only need to pay the cost of the scaling and of the cut-off.

As mentioned in Theorem 2.2, the decays estimates on φ and ψ are: |φ(x)| ∼ C
|x|n−2 ,

|∇φ(x)| ∼ C
|x|n−1 and |∇ψσ(x)| ∼

C
σ
. Since no bending is required, direct computations

similar to those in Theorem 2.2, show that
∫

|x|≥ 1
2
δσ
|∇φσ|2|ψσ|

2 ∼
C

σn−2
,
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∫

|x|≥ 1
2
δσ
|φσ|2|∇ψσ|

2 ∼
C

σn−2
,

∫

|x|≥ 1
2
δσ

|φσ|2
∗(s)

|x|s
∼

C

σn−s
;

here and below C represents various positive constants, which are independent of σ. We
therefore have the following estimates:

∫

Ω
|∇φσ|

2 = µs(IR
n
+) +O(

1

σn−2
),

∫

Ω
|φσ|

q = Cσ
q(n−2)

2
−n + o(σ

q(n−2)
2

−n),

∫

Ω

|φσ|
2∗(s)

|x|s
= 1 +O(

1

σn−s
).

For 2 ≤ q < 2∗, we obtain

∫

Ω |φσ|
q =

∫

IRn |σ
n
2∗ φ(σ)(σx)ψσ(σx)|

qdx

= σ
q(n−2)

2
−n
∫

IRn |φ(σ)(x)ψσ(x)|
qdx

= Cσ
q(n−2)

2
−n + o(σ

q(n−2)
2

−n).

Notice that when q = 2, the order of σ is −2 and the above estimates, combined with
the assumption µs(Ω) = µs(IR

n
+) give, for n ≥ 5,

I(tφσ) = t2

2

∫

Ω |∇φσ|
2 − λt2

2

∫

Ω |φσ|
2 − t2

∗(s)

2∗(s)

∫

Ω
|φσ|2

∗(s)

|x|s

= t2

2
(µs(Ω) +O( 1

σn−2 )) − t2
∗(s)( 1

2∗(s)
+O( 1

σn−s )) − λCt2 1
σ2 + o( 1

σ2 ).

Since λ > 0, then for σ large, the minimum is attained in a uniformly bounded interval,
and it is easy to see that supt>0 I(tφσ) achieves its maximum at tM , where

tM = µs(Ω)
1

2∗(s)−2 − Cσ−2 + o(σ−2).

Substituting the value into the expression of I(tφσ) and noticing that tM is bounded
when σ → ∞, it eventually leads to

sup
t>0

I(tφσ) =
2 − s

2(n− s)
µs(Ω)

n−s
2−s − Cσ−2 + o(σ−2),

where C > 0 is independent of σ. From the above identity we can see that for sufficiently
large σ,

sup
t>0

I(tφσ) <
2 − s

2(n− s)
µs(Ω)

n−s
2−s ,

and we are done.
The case n = 4 could be treated similarly, with the help of the stronger estimate

∫

Ω
|φσ|

2 ∼ Cσ−2
∫ δσ

1
2
δσ

dr

r
∼

log σ

σ2
.
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Adopting the similar strategy as in the case s = 0 ([20]), one can argue that the
mountain-pass solution must be of one sign, say, nonnegative. Then the maximum
principle concludes its positivity.

Now we deal with the Dirichlet problem with a non-linear perturbative term.

Theorem 4.2 Let Ω be a bounded domain in IRn with Lipschitz boundary. Assume also
that 0 ∈ ∂Ω and that ∂Ω is C2-smooth at 0. If n ≥ 4, then equation







−∆u = |u|2
∗(s)−2u
|x|s

+ λu|u|q−1 in Ω

u = 0 on ∂Ω
(21)

with λ > 0 has one positive solution under one of the following conditions:

1) 2+2∗

2
< q < 2∗, where 2∗ = 2∗(0) = 2n

n−2
,

2) 2 < q < 2∗ and ∂Ω has non-positive principal curvatures in a neighborhood of 0.

