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A LOCALLY CONSERVATIVE LDG METHOD FOR THE

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

BERNARDO COCKBURN, GUIDO KANSCHAT, AND DOMINIK SCHÖTZAU

Abstract. In this paper, a new local discontinuous Galerkin method for the
incompressible stationary Navier-Stokes equations is proposed and analyzed.
Four important features render this method unique: Its stability, its local con-
servativity, its high-order accuracy, and the exact satisfaction of the incom-
pressibility constraint. Although the method uses completely discontinuous
approximations, a globally divergence-free approximate velocity in H(div; Ω) is
obtained by a simple, element-by-element post-processing. Optimal error esti-
mates are proven and an iterative procedure used to compute the approximate
solution is shown to converge. This procedure is nothing but a discrete version
of the classical fixed point iteration used to obtain existence and uniqueness of
solutions to the incompressible Navier-Stokes equations by solving a sequence
of Oseen problems. Numerical results are shown which verify the theoretical
rates of convergence. They also confirm the independence of the number of
fixed point iterations with respect to the discretization parameters. Finally,
they show that the method works well for a wide range of Reynolds numbers.

1. Introduction

In this paper, we propose and analyze a local discontinuous Galerkin (LDG)
method for the stationary incompressible Navier-Stokes equations

−ν∆u + ∇ · (u⊗ u) + ∇p = f in Ω,

∇ · u = 0 in Ω,(1.1)

u = 0 on Γ = ∂Ω.

Here, ν is the kinematic viscosity, u the velocity, p the pressure, and f the external
body force. For the sake of simplicity, we take Ω to be a polygonal domain of R

2.
This paper is the fourth in a series ([9], [8] and [7]) devoted to the study of the

LDG method as applied to incompressible fluid flow problems. In [9], we considered
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the Stokes equations

−ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,(1.2)

u = 0 on Γ,

and focused on the problem of how to deal with the incompressibility condition.
Later, in [8], we considered the Oseen equations

−ν∆u + (w · ∇)u + ∇p = f in Ω,

∇ · u = 0 in Ω,(1.3)

u = 0 on Γ,

where the convective velocity w was taken to be a smooth function, and focused
on the problem of how to incorporate the linear convective term. The resulting
method was shown to be optimally convergent and robust for a wide range of
Reynolds numbers. A succinct review of this work can be found in [7].

In this paper, we continue our study of LDG methods for incompressible flows
and consider their application to the Navier-Stokes equations (1.1). Our main
concern is to devise LDG methods that are locally conservative and can be proven
to be stable. The local conservativity, a property highly valued by practitioners of
computational fluid dynamics, is a discrete version of the identity

(1.4)

∫

∂K

(−ν ∇u · nK + (u · nK)u + pnK) ds =

∫

K

f dx,

where K is an arbitrary sub-domain of Ω with outward normal unit vector nK .
This property can be easily enforced by LDG methods as soon as the equations
are written in divergence form. However, to devise an LDG method that can be
proven to be stable, that is, that satisfies a discrete version of the following stability
estimate for the continuous case,

(1.5) ‖u‖1 ≤ CP ‖f‖0

ν
,

where the constant CP is the Poincaré constant, is extremely difficult.
The reason for this is that, in order to obtain the stability estimate (1.5), the

incompressibility condition must be used. It is well known that, for many numerical
methods for the Stokes and the Oseen equations, a weakly enforced incompressibil-
ity is enough to guarantee stability. However, this is not so for the Navier-Stokes
equations because of the presence of the non-linear convection. Moreover, the now
standard solution to this problem, [21], [22], which is based on a suitable modifi-
cation of the non-linearity of the Navier-Stokes equations, cannot be used. This
happens because such a modification does not have divergence form and hence
prevents LDG methods from being locally conservative.

The main contribution of this paper is to show how to overcome this difficulty.
In fact, we show that this can be done in two ways. The first one focuses on the
convective non-linearity and is based on a new modification in divergence form of
the non-linearity; it will be explored elsewhere in detail. The second one, which
constitutes the main subject of this paper, focuses on the incompressibility con-
straint and is based on discretizing the Oseen equations (1.3) where the convective
velocity w is taken to be a projection of the approximate velocity uh,

(1.6) w = Puh,
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into the space of globally divergence-free functions. This projection is a slight

modification of well-known projections Πh with the property

Ph∇· = ∇ · Πh,

where Ph is an L2-projection; see [5]. Its implementation is very efficient as it can
be computed in an element-by-element fashion.

Thus, given the convective velocity w = Puh, the resulting scheme is nothing
but the LDG method [8] already studied for the Oseen equations (1.3). Since
that method is stable, high-order accurate and locally conservative, so is the LDG
method under consideration. Moreover, the approximation to the velocity given
by w has continuous normal components across elements and is globally divergence-
free in H(div; Ω) = {v ∈ L2(Ω)2 : ∇·v ∈ L2(Ω)}. To the knowledge of the authors,
no other numerical scheme for the incompressible Navier-Stokes equations has all
these properties.

Of course, the convective velocity w depends on the discrete velocity field uh

through (1.6) and, hence, we need to use an iterative method to compute it. To do
so, we note that if S(uh) is the LDG approximate velocity of the Oseen problem
with convective velocity w = Puh, then the approximate velocity uh of the LDG
method under consideration is a fixed point of S. If S is proven to be a contraction,
to compute the approximate solution uh, we can use the fixed point iteration

u`+1
h := S(u`

h).

This is nothing but a discrete version of the argument used to prove the existence
and uniqueness of the exact solution of (1.1). It ensures the existence and unique-
ness of the exact solution (u, p) ∈ H1

0 (Ω)2 × L2(Ω)/R of (1.1) under a smallness

condition of the type

(1.7)
CΩCP ‖f‖0

ν2
< 1,

where CΩ > 0 only depends on Ω; see [17, Theorem 10.1.1] and the references
therein. We mimic this argument to show that the approximate solution of the
LDG method exists and is unique under a similar condition.

Let us point out that exact incompressibility can be achieved trivially if the
LDG method has a velocity space that is div-conforming, i.e., that is included in
H(div; Ω). In this particular case, weak incompressibility implies exact incompress-
ibility, provided that the discrete spaces are matched correctly. As will be discussed
below, this approach can be viewed as a particular LDG method for which the op-
erator P is chosen to be the identity. Consequently, all the results of this paper
hold true verbatim for methods that are based on div-conforming velocity spaces.
Furthermore, we note that, although we have used the LDG method to discretize
the terms associated with the viscosity effects, any other DG discretization whose
primal form is both coercive and continuous could have been used to that effect;
see the discussions in [2] and [19].

The organization of the paper is as follows. In Section 2, we discuss the ideas that
motivate the devising of the LDG method we propose in this paper. In Section 3,
we present the LDG discretization in detail and verify its local conservativity. In
Section 4, we state and discuss the main results, namely, the stability of the method,
the convergence of the fixed point iteration and the a-priori error estimates, and in
Section 5, we present their proofs. In Section 6, we present numerical experiments
verifying the theoretical results. We end in Section 7 with some concluding remarks.



4 B. Cockburn, G. Kanschat and D. Schötzau

2. Devising the LDG method

In this section, we discuss the ideas that led us to the devising of an LDG method
that is both stable and locally conservative. To keep the discussion as simple and
clear as possible, we do not work with the numerical method. Instead, we work
directly with the equations (1.1) and infer, from their structure, the properties of
the corresponding LDG method.

2.1. A locally conservative LDG method. Since the incompressible Navier-
Stokes equations (1.1) are written in divergence form, a locally conservative LDG
method can be easily constructed. However, it is very difficult to prove its stability.

Let us illustrate this difficulty by using the equations for the exact solution. If we
multiply the first equation of (1.1) by u, integrate by parts and use the boundary
conditions, we get

ν

∫

Ω

∇u : ∇u dx +
1

2

∫

Ω

|u |2 ∇ · u dx −
∫

Ω

p∇ · u dx =

∫

Ω

f · u dx.

We see that we must use the incompressibility condition to obtain the equation

ν

∫

Ω

∇u : ∇u dx =

∫

Ω

f · u dx,

from which the stability estimate (1.5) immediately follows.
In general, since exact incompressibility is very difficult to achieve after dis-

cretization, it is usually only enforced weakly. This weak incompressibility is
enough, in a wide variety of cases, to guarantee that the discrete version of the
term ∫

Ω

p∇ · u dx

is exactly zero, as for most mixed methods for the Stokes and Navier-Stokes equa-
tions, or non-negative, as for the LDG methods considered for the Stokes [9] and
Oseen [8] problems. Unfortunately, this is not true for the discrete version of the
term

1

2

∫

Ω

|u |2 ∇ · u dx,

because the square of the modulus of the approximate velocity does not necessarily
belong to the space of the approximate pressure.

2.2. The classical modification of the non-linearity. A solution to this im-
passe can be obtained by using a now classical technique proposed back in the 60’s;
see [21] and [22]. From our perspective, it consists in modifying the non-linearity
of the equations as follows:

−ν∆u + ∇ · (u ⊗ u) − 1

2
(∇ · u)u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ.