Proof: The idea again is to try to find a critical point for the functional

Iq(v) =
∫

Ω
[
1

2
|∇v|2 −

1

2∗(s)

v
2∗(s)
+

|x|s
−
λ

q
|v|q]dx.

in H1
0 (Ω) through a mountain-pass argument, by using that Iq satisfies (PS)c for any

c < 2−s
2(n−s)

µs(Ω)
n−s
2−s . As above, we need to deal with two cases.

Case 1: µs(Ω) < µs(IR
n
+).

As before, there exists by Corollary 3.2, a positive function w ∈ H1
0 (Ω), such that

∫

Ω |∇w|2 = µs(Ω) and
∫

Ω
|w|2

∗(s)

|x|s
dx = 1. Since λ is positive, we have:

sup
t>0

Iq(tw) < sup
t>0

J(tw), where J(v) =
∫

Ω
{
1

2
|∇v|2 −

1

2∗(s)

v
2∗(s)
+

|x|s
}dx,

while supt>0 J(tw) = 2−s
2(n−s)

µs(Ω)
n−s
2−s .

Case 2: µs(Ω) = µs(IR
n
+).

Again, as in Theorems 2.2 and 4.1, from an extremal function φ ∈ H1
0 (IRn

+), one
gets through bending, cutting-off and scaling, a function φσ on Ω, with the following
estimates: ∫

Ω
|∇φσ|

2 = µs(IR
n
+) +O(

γ

σ
), (22)

∫

Ω
|φσ|

q = Cσ
q(n−2)

2
−n + o(σ

q(n−2)
2

−n), for 2 ≤ q < 2∗, (23)

∫

Ω

|φσ|
2∗(s)

|x|s
= 1 +O(

γ

σ
), (24)

Now we estimate the mountain-pass value. By (22), (23), (24), and the assumption
µs(Ω) = µs(IR

n
+), we obtain

I(tφσ) = t2

2

∫

Ω |∇φσ|
2 − λtq

q

∫

Ω |φσ|
q − t2

∗(s)

2∗(s)

∫

Ω
|φσ|2

∗(s)

|x|s

= t2

2
(µs(Ω) +O( γ

σ
)) − t2

∗(s)

2∗(s)
(1 +O( γ

σ
)) − Cλtqσ

q(n−2)
2

−n + o(σ
q(n−2)

2
−n).
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In part 1) since −1 < q(n−2)
2

− n < 0, γ
σ

= o(σ
q(n−2)

2
−n), and supt>0 I(tφσ) achieves its

maximum at tM on a uniformly bounded interval when σ large, where

tM = µs(Ω)
1

2∗(s)−2 − Cσ
q(n−2)

2
−n + o(σ

q(n−2)
2

−n).

Substituting the value into the expression of I(tφσ) and noticing that tM is bounded
when σ → ∞, this eventually leads to

sup
t>0

I(tφσ) =
2 − s

2(n− s)
µs(Ω)

n−s
2−s +O(γσ−1) − Cλσ

q(n−2)
2

−n + o(σ
q(n−2)

2
−n).

Hence for σ is sufficiently large, without any restriction on γ, the range of q in 1)
guarantees that

sup
t>0

I(tφσ) <
2 − s

2(n− s)
µs(Ω)

n−s
2−s .

In part 2) now we only need to deal with γ = 0 (since γ < 0 belongs to Case 1, which has
been discussed). As in the proof of Theorem 4.1, no more bending is required, therefore
we only need to pay the cost of the cut-off and scaling, hence we have

∫

Ω
|∇φσ|

2 = µs(Ω) +O(
1

σn−2
),

∫

Ω
|φσ|

q = Cσ
q(n−2)

2
−n + o(σ

q(n−2)
2

−n),

∫

Ω

|φσ|
2∗(s)

|x|s
= 1 +O(

1

σn−s
).

We require q(n−2)
2

− n > −n + 2, hence the conditions q > 2 and n ≥ 4 are sufficient.