To see that this solves the problem, multiply the first equation by u, integrate by
parts and use the boundary conditions to get

ν

∫

Ω

∇u : ∇u dx −
∫

Ω

p∇ · u dx =

∫

Ω

f · u dx.
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As a consequence, stability can follow from weak incompressibility. This is the
case for most mixed methods for the Navier-Stokes equations. It is also the case for
the first discontinuous Galerkin method for the incompressible Navier-Stokes equa-
tions [13], a method which uses locally divergence-free polynomial approximations
of the velocity, and for the more recent discontinuous Galerkin method developed
in [10].

The only problem with this approach is that local conservativity cannot be
achieved because the first equation is not written in divergence form.

2.3. A new modification of the non-linearity. To overcome this difficulty, it
is enough to take another glance at the first equation in this section to realize that
instead of working with the kinematic pressure p, we should work with the new
variable

P = p − 1

2
|u |2.

If we incorporate this unorthodox pressure into the Navier-Stokes equations, we get

−ν∆u + ∇ · (u⊗ u) +
1

2
∇ |u |2 + ∇P = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ.

We now see that, since the above modification is in divergence form, locally con-
servative LDG methods can easily be constructed. Moreover, since we have

ν

∫

Ω

∇u : ∇u dx −
∫

Ω

P ∇ · u dx =

∫

Ω

f · u dx,

we also see that the stability of the LDG method can follow from weak incompress-
ibility. The LDG method obtained with this approach can indeed be proven to have
those properties; it is going to be studied thoroughly in a forthcoming paper.

2.4. Enforcing exact incompressibility. As we have seen, suitable modifications
of the non-linearity can be introduced which allow obtaining stability by using only
weakly incompressible approximations to the velocity. The approach we consider
in this paper does not rely on a modification of that type. Instead, it is based on
enforcing exact incompressibility in the space

H(div; Ω) := {v ∈ L2(Ω)2 : ∇ · v ∈ L2(Ω)}.
The idea that allows this to happen is based on two observations: The first is that
we can rewrite the Navier-Stokes equations as the Oseen problem

−ν∆u + (w · ∇)u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ,

where, of course, w = u. If we multiply the first equation by u, integrate by parts
and use the boundary conditions, we get

ν

∫

Ω

∇u : ∇u dx − 1

2

∫

Ω

|u |2 ∇ · w dx −
∫

Ω

p∇ · u dx =

∫

Ω

f · u dx.

This suggests to consider an LDG method with two different (but strongly re-
lated) approximations to the velocity: One approximation for u and another for w.
The stability for the LDG method would then be achieved if the approximation to u
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is weakly incompressible and if the approximation to w is exactly incompressible.
Further, local conservativity can be readily achieved for such an LDG method.
Indeed, the fact that the equations are not written in conservative form can be
compensated by the fact that the approximation to w is globally divergence-free.

The second observation is that, if the approximation to u given by an LDG
method, uh, is weakly incompressible, it is possible to compute, in an element-by-
element fashion, another approximation, w = P(uh), which is exactly incompress-
ible. As we shall see, the post-processing operator P is a slight modification of the
well-known Brezzi-Douglas-Marini (BDM) interpolation operator; see [4].

We note that the post-processing procedure can be omitted in the particular case
where the velocity space is div-conforming. Indeed, in this case the fact that the
approximation to the velocity is weakly incompressible does imply that it is exactly
incompressible, provided the pressure space is chosen suitably. Hence, we can take
w = uh.

We are now ready to describe the LDG method in detail.

3. The LDG method

In this section, we introduce a locally conservative LDG discretization for the
Navier-Stokes equations (1.1).

3.1. Meshes and trace operators. We begin by introducing some notation. We
denote by Th a regular and shape-regular triangulation of mesh-size h of the do-
main Ω into triangles {K}. We further denote by EI

h the set of all interior edges
of Th and by EB

h the set of all boundary edges; we set Eh = EI
h ∪ EB

h .
Next, we introduce notation associated with traces: Let K+ and K− be two

adjacent elements of Th; let x be an arbitrary point of the interior edge e = ∂K+ ∩
∂K− ∈ EI

h . Let ϕ be a piecewise smooth scalar-, vector-, or matrix-valued function
and let us denote by ϕ± the traces of ϕ on e taken from within the interior of K±.
Then, we define the mean value {{·}} at x ∈ e as

{{ϕ}} :=
1

2
(ϕ+ + ϕ−).

Further, for a generic multiplication operator �, we define the jump [[·]] at x ∈ e as

[[ϕ � n]] := ϕ+ � nK+ + ϕ− � nK− .

Here, nK denotes outward unit normal vector on the boundary ∂K of element K.
On boundary edges, we set accordingly {{ϕ}} := ϕ, and [[ϕ � n]] := ϕ � n, with n

denoting the outward unit normal vector on Γ.

3.2. The LDG method for the Oseen equations. We now recall the LDG
method for the Oseen equations (1.3). We assume that the convective velocity
field w is in the space

J(Th) = {v ∈ L2(Ω)2 : ∇ · v ≡ 0 and v|K ∈ H1(K)2, K ∈ Th}.
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We begin by introducing the auxiliary variable σ = ν∇u and rewriting the Oseen
equations as

σ = ν∇u in Ω,

−∇ · σ + (w · ∇)u + ∇p = f in Ω,(3.1)

∇ · u = 0 in Ω,

u = 0 on Γ.

Next, we introduce the space Σh ×Vh × Qh where

Σh = {v ∈ L2(Ω)2×2 : τ |K ∈ Pk(K)2×2, K ∈ Th },
Vh = {v ∈ L2(Ω)2 : v|K ∈ Pk(K)2, K ∈ Th },
Qh = { q ∈ L2(Ω) : q|K ∈ Pk−1(K), K ∈ Th,

∫
Ω q dx = 0 },

for an approximation order k ≥ 1. Here, Pk(K) denotes the space of polynomials of
total degree at most k on K. For simplicity, we consider here only so-called mixed-
order elements where the approximation degree in the pressure is of one order lower
than the one in the velocity.

Finally, we define the approximate solution (σh,u, ph) ∈ Σh × Vh × Qh by
requesting that for each K ∈ Th,

∫

K

σh : τ dx = −ν

∫

K

uh · ∇ · τ dx + ν

∫

∂K

ûσ
h · τ · nK ds,(3.2)

∫

K

[
σh : ∇v − ph ∇ · v

]
dx −

∫

∂K

[
σ̂h : (v ⊗ nK) − p̂h v · nK

]
ds(3.3)

−
∫

K

uh · ∇ · (v ⊗w) dx +

∫

∂K

w · nK ûw

h · v ds =

∫

K

f · v dx,

−
∫

K

uh · ∇q dx +

∫

∂K

û
p
h · nKq ds = 0,(3.4)

for all test functions (τ ,v, q) ∈ Σh × Vh × Qh. Each of the above equations is
enforced locally, that is, element by element, due to the appearance of the so-called
numerical fluxes ûσ

h, σ̂h, p̂h, ûw

h and û
p
h.

Thanks to this structure of the LDG method, we immediately get that
∫

∂K

(−σ̂h · nK + (w · nK) ûw

h + p̂h nK) ds −
∫

K

uh ∇ ·w dx =

∫

K

f dx,

and since w is globally divergence-free, we obtain a discrete version of the property
of local conservativity (1.4), namely,

∫

∂K

(−σ̂h · nK + (w · nK) ûw

h + p̂h nK) ds =

∫

K

f dx.

In other words, the LDG method is locally conservative.
To ensure that the method is also stable (and high-order accurate), the numerical

fluxes, which are nothing but discrete approximations to the traces on the boundary
of the elements, must be defined carefully. As we shall prove, the numerical fluxes
that define the LDG method for the Oseen equations [8] do ensure stability. For
the sake of clarity, we consider the fluxes in their simplest form.
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The convective numerical flux. For the convective flux ûw

h in (3.3), we take the
standard upwind flux introduced in [15, 18]: For an element K ∈ Th, we set

ûw

h (x) =

{
limε↓0 uh (x − εw(x)) , x ∈ ∂K \ Γ−,

0, x ∈ ∂K ∩ Γ−,
(3.5)

where Γ− is the inflow part of Γ given by

Γ− = {x ∈ Γ : w(x) · n(x) < 0 }.

The diffusive numerical fluxes. If a face e lies inside the domain Ω, we take

(3.6) σ̂h = {{σh}} − κ[[uh ⊗ n]], ûσ
h = {{uh}},

and, if e lies on the boundary, we take

(3.7) σ̂h = σh − κuh ⊗ n, ûσ
h = 0.

As will be shown later, the role of the parameter κ is to ensure the stability of the
method; see also [6].

The numerical fluxes related to the incompressibility constraint. The numerical
fluxes associated with the incompressibility constraint, û

p
h and p̂h, are defined by

using an analogous recipe. If the face e lies on the interior of Ω, we take

(3.8) û
p
h = {{uh}}, p̂h = {{ph}}.

On the boundary, we set

(3.9) û
p
h = 0, p̂h = ph.

This completes the definition of the LDG method for the Oseen problem in (3.1).