5 The Neumann Problem

When ∂Ω ∈ C2, it is easy to see that the embedding H1(Ω) ↪→ Lp(Ω, |x|−sdx) is contin-
uous, where p is the Hardy-Sobolev exponent. Just as in the non-singular case, problem
(4) has a variational structure. It is easy to check that the positive solution of (4)
corresponds to the nonzero critical points of the functional

J(u) =
∫

Ω
[
1

2
|∇u|2 −

1

2∗(s)

u
2∗(s)
+

|x|s
−

1

2
λu2]dx

defined on H1(Ω) and the norm ‖u‖H1(Ω) := ‖∇u‖L2 + ‖u‖L2 is equivalent to

|u|H = (
∫

Ω
(|∇u|2 + λu2)dx)

1
2

The relative compactness of Palais-Smale sequences can easily be adapted from [22]
where the case s = 0 is considered. One then obtain the following:
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Lemma 5.1 Let (uj) be a sequence in H1(Ω) such that J(uj) → c and J ′(uj) → 0 in
H−1(Ω) as j → ∞. If the level

c <
2 − s

4(n− s)
µs(IR

n)
n−2
2−s , (25)

then there is a non-zero u ∈ H1(Ω) such that J(u) ≤ c and J ′(u) = 0.

The rest of the proof of Theorem 1.3 consists of finding a least energy solution to (4)
below that threshold. Since the boundary ∂Ω is C2, and the mean curvature of ∂Ω
at 0 is positive, the boundary near the origin can be represented (up to rotating the
coordinates if necessary) by:

xn = h(x′) =
1

2

n−1
∑

i=1

αix
2
i + o(|x′|2),

where x′ = (x1, ..., xn−1) ∈ D(0, δ) for some δ > 0 where D(0, δ) = B(0, δ) ∩ {xn =
0}. Here α1, ..., αn−1 are the principal curvatures of ∂Ω at 0 and the mean curvature
∑n−1
i=1 αi > 0. Set

uε(x) = ε
n−2

2(n−s) (ε + |x|2−s)
2−n
2−s .

Theorem 5.2 Under the above assumptions, problem (4) possesses a positive solution,
provided n ≥ 3.

Proof. For notational convenience, we denote 2∗(s) by p throughout the proof. The
solutions of (4) corresponds to the nonzero critical points of the functional

J(u) =
∫

Ω
[
1

2
|∇u|2 −

1

p

up+
|x|s

−
1

2
λu2]dx.

Set
c = inf

ψ∈Ψ
sup
t∈(0,1)

J(ψ(t)),

the mountain-pass level, where Ψ = {ψ ∈ C([0, 1], H1(Ω));ψ(0) = 0, J(ψ(1)) ≤ 0}. We
also set

c∗ = inf
u∈H(Ω)

{sup
t>0

J(tu); u ≥ 0, u 6≡ 0}.

It is easy to see that c ≤ c∗. In view of Lemma 5.1, we need to prove c∗ < 2−s
4(n−s)

µ
n−s
2−s
s .

We claim that

Yε = supt>0 J(tuε) <
2−s

4(n−s)
µ

n−s
2−s
s (26)

for ε > 0 sufficiently small. Denote

K1(ε) =
∫

Ω
|∇uε|

2, K2(ε) =
∫

Ω

|uε|
p

|x|s
dx and g(x′) =

1

2

n−1
∑

i=1

αix
2
i .