Remark 3.1. Notice that one can take the div-conforming velocity space

(3.10) Ṽh = {v ∈ Vh : ∇ · v ∈ L2(Ω)},
while keeping the other spaces and definitions above unchanged.

3.3. The post-processing operator. To complete the definition of the LDG
method for the Navier-Stokes equations (1.1), it only remains to introduce what we
refer to as the post-processing operator P and to set w = Puh in the approximation
(3.2)–(3.4).

For a piecewise smooth velocity field u, we define the operator P by

Pu|K = PK

(
u|K , ûp

)
, K ∈ Th,

where ûp is the numerical flux (3.8)–(3.9) related to the incompressibility constraint.
For each element, the local operator PK is given via the following moments:

∫

e

PKu · nK ϕ ds =

∫

e

ûp · nK ϕ ds ∀ϕ ∈ Pk(e), for any edge e ⊂ ∂K,

∫

K

PKu · ∇ϕ dx =

∫

K

u · ∇ϕ dx ∀ϕ ∈ Pk−1(K),

∫

K

PKu · Ψ dx =

∫

K

u ·Ψ dx ∀Ψ ∈ Ψk(K),

where

Ψk(K) = {Ψ ∈ L2(K)2 : DF t
KΨ ◦ FK ∈ Ψk(K̂)}.
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Here, FK : K̂ → K denotes the elemental mapping and DFK its Jacobian. On the

reference triangle K̂ = {(x̂1, x̂2) : x̂1 > 0, x̂1 + x̂2 < 1}, the space Ψk(K̂) is defined
by

Ψk(K̂) = {Ψ ∈ Pk(K̂)2 : ∇ ·Ψ = 0 in K̂, Ψ · n bK = 0 on ∂K̂}.
The post-processing operator P is well-defined and can be computed in an

element-by-element fashion. Moreover, if uh ∈ Vh satisfies the equations (3.4),
that is, if it is weakly incompressible, then w = Puh is exactly incompressible.
These results are gathered in the next result and are given in terms of the Piola

transformation, which maps any vector field v̂ on the reference triangle K̂ into

PK v̂ = det(DFK)−1 DFK v̂ ◦ F−1
K , K ∈ Th,

and of the BDM projection on K̂, P
BDM
bK

; see [4].

Proposition 3.2. We have the following results.

(1) Pu is well-defined and Pu is in the space Ṽh = {v ∈ Vh : ∇ · v ∈ L2(Ω)}.
(2) If u ∈ H1

0 (Ω)2 and K ∈ Th, then PKu = PK P
BDM
bK

P−1
K u.

(3) If u ∈ Vh satisfies (3.4), then ∇ · Pu = 0 in Ω and Pu ∈ J(Th).

Proof. The proof of the first assertion is straightforward and that of the second
easily follows from the definitions of the projections and from the fact that, if
u ∈ H1

0 (Ω)2, then ûp = u.
To prove the third assertion, we first observe that ∇ · Pu ∈ Qh. This is due to

the fact that ∇ · Pu|K ∈ Pk−1(K) for all K ∈ Th and
∫

Ω

∇ · Pu dx =

∫

Γ

Pu · n ds =

∫

Γ

ûp · n ds = 0,

in view of the definitions of P and ûp in (3.9).
Now, let u ∈ Vh satisfy (3.4). For q ∈ Qh, we obtain

∫

Ω

∇ · Pu q dx =
∑

K∈Th

(
−

∫

K

Pu · ∇q dx +

∫

∂K

Pu · nKq ds

)

=
∑

K∈Th

(
−

∫

K

u · ∇q dx +

∫

∂K

ûp · nKq ds

)

= 0.

Here, we have used integration by parts, the properties of P and (3.4). Thus, we
have ∇ · Pu ≡ 0 in Ω. It follows that Pu ∈ J(Th). �

Remark 3.3. For the LDG method using the div-conforming space Ṽh in (3.10), it

can be readily seen that a field u ∈ Ṽh satisfying (3.4) already is exactly incom-
pressible and belongs to J(Th). Hence, for this particular LDG method, we can
take P as the identity.

3.4. The mixed setting of the LDG method. Next, we recast the LDG method
under consideration in a classical mixed setting, not only to facilitate its analysis,
but to be able to state our main results in a more precise way. Thus, we eliminate

the auxiliary variable σh and show that the approximation (uh, ph) ∈ Vh × Qh
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given by the LDG method satisfies

Ah(uh,v) + Oh(w;uh,v) + Bh(v, ph) =

∫

Ω

f · v dx,(3.11)

−Bh(uh, q) = 0,(3.12)

for all (v, q) ∈ Vh × Qh where

(3.13) w = Puh.

Here, the forms Ah, Oh and Bh are associated to the discretization of the Laplacian,
the convective term and the incompressibility constraint, respectively. We proceed
in several steps.

Step 1: Solving for σh in terms of uh. To be able to eliminate the auxiliary vari-
able σh, we introduce the lifting operator L : Vh → Σh by

∫

Ω

L(v) : τ dx =
∑

e∈Eh

∫

e

[[v ⊗ n]] : {{τ}} ds ∀τ ∈ Σh.

It is now easy to see that the equation defining σh in terms of uh, equation (3.2),
can be rewritten as

(3.14) σh = ν
[
∇huh −L(uh)

]
,

with ∇h denoting the element-wise gradient. Note that, σh can be computed
from uh in an element-by-element fashion. Using this identity, it is possible to
eliminate σh from the equations as we show next.

Step 2: Eliminating σh. To eliminate σh from equation (3.3), we make use of a
second lifting operator M : Vh → Qh given by

∫

Ω

M(v) q dx =
∑

e∈Eh

∫

e

{{q}}[[v · n]] ds ∀q ∈ Qh.

If we insert the expression of σh into equation (3.3) and use the definitions of the
numerical fluxes and the lifting operators, we readily get, see [2], [8] and [19],

Ah(uh,v) + Oh(w;uh,v) + Bh(v, ph) =

∫

Ω

f · v dx,

where

Ah(u,v) :=

∫

Ω

ν
[
∇hu−L(u)

]
:
[
∇hv −L(v)

]
dx

+
∑

e∈Eh

∫

e

κ [[u ⊗ n]] : [[v ⊗ n]] ds,

Oh(w;u,v) := −
∑

K∈Th

∫

K

u · ∇ · (v ⊗w) dx +
∑

K

∫

∂K\Γ−

w · nK ûw · v ds,

Bh(v, q) := −
∫

Ω

q∇h · v dx +

∫

Ω

qM(v) dx.

This completes the elimination of the auxiliary variable σh from the equations
defining the LDG method. Note that exactly the same form Bh is also used in the
mixed DG approaches of [11, 23, 19, 10].
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Step 3: Rewriting the incompressibility constraint. Finally, it is a simple exercise
to see that equation (3.4) can be rewritten as

−Bh(uh, q) = 0 ∀q ∈ Qh.

This shows that the LDG method in (3.2)–(3.4) can be cast in the form given in
(3.11)–(3.12).

4. The main results

In this section, we state and discuss the main results of this paper.

4.1. Preliminaries. We consider LDG methods with a very specific stabilization
function κ. To define it, we introduce on the edges the local mesh-size function h

by h|e := he for all e ∈ Eh, with he denoting the length of the edge e. We then set

(4.1) κ := νκ0h
−1,

with κ0 > 0 independent of the mesh-size and the viscosity ν.
The results will be stated in terms of norms we introduce next. We consider the

space

(4.2) V(h) := H1
0 (Ω)2 + Vh,

endowed with the norm

‖v‖2
1,h :=

∑

K∈Th

‖∇v‖2
0,K +

∑

e∈Eh

∫

e

κ0h
−1 |[[v ⊗ n]]|2 ds.

For this norm, we have the following Poincaré inequality

(4.3) ‖v‖0 ≤ Cp‖v‖1,h ∀v ∈ V(h),

for a constant Cp > 0 independent of the mesh-size; see, e.g., [1, 3]. Finally, the
space Qh for the pressures is equipped with the L2-norm ‖ · ‖0.

4.2. Stability properties of the bilinear forms. Here, we collect crucial sta-
bility properties of the forms that are used to define the LDG method. Our main
results will be stated in terms of the corresponding stability constants.

Continuity. First, we study the continuity of the forms involved in the LDG method.
We observe that the lifting operators L and M can be extended to operators L :
V(h) → Σh and M : V(h) → Qh, respectively, using the same definitions. It is
then well-known from, e.g., [16, Section 3] and [19, Lemma 7.2] that

‖L(v)‖2
0 ≤ C2

lift

∑

e∈Eh

∫

e

κ0h
−1|[[v ⊗ n]]|2 ds, v ∈ V(h),(4.4)

‖M(v)‖2
0 ≤ C2

lift

∑

e∈Eh

∫

e

κ0h
−1|[[v ⊗ n]]|2 ds, v ∈ V(h),(4.5)

for a constant Clift only depending on κ0, the shape-regularity of the mesh and the
polynomial degree k. As a consequence, the forms Ah and Bh are well-defined and
continuous on V(h) ×V(h) and V(h) × L2(Ω).
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Proposition 4.1. We have that

|Ah(u,v)| ≤ ν Ca‖u‖1,h‖v‖1,h ∀u,v ∈ V(h),

|Bh(v, q)| ≤ Cb‖v‖1,h‖q‖0 ∀(v, q) ∈ V(h) × L2(Ω),

for continuity constants Ca and Cb that are independent of the mesh-size.

Proof. The continuity properties of Ah and Bh follow from (4.4), (4.5) and the
Cauchy-Schwarz inequality; see [16, Proposition 3.1] and [19, Lemma 7.5]. �

Proposition 4.2. Let w1,w2 ∈ J(Th), u ∈ V(h) and v ∈ Vh. Then we have

|Oh(w1;u,v) − Oh(w2;u,v)| ≤ Co ‖w1 −w2‖1,h ‖u‖1,h ‖v‖1,h,

for a continuity constant Co that is independent of the mesh-size.

The proof is given in Section 5.1. It is obtained by using the embedding and
trace theorems of [13] and [10].

Coercivity and inf-sup condition. Next, we discuss the coercivity properties of the
forms Ah and Oh. We have the following result.

Proposition 4.3. Let κ be given by (4.1). Then, for any κ0 > 0, there exists a

constant α > 0 independent of the mesh-size such that

Ah(v,v) ≥ να‖v‖2
1,h ∀v ∈ Vh.

Furthermore, for w ∈ J(Th) and v ∈ Vh, there holds

Oh(w;v,v) =
1

2

∑

e∈EI

h

∫

e

|w · n| |[[v ⊗ n]]|2 ds +
1

2

∫

Γ

|w · n||v|2 ds.

In the integrals over edges in EI
h , we denote by n any unit normal to the edge e

under consideration.

For a proof of the coercivity of the form Ah, we refer to [2] or [16]. A similar
coercivity result involving also the discrete velocity gradient was used in [9] and [8].
We further note that, for the similar symmetric interior penalty forms Ah used in
the DG approach of [11], the parameter κ0 has to be chosen large enough. The
proof of the second assertion is standard; see, e.g., [8].

Finally, we have the following inf-sup condition for the form Bh.

Proposition 4.4 ([11]). There exists a constant β > 0 independent of the mesh-size

such that

sup
06=v∈Vh

Bh(v, q)

‖v‖1,h
≥ β ‖q‖0 ∀q ∈ Qh.

Extensions of this result to the hp-version of the finite element method and to
quadrilateral meshes can be found in [23, 19].

Remark 4.5. A careful inspection of the proof in [11] reveals that the discrete inf-

sup condition in Proposition 4.4 also holds for the smaller space Ṽh in (3.10).
Consequently, all the stability results of this section hold for the particular LDG
method in Remark 3.1.
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Stability of the post-processing operator. The next result states that the operator P

is a bounded linear operator from Vh to Ṽh with respect to the norm ‖ · ‖1,h. It is
one of the main technical results needed to analyze the locally conservative LDG
method (3.11)–(3.13).

Proposition 4.6. Let v ∈ Vh. Then we have

‖Pv ‖1,h ≤ Cstab‖v ‖1,h,

with a stability constant Cstab > 0 that is independent of the mesh-size.

The proof of this proposition is given in Section 5.2 below. Remark that, for the
LDG method in Remark 3.1, we have Cstab = 1 since P is chosen as the identity.

We are now ready to state our main results.

4.3. The results. Our first result states that, under a smallness condition similar
to the one for the exact solution, (1.7), the LDG method (3.11)–(3.13) defines
a unique discrete approximation. Moreover, it actually gives an efficient way to
compute it.

Theorem 4.7 (Existence and uniqueness of discrete solutions). Assume that

(4.6) µ :=
Co Cstab Cp‖f‖0

ν2 α2
< 1.

Then the LDG method (3.11)–(3.13) defines a unique solution (uh, ph) ∈ Vh ×Qh.

It satisfies the bounds

‖uh‖1,h ≤ Cp‖f‖0

ν α
,(4.7)

‖ph‖0 ≤ β−1

(
Ca + 2α

α

)
Cp ‖f‖0,(4.8)

as well as

(4.9)
∑

e∈EI

h

∫

e

|Puh · n| |[[uh ⊗ n]]|2 ds +

∫

Γ

|Puh · n||uh|2 ds ≤
C2

p‖f‖2
0

ν α
.

Moreover, if (u`+1
h , p`+1

h ) is the approximate solution given by the LDG method

in (3.11)–(3.12) for the Oseen equations with w = Pu`
h, ` ≥ 0, then

‖uh − u`+1
h ‖1,h ≤ 2

(
Cp‖f‖0

να

)
µ`

(1 − µ)
,

‖ph − p`+1
h ‖0 ≤ 2 β−1

(
Ca + 2α

α

)
Cp‖f‖0

µ`

(1 − µ)
,

for any initial guess (u0
h, p0

h) ∈ Vh × Qh.

This result, whose proof is given in Section 5.3, states that the LDG method
in (3.11)–(3.13) is well-defined and that we can compute its approximate solution
by solving a sequence of Oseen problems. Since the parameter µ is independent
of the mesh-size, the convergence of that sequence is always exponential and so
computationally efficient.

Note that if we set
(4.10)

α? = min{1, α}, Cpoinc = max{CP , Cp}, CO = max{CΩ, CoCstab},
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then both the smallness assumptions in (1.7) and (4.6) are satisfied if we have that

COCpoinc‖f‖0

ν2 α2
?

< 1.

Hence, both the Navier-Stokes equations and their LDG approximation are uniquely
solvable. Under a smallness condition that is slightly more restrictive, we obtain
the following estimates.

Theorem 4.8 (Error estimates). Assume that

(4.11)
COCpoinc‖f‖0

ν2 α2
?

≤ 1

2
,

and that the exact solution (u, p) of the Navier-Stokes equations (1.1) satisfies

(4.12) u ∈ Hs+1(Ω)2, p ∈ Hs(Ω), s ≥ 1.

Then

‖u− uh‖1,h ≤Cu Capp

[
‖u‖s+1 + ν−1 ‖p‖s

]
hmin{k,s},

‖u− Puh‖1,h≤Cw Capp

[
‖u‖s+1 + ν−1 ‖p‖s

]
hmin{k,s},

‖p − ph‖0 ≤Cp Capp

[
ν ‖u‖s+1 + ‖p‖s

]
hmin{k,s},

‖σ − σh‖0 ≤Cσ Capp

[
ν ‖u‖s+1 + ‖p‖s

]
hmin{k,s},

where Capp only depends on the regularity of the mesh and the polynomial degree k,

and

Cu = max

{(β + Cb

β

)(2 Ca + 3 α?

α?

)
,
1 + Cstab

Cstab
,
2 Cb

α?
,

2

α?

}
,(4.13)

Cw = (1 + Cstab) + Cstab Cu,(4.14)

Cp = max

{(Ca + α?

β

)
Cu,

α? (1 + Cstab)

2β Cstab
,
β + Cb

β
,
1

β

}
,(4.15)

Cσ = (1 + Clift)Cu.(4.16)

This result, whose proof is given in Section 5.4, states that the LDG method
under consideration converges with optimal order. Note also that, since the function
w = Puh is exactly divergence-free, it provides an optimally convergent globally
solenoidal approximation to the velocity!

Let us briefly discuss some extensions of these results:
• First, we point out that all the results of this section are valid verbatim for the

LDG method in Remark 3.1 where Vh is replaced by the div-conforming space Ṽh

in (3.10) and P is chosen to be the identity.
• Although here we only considered the case of triangular meshes, the results of

this paper can be straightforwardly extended to simplicial meshes in three dimen-
sions. Furthermore, the LDG approach we propose here can be easily extended to
Qk −Qk − Pk−1 elements on quadrilateral or hexahedral affine meshes, by using a
post-processing operator P that is given by a slight modification of the BDM pro-
jection on quadrilaterals or hexahedra; see [5]. The results in this section hold then
true for this LDG method as well. This fact is actually verified in our numerical
experiments for which we have used square meshes and Q1 − Q1 − P0 elements.

However, the extension of our results to Qk−Qk−Qk−1 elements on quadrilateral
meshes is not straightforward. Although, by using a post-processing operator P
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that is a slight modification of the standard Raviart-Thomas projection, it is easy
to define a solenoidal velocity field w that belongs to the anisotropic polynomial
space Qk−1,k ×Qk,k−1, the approximation properties in this space give rise to only
suboptimal convergence rates. If, on the other hand, the polynomial degree of the
post-processed velocity is increased, the field w cannot be shown to be solenoidal,

as ∇ · Ṽh 6⊂ Qh.
• Finally, let us remark that here we have used the LDG approach to discretize

the viscous terms. However, our results remain valid for any other DG discretization
of these terms whose primal bilinear form Ah is both coercive and continuous, such
as, e.g., the interior penalty form. For details, we refer the reader to the discussions
in [2] and [19].

5. Proofs

In this section, we provide the proofs of our main results.

5.1. Proof of Proposition 4.2. We begin by proving Proposition 4.2. To do
that, note that, if we insert the definition of the upwinding numerical flux into the
form Oh, we have

Oh(w;u,v) = −
∑

K∈Th

∫

K

u · ∇ · (v ⊗w) dx

+
∑

K∈Th

∫

∂K

[
w · nK{{u}} − 1

2
|w · nK |(uext − u)

]
· v ds.