The proof is divided into two cases.
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Case 1: n ≥ 4. One then has

K1(ε) =
∫

Rn
+
|∇uε|

2dx−
∫

D(0,δ) dx
′
∫ h(x′)
0 |∇uε|

2dxn +O(ε
n−2
2−s )

= 1
2
K1 −

∫

Rn−1 dx′
∫ g(x′)
0 |∇uε|

2dxn −
∫

D(0,δ) dx
′
∫ h(x′)
g(x′) |∇uε|

2dxn +O(ε
n−2
2−s ).

where

K1 =
∫

IRn
|∇uε|

2dx = (n− 2)2
∫

IRn

|y|(2−2s)

(1 + |y|2−s)
2(n−s)

2−s

dy, (27)

which is independent of ε. Observing that

I(ε) : =
∫

IRn−1 dx′
∫ g(x′)
0 |∇uε|

2dxn

= (n− 2)2ε
n−2
2−s

∫

Rn−1 dx′
∫ g(x′)
0

|x|2−2sdxn

(ε+|x|2−s)
2(n−s)

2−s

= (n− 2)2
∫

IRn−1 dy′
∫ g(y′)ε

1
2−s

0
|y|2−2sdyn

(1+|y|2−s)
2(n−s)

2−s

,

(28)

We note that

lim
ε→0

ε−
1

2−s I(ε) = (n− 2)2
∫

IRn−1

|x′|2−2sg(x′)

(1 + |x′|2−s)
2(n−s)

2−s

dx′ = (
n−1
∑

i=1

αi)A,

where A := (n−2)2

2

∫

IRn−1
|x′|2−2s|xj |2

(1+|x′|2−s)
2(n−s)

2−s

dx′ = (n−2)2

2(n−1)

∫

IRn−1
|x′|4−2s

(1+|x′|2−s)
2(n−s)

2−s

dx′ > 0.

In view of the curvature assumption, this implies

I(ε) > 0 and I(ε) = O(ε
1

2−s ).

Moreover,

I1(ε) : = |
∫

D(0,δ) dx
′
∫ h(x′)
g(x′) |∇uε|

2dxn|

= |(n− 2)2ε
n−2
2−s

∫

D(0,δ) dxn
∫ h(x′)
g(x′)

|x|2−2s

(ε+|x′|2−s)
2(n−s)

2−s

dx′|

≤ C(n− 2)2ε
n−2
2−s

∫

D(0,δ)
|h(x′)−g(x′)|dx′

(ε+|x′|2−s)
2(n−s)

2−s

,

where C depends only on δ, n.

Since h(x′) = g(x′) + o(|x′|2), it follows that ∀σ > 0, ∃C(σ) > 0 such that

|h(x′) − g(x′)| ≤ σ|x′|2 + C(σ)|x′|
5
2

and

I1(ε) ≤ Cε
n−2
2−s

∫

D(0,δ)

σ|x′|2 + C(σ)|x′|
5
2

(ε+ |x′|2−s)
2(n−s)

2−s

dx′

≤ Cε
1

2−s (σ + C(σ)ε
1

2(2−s) ),
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which implies

I1(ε) = o(ε
1

2−s ) as ε→ 0.

Thus we obtain

K1(ε) = 1
2
K1 − I(ε) + o(ε

1
2−s ). (29)

On the other hand,

K2(ε) =
∫

IRn
+

up
ε

|x|s
dx−

∫

D(0,δ) dx
′
∫ h(x′)
0

up
ε

|x|s
dxn +O(ε

n−s
2−s )

= 1
2
K2 −

∫

Rn−1 dx′
∫ g(x′)
0

up
ε

|x|s
dxn −

∫

D(0,δ) dx
′
∫ h(x′)
g(x′)

up
ε

|x|s
dxn +O(ε

n−s
2−s ).

where

K2 =
∫

IRn
up

ε

|x|s
=
∫

IRn
ε

p(n−2)
2(n−s)

|x|s(ε+|x|2−s)
p(n−2)

2−s

= ε
n−s
2−s

∫

IRn
dx

|x|s(ε+|x|2−s)
2(n−s)

2−s

=
∫

IRn
dy

|y|s(1+|y|2−s)
2(n−s)

2−s

.

It is well known (see [14]) that K1, K2 satisfy

K1/K
n−2
n−s

2 = µs := µs(IR
n). (30)

Since

II(ε) :=
∫

Rn−1
dx′

∫ g(x′)

0

upε
|x|s

dxn =
∫

IRn−1
dy′

∫ ε
1

2−s
g(y′)

0

dyn

|y|s(1 + |y|2−s)
2(n−s)

2−s

, (31)

this implies that

lim
ε→O

ε−
1

2−s II(ε) =
∫

IRn−1

g(y′)dy′

|y′|s(1 + |y′|2−s)
2(n−s)

2−s

= (
n−1
∑

i=1

αi)B,

where B = 1
2

∫

IRn−1
|yj |2dy′

|y′|s(1+|y′|2−s)
2(n−s)

2−s

= 1
2(n−1)

∫

IRn−1
|y′|2dy′

|y′|s(1+|y′|2−s)
2(n−s)

2−s

> 0.

It follows from the curvature assumption again, that

II(ε) > 0 and II(ε) = O(ε
1

2−s ).

Similarly,

|
∫

D(0,δ)
dx′

∫ h(x′)

g(x′)

upε
|x|s

dxn| = o(ε
1

2−s ).

Therefore,

K2(ε) = 1
2K2 − II(ε) + o(ε

1
2−s ). (32)

Moreover, careful calculations lead to

K3(ε) :=
∫

Ω
u2
ε =















O(ε
1

2−s ), n = 3

O(|ε
2

2−s ln ε|), n = 4

O(ε
2

2−s ), n ≥ 5
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Let tε > 0 be a constant that

J(tεuε) = Yε = sup
t>0

J(tuε) = sup
t>0

{
1

2
(K1(ε) + λK3(ε))t

2 −
1

p
K2(ε)t

p}. (33)

For n ≥ 4, K3(ε) = o(ε
1

2−s ), hence

Yε = J(tεuε) ≤ sup
t>0

[
1

2
K1(ε)t

2 −
1

p
K2(ε)t

p]+o(ε
1

2−s ) =
2 − s

2(n− s)
[

K1(ε)

(K2(ε))
n−2
n−s

]
n−s
2−s +o(ε

1
2−s ).

We claim that

K1(ε)/(K2(ε))
n−2
n−s < 2−

2−s
n−sµs + o(ε

1
2−s ) =

1

2
K1/(

1

2
K2)

n−2
n−s + o(ε

1
2−s ),

which will lead to our conclusion.
By (29), (20) and (30), the above is equivalent to

(1
2
K1 − I(ε))(1

2
K2)

n−2
n−s < 1

2
K1(

1
2
K2 − II(ε) + o(ε

1
2−s ))

n−2
n−s + o(ε

1
2−s )

= 1
2
K1{(

1
2
K2)

n−2
n−s − n−2

n−s
(1

2
K2)

s−2
n−s II(ε)} + o(ε

1
2−s ),

i.e., limε→0
I(ε)
II(ε)

> (n−2)K1

(n−s)K2
.

From (28) and (31), and using L’Hôpital’s rule, we know

limε→0
I(ε)
II(ε)

= limε→0
I′(ε)
II′(ε)

=

(n−2)2
∫

IRn−1
|y′|2−2sg(y′)dy′

(1+|y′|2−s)

2(n−s)
2−s

∫

Rn−1
g(y′)dy′

|y′|s(1+|y′|2−s)

2(n−s)
2−s

=

(n−2)2
∫∞

0
rn+2−2sdr

(1+r2−s)

2(n−s)
2−s

∫∞

0
rn−sdr

(1+r2−s)

2(n−s)
2−s

Integrating by parts, one has for 2 ≤ β ≤ 2(n− s) − 1,

∫ ∞

0

rβ−2dr

(1 + r2−s)
2(n−s)

2−s
−1

=
2n− 2 − s

β − 1

∫ ∞

0

rβ−sdr

(1 + r2−s)
2(n−s)

2−s

.