Here, uext denotes the exterior trace of u taken over the edge under consideration
and set to zero on the boundary. If we perform now a simple integration by parts,
we get

Oh(w;u,v) =
∑

K∈Th

∫

K

∇u : (v ⊗w) dx

+
∑

K∈Th

∫

∂K

[
1

2
w · nK(uext − u) − 1

2
|w · nK |(uext − u)

]
· v ds.

This implies that

Oh(w1;u,v) − Oh(w2;u,v) = T1 + T2,

where

T1 =
∑

K∈Th

∫

K

∇u :
(
v ⊗ (w1 −w2)

)
dx,

T2 =
∑

K∈Th

∫

∂K

1

2
(w1 −w2) · nK(uext − u) · v ds

−
∑

K∈Th

∫

∂K

1

2

(
|w1 · nK | − |w2 · nK |

)
(uext − u) · v ds.

To bound the term T1, we recall the following embedding result proved in [13,
Proposition 4.5] for smooth and convex domains and in [10, Lemma 6.2] for general
polygons:

‖v‖L4(Ω) ≤ C‖v‖1,h, v ∈ {w ∈ L2(Ω)2 : w|K ∈ H1(K)2, K ∈ Th},
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with a constant independent of the mesh-size. (We point out that the broken H1-
norm used in [13] is slightly different than the one we use here. However, a careful
inspection of the proof of Proposition 4.5 therein shows that the result holds in fact
for our definition of ‖ · ‖1,h.) It is then clear that we can use Hölder’s inequality to
obtain

|T1| ≤ ‖w1 −w2‖L4(Ω)‖u‖1,h‖v‖L4(Ω) ≤ C‖w1 −w2‖1,h‖u‖1,h‖v‖1,h.

It remains to estimate the term T2. Using the Lipschitz continuity of the function
x 7→ |x|, we get

|T2| ≤
∑

K∈Th

∫

∂K

|w1 · nK −w2 · nK | |[[u⊗ n]]| |v| ds,

and, proceeding as in the proof of [13, Proposition 4.5], we obtain

|T2| ≤ C‖w1 −w2‖1,h‖u‖1,h‖v‖1,h,

with a constant independent of the mesh-size. This completes the proof of Propo-
sition 4.2.

5.2. Proof of Proposition 4.6. We prove Proposition 4.6 by first establishing
local stability bounds over patches of elements and then by summing up these local
results.

Let v ∈ Vh be fixed. We proceed in several steps.
Step 1: Local bounds in the interior. Let e = ∂K1 ∩ ∂K2 be an interior edge

shared by two elements K1 and K2. We wish to establish a local stability bound
over the patch formed by K1 and K2.

Namely, by defining the local seminorm

|v|2e = ‖∇v‖2
0,K1

+ ‖∇v‖2
0,K2

+

∫

e

h
−1|[[v ⊗ n]]|2 ds,

we claim that

(5.1) |Pv|2e ≤ C
[
|v|2e+

∫

∂K1

h
−1|(v−v̂p)·nK1

|2 ds+

∫

∂K2

h
−1|(v−v̂p)·nK2

|2 ds
]
,

with a constant C independent of the mesh-size.
To prove (5.1), it is enough to consider the case where K1 and K2 form a reference

patch of unit size. The general case then follows from a scaling argument and the
shape-regularity assumption on the mesh, by mapping K1 ∪ K2 onto the reference
patch using element-wise Piola transforms.

By the triangle inequality, we have

(5.2) |Pv|e ≤ |v − Pv|e + |v|e.
It remains to bound |v− Pv|e. To do so, we note that, for any element K ∈ Th,

the restriction (v−Pv)|K belongs to Pk(K)2 and is uniquely defined by the moments
∫

e

(v − Pv) · nK ϕ ds =

∫

e

(v − v̂p) · nK ϕ ds ∀ϕ ∈ Pk(e), e ⊂ ∂K,

∫

K

(v − Pv) · ∇ϕ dx = 0 ∀ϕ ∈ Pk−1(K),

∫

K

(v − Pv) ·Ψ dx = 0 ∀Ψ ∈ Ψk(K).
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Hence, the restriction of v − Pv to the patch K1 ∪ K2 belongs to the space

Ve =

{
v ∈ L2(K1 ∪ K2)

2 : v|Ki
∈ Pk(Ki)

2,

∫

Ki

v|Ki
· ∇ϕ dx = 0, ϕ ∈ Pk−1(Ki),

∫

Ki

v|Ki
·Ψ dx = 0, Ψ ∈ Ψk(Ki), i = 1, 2

}
.

(5.3)

Furthermore, it can be easily seen that the mappings v 7→ ‖v‖e and v 7→ |||v|||e, given
by

‖v‖2
e = |v|2e +

∫

∂K1\e

h
−1|v · nK1

|2 ds +

∫

∂K2\e

h
−1|v · nK2

|2 ds,

|||v|||2e =

∫

∂K1

h
−1|v · nK1

|2 ds +

∫

∂K2

h
−1|v · nK2

|2 ds,

define norms on Ve. By the equivalence of all norms on a finite dimensional space,
there holds

‖v‖e ≤ C|||v|||e ∀v ∈ Ve,

with a constant only depending on the the polynomial degree.
Thus, we obtain that

|v − Pv|e ≤ ‖v − Pv‖e ≤ C|||v − Pv|||e.
On the other hand, since, for i = 1, 2,

(v − Pv) · nKi
= (v − v̂p) · nKi

on ∂Ki,

we conclude that

|v − Pv|2e ≤ C|||v − Pv|||2e
= C

∫

∂K1

h
−1|(v − v̂p) · nK1

|2 ds + C

∫

∂K2

h
−1|(v − v̂p) · nK2

|2 ds.

This estimate and the inequality in (5.2) prove the local stability bound in (5.1).
Step 2: Local bounds on the boundary. The analogous stability result holds on

the boundary. Let K be an element on the boundary and e ⊂ ∂K a boundary edge.
By setting

|v|2e = ‖∇v‖2
0,K +

∫

e

h
−1|v ⊗ n|2 ds,

there exists a constant C independent of the mesh-size such that

(5.4) |Pv|2e ≤ C
[
|v|2e +

∫

∂K

h
−1|(v − v̂p) · nK |2 ds

]
.

Step 3: Summing up the local bounds. We complete the proof of Proposition 4.6
by summing up the local stability estimates established in (5.1) and (5.4).

To this end, we first note that v − v̂p = 1
2 (v − vext) on interior edges and

v − v̂p = v on boundary edges. Here, we write vext to denote the exterior trace
of v over the edge under consideration. Therefore, we have for any edge e ∈ Eh∫

e

h
−1|(v̂p − v) · nK |2 ds ≤

∫

e

h
−1|[[v ⊗ n]]|2 ds.
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Using the local bounds in (5.1) and (5.4) and the above estimate for v − v̂p, we
obtain

‖Pv‖2
1,h ≤ C

∑

e∈Eh

|Pv|2e

≤ C
∑

e∈Eh

|v|2e + C
∑

K∈Th

∫

∂K

h
−1|(v − v̂p) · nK |2 ds

≤ C
∑

e∈Eh

|v|2e + C
∑

e∈Eh

∫

e

h
−1|[[v ⊗ n]]|2 ds

≤ C‖v‖2
1,h,

with constants C independent of the mesh-size. This completes the proof of Propo-
sition 4.6.

5.3. Proof of Theorem 4.7. To prove Theorem 4.7, we proceed as follows. First,
we eliminate the pressure from the problem by restricting ourselves to the weakly
divergence-free subspace of Vh,

(5.5) Zh = {v ∈ Vh : Bh(v, q) = 0 ∀q ∈ Qh} .

The approximate velocity is thus characterized as the only function uh ∈ Zh such
that

(5.6) Ah(uh,v) + Oh(Puh;uh,v) =

∫

Ω

f · v dx ∀v ∈ Zh.

Then, we construct a contractive mapping S defined on a ball of Zh whose only
fixed point is precisely the above velocity. The properties for the corresponding
pressure ph follow then from its characterization,

Bh(v, ph) =

∫

Ω

f · v dx − Ah(uh,v) − Oh(Puh;uh,v) ∀v ∈ Vh/Zh,

and from the inf-sup condition for the incompressibility form Bh.
We proceed in several steps.
Step 1: The operator S. We begin by introducing the operator S. For u ∈ Zh,

u = S(u) denotes the solution of the following problem: Find u ∈ Zh such that

Ah(u,v) + Oh(Pu;u,v) =

∫

Ω

f · v dx ∀v ∈ Zh.

Note that since u ∈ Zh we have, by Proposition 3.2, that Pu ∈ Jh(Th). As a
consequence, this problem is uniquely solvable.

Furthermore, by the coercivity of the form Ah and Oh in Proposition 4.3,

να‖u‖2
1,h ≤ Ah(u,u) + Oh(Pu;u,u)

=

∫

Ω

f · u dx

≤ ‖f‖0‖u‖0.

By the Poincaré inequality in (4.3), we obtain

να‖u‖2
1,h ≤ Cp‖f‖0‖u‖1,h.
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Hence, the solution u to the above problem satisfies

(5.7) ‖u‖1,h ≤ Cp‖f‖0

να
.

This implies that S maps Kh into Kh, where

Kh = {v ∈ Zh : ‖v‖1,h ≤ Cp‖f‖0

να
}.

Step 2: The operator S is a contraction. Next, we show that S is a contraction
on Kh under the smallness condition (4.6). To do so, let u1,u2 be in Kh, and set
u1 = S(u1), u2 = S(u2). Then

να‖u1 − u2‖2
1,h ≤Ah(u1 − u2,u1 − u2).

Since

Ah(u1 − u2,v) + Oh(Pu1;u1,v) − Oh(Pu2;u2,v) = 0,

for any v ∈ Zh, taking v = u1 − u2 we get

να‖u1 − u2‖2
1,h ≤ − Oh(Pu2;u1 − u2,u1 − u2)

+ Oh(Pu2;u1,u1 − u2) − Oh(Pu1;u1,u1 − u2)

=: T1 + T2.

By the coercivity property of the form Oh in Proposition 4.3,

T1 ≤ 0.

Moreover, by the continuity property of Oh in Proposition 4.2, the bound (5.7) and
the continuity of the post-processing operator P in Proposition 4.6,

T2≤ Co‖Pu1 − Pu2‖1,h‖u1‖1,h‖u1 − u2‖1,h

≤ CoCp‖f‖0

να
‖Pu1 − Pu2‖1,h‖u1 − u2‖1,h

≤ CoCstabCp‖f‖0

να
‖u1 − u2‖1,h‖u1 − u2‖1,h

= ναµ ‖u1 − u2‖1,h‖u1 − u2‖1,h.

This implies that

‖u1 − u2‖1,h ≤ µ ‖u1 − u2‖1,h,

and so, if µ < 1, that is, if the smallness condition (4.6) is satisfied, the mapping S
is a contraction. Hence, S has a unique fixed point uh ∈ Kh, which is the solution
to the problem (5.6).

Step 3: Recovering the pressure. Now that the velocity uh has been computed,
the pressure is the solution ph ∈ Qh of

(5.8) Bh(v, ph) =

∫

Ω

f · v dx − Ah(uh,v) − Oh(Puh;uh,v) ∀v ∈ Vh/Zh.

Due to Proposition 4.1, Proposition 4.2, and the Poincaré inequality in (4.3), the
right-hand side defines a continuous linear functional on Vh/Zh. The inf-sup con-
dition in Proposition 4.4 then guarantees the existence of a unique solution ph to
the above problem. It can then be easily seen that the tuple (uh, ph) is the unique
solution to the LDG method in (3.11) and (3.12) with w = Puh.
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Step 4: The stability bounds. Next, let us show the stability bounds for (uh, ph)
in Theorem 4.7. The bound for ‖uh‖1,h in (4.7) follows in a straightforward way
since uh ∈ Kh. To obtain the bound for the upwind term in (4.9), note that

να‖uh‖2
1,h + Oh(Puh;uh,uh) ≤ Cp‖f‖0‖uh‖2

1,h ≤ 1

2

C2
p‖f‖2

0

να
+

1

2
να‖uh‖2

1,h.

Similarly to the previous arguments, here we have used the coercivity of Ah, equa-
tion (5.6) with test function v = uh, and the Poincaré inequality (4.3). Bringing
the term 1

2να‖uh‖2
1,h to the left-hand side and observing the coercivity of Oh give

the stability bound in (4.9).
Moreover, using the inf-sup condition in Proposition 4.4, the Poincaré inequality

in (4.3), the continuity properties in Proposition 4.1 and Proposition 4.2, and the
stability of P in Proposition 4.6, we have from (5.8)

β‖ph‖0 ≤ sup
06=v∈Vh

Bh(v, ph)

‖v‖1,h
≤ Cp‖f‖0 + ν Ca‖uh‖1,h + CoCstab‖uh‖2

1,h.

Taking into account the stability bound for uh and assumption (4.6) gives

‖ph‖0 ≤ β−1

(
Cp‖f‖0 +

CaCp‖f‖0

α
+

CoCstabCp‖f‖0

ν2α2
Cp‖f‖0

)

≤ β−1Cp‖f‖0

(
2 +

Ca

α

)
.

This gives the desired bound (4.8) for ph.
Step 5: The convergence estimates. It remains to prove the error estimates for

the sequence {(u`
h, p`

h)}`≥0. Let us begin with that of the velocity. From Step 3, we

have that u`+1
h = S(u`

h). As a consequence, since S is a contraction with Lipschitz
constant µ, we immediately get

‖uh − u`+1
h ‖1,h ≤

(
µ`

(1 − µ)

)
‖u2

h − u1
h‖1,h.

The result now follows from the fact that, by the stability bound (5.7),

‖um
h ‖1,h ≤ Cp‖f‖0

να
,

for m ≥ 1.
To obtain the estimate for the pressure, we proceed as follows. First, we note

that, from Step 4, we have

Bh(v, p`+1
h ) =

∫

Ω

f · v dx − Ah(u`+1
h ,v) − Oh(Pu`

h;u`+1
h ,v) ∀v ∈ Vh.

This implies that

Bh(v, ph − p`+1
h ) = −Ah(uh − u`+1

h ,v) − Oh(Puh;uh,v) + Oh(Pu`
h;uh,v)

−Oh(Pu`
h;uh,v) + Oh(Pu`

h;u`+1
h ,v)

= −Ah(uh − u`+1
h ,v) − Oh(Puh;uh,v) + Oh(Pu`

h;uh,v)

Oh(Pu`
h;u`+1

h − uh,v).

We insert this expression in the inf-sup condition for Bh, use the stability properties
of Ah, Oh, and P, take into account the bounds for ‖uh‖1,h, ‖u`

h‖1,h, and the
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contraction property of S to obtain

‖ph − p`+1
h ‖0 ≤ β−1

(
νCaµ +

CoCstabCp‖f‖0

να
(1 + µ)

)
‖uh − u`

h‖1,h

≤ β−1µ (νCa + 2να) ‖uh − u`
h‖1,h.

The desired bound for ‖ph − p`+1
h ‖0 then follows from the bound for ‖uh − u`

h‖1,h.
This completes the proof of Theorem 4.7.

5.4. Proof of Theorem 4.8. Here, we derive the error estimates in Theorem 4.8.
To do that, we modify the approach used in [8] to get error estimates for the LDG
method for the Oseen problem in two ways. First, we use the non-conforming

approach introduced in [16] and later used in [19], and consider the expression

Rh(u, p) := sup
06=v∈Vh

|Rh(u, p;v)|
‖v‖1,h

,

where

Rh(u, p;v) := Ah(u,v) + Oh(u;u,v) + Bh(v, p) −
∫

Ω

f · v dx, v ∈ Vh.

The second modification is, of course, due to the presence of the convective non-
linearity.

Proof. We proceed in several steps.
Step 1: The abstract estimate for ‖u−u‖1,h. Let us begin with the estimate for

the error ‖u− u‖1,h. We claim that we have

‖u− uh‖1,h ≤ Cu

[
inf

v∈Vh

‖u− v‖1,h + inf
ev∈eVh

‖u− ṽ‖1,h(5.9)

+ inf
q∈Qh

1

ν
‖p − q‖0 +

1

ν
Rh(u, p)

]
,

where Cu is given by (4.13).
To prove this result, we proceed as in the error analysis of standard mixed

methods, see, e.g., [5], and consider first an element v ∈ Zh where Zh is the kernel
in (5.5). We then have the following trivial inequality

(5.10) ‖u− uh‖1,h ≤ ‖u− v‖1,h + ‖v − uh‖1,h.

Next, we obtain an estimate of v − uh. By the coercivity property of the form Ah

in Proposition 4.3, we have

(5.11) ν α? ‖v − uh‖2
1,h ≤ ν α ‖v − uh‖2

1,h ≤ Ah(v − uh,v − uh),

and since

Ah(u − uh, v) + Oh(u;u, v) − Oh(Puh;uh, v) + Bh(v, p − ph) = Rh(u, p; v)

for any v ∈ Vh, for v = v − uh, we get that

Ah(v − uh,v − uh) = Ah(v − u,v − uh)

− Oh(u;u,v − uh) + Oh(Puh;uh,v − uh)

− Bh(v − uh, p − ph)

+ Rh(u, p;v − uh)

=: T1 + T2 + T3 + T4.
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Hence

α? ν ‖v − uh‖2
1,h ≤ T1 + T2 + T3 + T4.

The terms T1, T3 and T4 can be easily estimated as follows. First, by the
continuity of the form Ah,

T1 ≤ ν Ca‖u− v‖1,h‖v − uh‖1,h.

Then, by definition of Rh and Rh,

T4 ≤ Rh(u, p) ‖v − uh‖1,h.