Observing that

∫ ∞

0

rβ−sdr

(1 + r2−s)
2(n−s)

2−s

=
∫ ∞

0

rβ−2dr

(1 + r2−s)
2(n−s)

2−s
−1

−
∫ ∞

0

rβ−2dr

(1 + r2−s)
2(n−s)

2−s

,

hence
∫ ∞

0

rβ−sdr

(1 + r2−s)
2(n−s)

2−s

=
β − 1

2n− β − 1 − s

∫ ∞

0

rβ−2dr

(1 + r2−s)
2(n−s)

2−s

.
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Therefore one has

lim
ε→0

I(ε)

II(ε)
=
n+ 1 + s

n− 3
(n− 2)2,

and
n− 2

n− s

K1

K2

=
(n− 2)3

n− s

∫ ∞

0

rn+1−2sdr

(1 + r2−s)
2(n−s)

2−s

/
∫ ∞

0

rn−1−sdr

(1 + r2−s)
2(n−s)

2−s

=
(n− 2)3

n− s

n− s

n− 2
= (n− 2)2.

We therefore get
I(ε)

II(ε)
>
n− 2

n− s

K1

K2

+ o(1).

Case 2. n = 3. Careful calculations lead to

K1(ε) ≤
1

2
K1 − Cε

1
2−s | ln ε| + o(ε

1
2−s ) for some C > 0, (34)

K2(ε) =
1

2
K2 − O(ε

1
2−s ). (35)

Letting J(tεuε) = Yε = supt>0 J(tuε), we have

Yε ≤ sup
t>0

[
1

2
K1(ε)t

2 −
1

p
K2(ε)t

p] +O(ε
1

2−s )

=
2 − s

2(n− s)
[

K1(ε)

(K2(ε))
n−2
n−s

]
n−s
2−s +O(ε

1
2−s ).

Consequently if

K1(ε)/(K2(ε))
n−2
n−s < 2−

2−s
n−sµs −O(ε

1
2−s ), (36)

then (26) follows.
By (34) and (35), (36) reduces to

1

2
K1 − Cε

1
2−s | ln ε| < 2−

2−s
n−sµs[

1

2
K2 − O(ε

1
2−s )]

n−2
n−s +O(ε

1
2−s )

=
1

2
µsK

n−2
n−s

2 +O(ε
1

2−s ).

Since K1/K
n−2
n−s

2 = µs, we get (36) immediately. Hence we found a critical point u ∈
H1(Ω) of J(u). Now we show that u > 0. Because

0 =< J ′(u), u− >=
∫

Ω
[|∇u−|

2 − λ(u−)2]dx,

Where u− = min(u, 0), and λ < 0, we conclude that u− ≡ 0, or u ≥ 0. Since u cannot
be constant, u > 0 by maximum principle.

27



Remark 5.3 As noticed in [19] (there s = 0), if Ω is an exterior domain, the mean
curvature at 0 (when seen from inside) is negative, then there exists a least-energy
solution. The proof is almost the same as above. While if IRn\Ω is close to a ball in
some sense, then for λ > 0, (4) has no least energy solution.

One may of course replace the nonlinearity in (4) with a more general nonlinear
term and obtain similar results. The same arguments also apply to get the following
extension of Theorem 5.2,

Theorem 5.4 Suppose that the mean curvature of ∂Ω at 0 is positive, then the problem














−∆pu = |u|p
∗(s)−1

|x|s
− λup−1 in Ω,

|∇u|p−2∇u · ν = 0 on ∂Ω,
u > 0 in Ω.

(37)

has a solution. Here ν is the outward unit normal to ∂Ω, λ > 0, 1 < p < n, 0 < s <
p, p∗(s) = p(n−s)

n−p
and where ∆pu = div(|∇u|p−2∇u).

Based on the mountain pass solution -found in Theorem 1.3- and using a suitable
form of Ljusternik-Schnirelman theory, one can establish the following theorem. Anal-
ogous results in this direction have been obtained, for example, in [9] for the Neumann
problem when s = 0, [14] for the Dirichlet problem when s > 0, 0 ∈ Ω.

Theorem 5.5 Under the same assumptions as in Theorem 1.3, equation (4) also has
a sign-changing solution, provided n ≥ 6.
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