Finally, since v − uh ∈ Zh, we have

Bh(v − uh, p − ph) = Bh(v − uh, p) = Bh(v − uh, p − q),

for any q ∈ Qh. From Proposition 4.1, it follows that

T3 ≤ Cb‖v − uh‖1,h‖p − q‖0 ∀ q ∈ Qh.

It remains to estimate the term T2. To do that, consider the identity

T2 = − Oh(Pv;u,v − uh) + Oh(Puh;u,v − uh)

− Oh(Puh;v − uh,v − uh)

+ Oh(Pv;u,v − uh) − Oh(u;u,v − uh)

+ Oh(Puh;v − u,v − uh)

=: T21 + T22 + T23 + T24.

Note that due to Proposition 4.2, Proposition 4.6, the stability bound for u

in (1.5), and the definitions of the parameters in (4.10), we have

T21 ≤ Co Cstab‖u‖1‖v − uh‖2
1,h

≤ Co Cstab CP ‖f‖0

ν
‖v − uh‖2

1,h

≤ CO Cpoinc‖f‖0

να?
‖v − uh‖2

1,h

≤ 1

2
να? ‖v − uh‖2

1,h,

by the smallness condition (4.11).
Next, by the coercivity property of Oh in Proposition 4.3,

T22 ≤ 0,

and, by Proposition 4.2, Proposition 4.6, and the bound for uh in Theorem 4.7,

T24≤
CoCstabCp‖f‖0

να
‖u− v‖1,h‖v − uh‖1,h

≤ COCpoinc‖f‖0

να?
‖u− v‖1,h‖v − uh‖1,h

≤1

2
να? ‖u− v‖1,h‖v − uh‖1,h,

by the smallness condition (4.11).
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Finally, by the Lipschitz property of the form Oh in Proposition 4.2, we have

T23≤Co‖u− Pv‖1,h‖u‖1‖v − uh‖1,h

≤CoCP ‖f‖0

ν
‖u− Pv‖1,h‖v − uh‖1,h

≤ να?

2 Cstab
‖u− Pv‖1,h‖v − uh‖1,h,

by the bound for u in (1.5) and the smallness condition (4.11). Now, take an

arbitrary function ṽ in Ṽh. Since P reproduces functions in Ṽh, we have Pṽ = ṽ,
and so

‖u− Pv‖1,h ≤ ‖u− ṽ‖1,h + ‖Pṽ − Pv‖1,h

≤ ‖u− ṽ‖1,h + Cstab‖ṽ − v‖1,h

≤ (1 + Cstab)‖u − ṽ‖1,h + Cstab‖u− v‖1,h,

by Proposition 4.6. This implies that

T23≤
να?

2

((
1 + Cstab

Cstab

)
‖u− ṽ‖1,h + ‖u− v‖1,h

)
‖v − uh‖1,h.

Thus, gathering all the estimates above and inserting them in the right-hand
side of inequality (5.11), and bringing T21 to the left-hand side, we obtain

‖v − uh‖1,h ≤2

(
Ca + α?

α?

)
‖u− v‖1,h +

(
1 + Cstab

Cstab

)
‖u− ṽ‖1,h

+

(
2 Cb

να?

)
‖p− q‖0 +

(
2

να?

)
Rh(u, p).

Inserting this estimate in the right-hand side of inequality (5.10), we get

‖u− uh‖1,h ≤
(

2Ca + 3α?

α?

)
‖u− v‖1,h +

(
1 + Cstab

Cstab

)
‖u− ṽ‖1,h

+

(
2 Cb

να?

)
‖p− q‖0 +

(
2

να?

)
Rh(u, p),

(5.12)

for any v ∈ Zh, ṽ ∈ Ṽh, and q ∈ Qh.
It remains to replace v ∈ Zh by an arbitrary function in v ∈ Vh. To this end,

fix v ∈ Vh and consider the problem: Find r ∈ Vh such that

Bh(r, q) = Bh(u − v, q) ∀q ∈ Qh.

The inf-sup condition in Proposition 4.4 guarantees that such a solution r exists.
Furthermore, it can be easily seen that we have

‖r‖1,h ≤ β−1Cb‖u− v‖1,h,

in view of the inf-sup condition for Bh and the continuity of the form Bh. By
construction and since Bh(u, q) = 0 for any q ∈ Qh, we further have that r+v ∈ Zh.
Inserting r+v in (5.12), employing the triangle inequality, and taking into account
the above bound for r yield the abstract error estimate (5.9) for the velocity.

Step 2: The abstract estimate for ‖u − Puh‖1,h. As a consequence of the ap-
proximation result (5.9), we obtain the following estimate of the error between u

and its globally solenoidal approximation Puh

(5.13) ‖u− Puh‖1,h ≤ (1 + Cstab) inf
ev∈eVh

‖u− ṽ‖1,h + Cstab‖u− uh‖1,h.
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To see this, note that

‖u− Puh‖1,h ≤ ‖u− ṽ‖1,h + ‖ṽ − Puh‖1,h

≤ ‖u− ṽ‖1,h + Cstab‖ṽ − uh‖1,h

≤ (1 + Cstab)‖u − ṽ‖1,h + Cstab‖u− uh‖1,h,

where ṽ is any element of Ṽh. Here, we have used the stability bound in Propo-

sition 4.6 and the fact that P reproduces polynomials in Ṽh. This shows the
inequality (5.13).

Step 3: The abstract estimate for the pressure. Now, let us obtain the estimate
for the pressure. We claim that the error in the pressure satisfies

‖p − ph‖0 ≤ Cp

[
inf

v∈Vh

ν ‖u− v‖1,h + inf
ev∈eVh

ν ‖u− ṽ‖1,h(5.14)

+ inf
q∈Qh

‖p − q‖0 + Rh(u, p)

]
,

where Cp is given by (4.15).
To see this, we proceed in a way similar to the one used to deal with the velocity.

Thus, we begin by noting that for q ∈ Qh

‖p− ph‖0 ≤ ‖q − ph‖0 + ‖p− q‖0

≤ β−1 sup
v∈Vh

Bh(v, q − ph)

‖v‖1,h
+ ‖p − q‖0

≤ β−1 sup
v∈Vh

Bh(v, p − ph)

‖v‖1,h
+ β−1 sup

v∈Vh

Bh(v, q − p)

‖v‖1,h
+ ‖p − q‖0,

where we have use the inf-sup condition in Proposition 4.4. Therefore,

(5.15) ‖p− ph‖0 ≤ β−1 sup
v∈Vh

Bh(v, p − ph)

‖v‖1,h
+ (1 + β−1Cb) ‖p − q‖0,

by the continuity of the form Bh.
To bound the first term on the right-hand side of (5.15), we note that

Bh(v, p − ph) = −Ah(u − uh,v) − Oh(u;u,v) + Oh(Puh;uh,v) + Rh(u, p;v),

for any v ∈ Vh, and proceed as in the previous step to obtain

Bh(v, p − ph) = Ah(u− uh,v) + Oh(Puh;uh − u,v)

+ Oh(Puh;u,v) − Oh(u;u,v) + Rh(u, p;v)

≤
[

(ν Ca +
1

2
ν α?) ‖u− uh‖1,h

+
ν α?

2 Cstab
‖u− Puh‖1,h + Rh(u, p)

]
‖v‖1,h,

and since

‖u− Puh‖1,h ≤ (1 + Cstab)‖u − ṽ‖1,h + Cstab‖u− uh‖1,h,

from Step 2, we get

Bh(v, p − ph) ≤(Ca + α?) ν ‖u− uh‖1,h

+
α?

2

(
1 + Cstab

Cstab

)
ν ‖u− ṽ‖1,h + Rh(u, p).
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Inserting this inequality in (5.15) and using the bound (5.9) for ‖u − uh‖1,h from
Step 1, we immediately obtain the abstract estimate (5.14) for the pressure.

Step 4: The abstract estimate for the velocity gradient. To derive the error
estimate for σ − σh, we note that, from (3.14), we have

σ − σh = ν
[
∇u −∇huh + L(uh)

]
.

Hence,

‖σ − σh‖0 ≤ ν‖u− uh‖1,h + ν‖L(uh)‖0.

Using the stability bound (4.4) for the lifting operator L yields

‖L(uh)‖2
0 ≤ C2

lift

∑

e∈Eh

∫

e

κ0h
−1|[[uh ⊗ n]]|2 ds ≤ C2

lift‖u− uh‖2
1,h.

The last inequality follows as the jumps of the exact solution vanish. This shows
that

(5.16) ‖σ − σh‖0 ≤ ν (1 + Clift) ‖u− uh‖1,h.

Step 5: Approximation estimates. Under the regularity assumption (4.12), the
following standard approximation property holds

inf
v∈Vh

ν ‖u− v‖1,h + inf
q∈Qh

‖p − q‖0 ≤ Capphmin{k,s}
[
ν ‖u‖s+1 + ‖p‖s

]
.

Moreover, from the results in [5], see also [11, Section 3], we have

inf
ev∈eVh

‖u− ṽ‖1,h ≤ Capphmin{k,s}‖u‖s+1.

Finally, we have that

Rh(u, p) ≤ Capphmin{k,s}
[
ν ‖u‖s+1 + ‖p‖s

]
,

with a constant Capp independent of the mesh-size.
To see the estimate of the residual, we proceed as follows. For v ∈ Vh, it is easy

to see that Rh(u, p;v) is given by

Rh(u, p;v) =
∑

e∈Eh

∫

e

{{ν∇u−P h(ν∇u)}} : [[v⊗n]] ds−
∑

e∈Eh

∫

e

{{p−Php}}[[v ·n]] ds,

with P h : L2(Ω)2×2 → Σh and Ph : L2(Ω)/R → Qh denoting the L2-projections
onto Σh and Qh, respectively. The desired estimate follows then by proceeding as
the proof of [19, Proposition 8.1] and using standard approximation results for P h

and Ph.
Step 6: Conclusion. It is now a simple matter to see that the error estimates of

Theorem 4.8 follow by inserting the approximation estimates obtained in the pre-
vious step into the abstract bounds for the velocity, (5.9), for its globally solenoidal
post-processing (5.13), the pressure, (5.14) and the velocity gradient, (5.16). This
completes the proof of Theorem 4.8. �
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6. Numerical results

In this section, we present numerical experiments that show that the theoretical
rates of convergence are sharp. We also display the behavior of the iterative method
as a function of the Reynolds number.

As a reference solution in our tests, we take the analytical solution (u, p) of the
incompressible Navier-Stokes equations that was obtained by Kovasznay in [14].
For a given viscosity ν, this solution is given by

u1(x, y) = 1 − eλx cos(2πy),

u2(x, y) =
λ

2π
eλx sin(2πy),

p(x, y) = −1

2
e2λx + p̄,

where

λ =
−8π2

ν−1 +
√

ν−2 + 64π2
.

It solves (1.1) with a suitably chosen right-hand side f . Here, the constant p̄ is such
that

∫
Ω p dx = 0. We further use the values of the exact solution u = (u1, u2) to

prescribe inhomogeneous Dirichlet boundary data g for the velocity on the whole
boundary of the computational domain, which we take to be Ω = (− 1

2 , 3
2 ) × (0, 2).

Note that in this case, the numerical fluxes (on edges e lying on the boundary)
must be modified as follows:

ûw

h (x) =

{
limε↓0 uh (x − εw(x)) , x ∈ e \ Γ−,

g(x), x ∈ e ∩ Γ−,

σ̂h = σh − κ(uh − g) ⊗ n, ûσ
h = g,

û
p
h = g, p̂h = ph.

We consider square meshes that are generated by refining the single grid cell
(− 1

2 , 3
2 ) × (0, 2) uniformly. Therefore, a mesh on “level” L consists of 2L by 2L

cells. All computations are performed with bilinear shape functions for σh and uh

and piecewise constants for ph, according to the remarks in Section 4.3. The stabi-
lization function κ is chosen as in (4.1) with κ0 = 4. Our analysis then predicts first
order convergence for uh in the norm ‖.‖1,h and for the pressure in the L2-norm.

In Table 1 we show the errors and convergence rates in p, u and σ obtained
for ν = 0.1. The errors in p and σ are measured in the L2-norm while u − uh

and u − Puh are evaluated in the norm ‖.‖1,h. We observe the predicted first
order convergence for all the error components, in full agreement with the results
of Theorem 4.8. Notice that we have scaled the L2-error in σ by ν−1 so that this
error can be directly compared to the H1-errors in u−uh and u−Puh. These three
errors are all of the same magnitude, with a slight advantage for the post-processed
solution.

In Table 2 we show the seminorm of the errors u − uh and u − Puh which
measures their jumps. Notice that it superconverges with order 3/2. This means
that the relative contribution of this seminorm to the ‖ · ‖1,h−norm diminishes as
h decreases. An analysis of this phenomenon remains to be carried out.

In Table 3, we show the L2-errors in the velocities and their corresponding con-
vergence orders. In the first column, we observe that the velocities converge with
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L ‖p − ph‖0 ‖u− uh‖1,h ‖u− Puh‖1,h ν−1‖σ − σh‖0

3 2.2e+0 — 1.2e+1 — 8.1e+0 — 7.0e-0 —
4 1.0e+0 1.12 5.4e+0 1.11 3.2e+0 1.33 3.4e-0 1.05
5 4.8e-1 1.10 2.4e+0 1.16 1.4e+0 1.18 1.6e-0 1.07
6 2.3e-1 1.04 1.1e+0 1.18 6.8e-1 1.06 7.8e-1 1.04
7 1.2e-1 1.01 4.7e-1 1.17 3.4e-1 1.02 3.9e-1 1.02
8 5.8e-2 1.00 2.2e-1 1.13 1.7e-1 1.01 1.9e-1 1.02

Table 1. Errors and orders of convergence for ν = 0.1.

L |u− uh |h |u − Puh |h
3 9.1e+0 — 4.8e+0 —
4 4.2e+0 1.11 1.5e+0 1.72
5 1.8e+0 1.23 4.7e-1 1.64
6 7.2e-1 1.32 1.6e-1 1.54
7 2.8e-1 1.39 5.6e-2 1.52
8 1.0e-1 1.44 2.0e-2 1.51

Table 2. Errors and orders of convergence for ν = 0.1 in the

seminorm |v|h :=
{∑

e∈Eh

∫
e

κ0h
−1 |[[v ⊗ n]]|2 ds

}1/2
.

second order. In the second column, we notice that by post-processing the error is
reduced by a factor of roughly 3/2. Therefore, the post-processed solution should
be used as the best approximation obtained by our scheme. Furthermore, we show
the L∞-norms of the divergence of Puh (evaluated at the points of a 4-by-4 Gauss
formula on each cell). These are of the order of the residual of the non-linear
iteration, confirming that the post-processed solution is indeed divergence-free.

L ‖u− uh‖0 ‖u− Puh‖0 ‖∇ · Puh‖∞
3 6.4e-1 — 4.9e-1 — 1.4e-12
4 1.6e-1 2.03 1.1e-1 2.22 1.4e-12
5 3.3e-2 2.22 2.0e-2 2.37 3.2e-12
6 7.1e-3 2.24 4.2e-3 2.27 1.5e-11
7 1.6e-3 2.19 9.8e-4 2.12 1.8e-12
8 3.5e-4 2.13 2.4e-4 2.04 2.9e-11

Table 3. L2-errors and orders of convergence in the velocity and
L∞-norm of the divergence of the post-processed solution Puh for
ν = 0.1.

The convergence of the non-linear iteration under consideration is illustrated in
Table 4. Displayed is the number of steps required to reduce the start residual
by a factor of 107. The initial guess for the iterations is the vector u0

h = 0. The
linear system in each step is solved by a preconditioned GMRES method up to a
relative accuracy of 10−4, using the preconditioners described in [12]. Therefore,
the error of the linear iterations is small enough to be neglected. Table 4 shows that
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L ν = 1 ν = 0.1 ν = 0.01
3 14 33 865
4 10 21 106
5 8 16 54
6 6 12 29
7 5 10 18
8 6 10 13

Table 4. Number of iterations for convergence of the non-linear iteration.

the number of iteration steps is not only bounded independently of the mesh-size,
but in fact decreasing. This is in perfect agreement with our theoretical results in
Theorem 4.7. If we decrease the viscosity, the increase of the number of iteration
steps for convergence is quite moderate on fine grids. Of course, this only holds
as long as there is convergence. With ν = 10−3, the non-linear iteration does not
converge anymore, probably because the stationary solution is not stable in this
case.

7. Concluding remarks

In this paper, we described and analyzed a new LDG method for the approxima-
tion of the two-dimensional incompressible Navier-Stokes equations on triangular
meshes. The approximation is based on discontinuous Pk − Pk − Pk−1 elements
for the approximation of the velocity, the velocity gradient, and the pressure, re-
spectively, and on a post-processing procedure. Alternatively, the approximation
of the velocity field can be based on div-conforming BDM elements for which this
procedure can be omitted. These are the only DG methods that are locally conser-
vative and stable for the incompressible Navier-Stokes equations. They are also the
only methods that provide a systematic and simple way to obtain an approximate
velocity that is exactly divergence-free for polynomials of degree greater than or
equal to 1; see [20].

As discussed in Section 4.3 , the results of this paper can be extended in a
straightforward way to simplicial meshes in three dimensions and to Qk−Qk−Pk−1

elements on quadrilateral or hexahedral affine meshes. Future work will be devoted
to extending the methods to the case in which the numerical flux û

p
h depends also on

the pressure. This happens, for example, when all the unknowns are approximated
with the same polynomial space; see [9, 8]. Indeed, in this case, the operator P

depends not only on the velocity but also on the pressure. As a consequence, the
analysis of the convergence of the fixed point iteration is much more delicate; it
will be carried out in a forthcoming paper.
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[16] I. Perugia and D. Schötzau, An hp-analysis of the local discontinuous Galerkin method for

diffusion problems, J. Sci. Comput. (Special Issue: Proceedings of the Fifth International
Conference on Spectral and High Order Methods (ICOSAHOM-01), Uppsala, Sweden) 17

(2002), 561–571.
[17] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations,

Springer, New York, 1994.
[18] W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation, Tech.

Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
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Sci. Paris Sér. A 216 (1966), 219–221.
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