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Abstract

We consider the Navier-Stokes-Alpha model as an approximation of

turbulent flows under realistic, non-periodic, boundary conditions. We

derive that the variational formulation of Navier-Stokes-Alpha model un-

der non-periodic boundary conditions, and prove that it has a unique weak

solution. Next we consider finite element approximation of the model. We

give semi discretization of the model and prove convergence of the method.
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1 Introduction

Both laminar and turbulent flows are described in great detail by the Navier-
Stokes equations which have been known for over a century. However, when
a flow is turbulent they do not provide a tractable mathematical model for
them. Scientists have aimed at developing tractable mathematical models that
can accurately predict properties of turbulent flows since there are very small
number of solutions to these equations are known. One of the most promising
model is the Navier-Stokes Alpha NS-α model of or Cammasa-Holm model of
turbulent flow is introduced in [3], [4], [5], [7], [6], recently. In [8] it is proven
that NS-α equations with periodic boundary conditions have a global regularity
in 3D, and there exits a subsequence of solutions to the NS-α equations converge
as α → 0 to a weak solution of the 3D NSE.

The aim of this paper is to begin the development of disceretizations for the
NS-α equations with a non-periodic boundary conditions. We approximate the
NS-α equations by a finite element method. Here, we prove solution to weak
formulation of the NS-α equations have a unique solution. We also show that
the method is convergent and give an error estimate.

∗This work partially supported by NSF grants DMS9972622, INT9814115, and

INT9805563.
†atife@math.ubc.ca, http://www.math.pitt.edu/∼atife
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In this section we give some background information and prove some steps
toward the development of the NS-α equations. These were stated without the
proof (see [8]).
Definition: The circulation contained within a closed contour in a body of fluid
is defined as the integral around the contour of the component of the velocity
vector which is locally tangent to the contour. That is, the circulation Γ is
defined as

Γ =

∮

u · dl, (1.1)

where dl represents an element of the contour.

Definition: The vorticity ω of an element of fluid is defined as the curl of its
velocity. That is,

ω = ∇× u. (1.2)

Applying Stokes theorem to the definition of circulation we obtain:

Γ =

∮

u · dl =

∫

A

(∇× u) · n dA, (1.3)

where A is the area defined by the closed contour around which is calculated
and n is the unit normal to the surface.

Invoking the definition of the vorticity vector, (1.1) becomes:

Γ =

∫

A

ω · ndA. (1.4)

Theorem (Kelvin’s Theorem): For an inviscid fluid in which the density is
constant, or in which the pressure depends on the density alone, and for which
any body forces which exist are conservative, the vorticity of each fluid will be
preserved.

DΓ

Dt
= 0, (1.5)

where DΓ
Dt is the material derivative of the circulation.

Proof See [9].
Flows of a viscous incompressible fluid are described by NSE. We consider

these equations in a bounded polyhedral domain Ω ⊂ R
d d = 2, 3 , equipped

with homogeneous boundary conditions:



















ut + u · ∇u + ∇p = −ν∆u + f in Ω × (0, T ),

u = 0 on Γ = ∂Ω × (0, T ),

∇ · u = 0 in Ω × [0, T ] = Q,

u(x, 0) = u0 in Ω

(1.6)

where u(x, t) is the velocity of the fluid and p(x, t) is the corresponding pressure
function, ν is the constant kinematic viscosity, and f and u0 are given.
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Theorem 1.1 Let us suppose u and p are classical solutions of (1.6), and say
u ∈ C2(Q̄), p ∈ C1(Q̄). Then u satisfies the Kelvin’s Circulation theorem:

D

Dt

∮

γ(u)

u · dx =

∮

γ(u)

(ν∆u + f) · dx

where γ(u) is a fluid loop that moves with the Eulerian velocity u(x, t).

Proof 1.1 We must show that the material derivative of the circulation Γ is
equal to

∮

γ(u)(ν∆u + f) · dx. From (1.1)

DΓ

Dt
=

D

Dt

∮

γ(u)

u · dx =
D

Dt

∮

γ(u)

ujdxj =

∮

γ(u)

D

Dt
(ujdxj)

D(dxj)
Dt is material derivative of an element dxj of the contour around which the

circulation to be calculated. We can find
d(Dxj)

Dt as follows:

D(dxj)

Dt
= d(

Dxj

Dt
) = d(

∂xj

∂t
+ uk

∂xj

∂xk
)

Since u(x, t) is the Eulerian fluid that is, t and the spatial coordinates xj are

independent variables then
∂xj

∂t = 0 and
∂xj

∂xk
= δjk which is zero unless k = j.

Hence
D(dxj)

Dt
= duj .

So the expression for the rate of change of circulation becomes:

D

Dt

∮

γ(u)

uj · dx =
Duj

Dt
dxj +

∮

γ(u)

ujduj

The quantity
Duj

Dt can be eliminated by using the momentum equation. That
is,

Duj

Dt
=

∂uj

∂t
+ uk

∂uj

∂xk
= −

∂p

∂xk
+ ν

∂2uj

∂2xk
+ fj .

Then we obtain

D

Dt

∮

γ(u)

ujdxj = −

∮

γ(u)

∂p

∂xj
+

[

ν
∂2uj

∂2xk
+ fj

]

dxj +

∮

γ(u)

ujduj

=

∮

γ(u)

∂

∂xj
(−p +

1

2
ujuj) + ν

∂2uj

∂2xk
+ fj

dxj =

∮

γ(u)

(dq+ν∆u+f)·dx

where the q = −p + 1
2u · u. The integral of dq will vanish since we integrate

around a closed loop. Thus rate of change of circulation becomes:

D

Dt

∮

γ(u)

u · dx =

∮

γ(u)

[ν∆u + f ] · dx. (1.7)
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We denote

HDIV (Ω) = {u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 on Γ}

PH is the orthogonal projector in L2(Ω) onto HDIV (Ω).
A is a positive selfadjoint operator from H2(Ω) ∩ H1

0 (Ω) onto L2(Ω).
O = I + α2∆ with α a constant. Note that with this choice of the operator O
∇ · w = 0.

Definition: The “spatially filtered fluid velocity w(x, t) ” is defined by w = g∗u
where ∗ denotes the convolution

w=̃g ∗ u =

∫

Ω

g(x − y)u(y)d3y ≡ Lgu(x).

where g is the Green’s function of operator O and u is the classical solution of
NSE.
Definition: The “inverse” operation is denoted by

u = Ow = L−1
g w.

Theorem 1.2 Let u be a solution of the Navier-Stokes equations with homo-
geneous boundary condition and w be the spatially filtered fluid velocity as
described above. Then u also satisfy the Kelvin’s circulation theorem even
when we replace the loop γ(u) by the loop γ(w). That is,

D

Dt

∮

γ(w)

u · dx =

∮

γ(w)

(ν∆u + f) · dx

Proof 1.2

D

Dt

∮

γ(w)

u · dx =

∮

γ(w)

Duj

Dt
dxj +

∮

γ(w)

uj
D

Dt
(dxj)

=

∮

γ(w)

[

∂uj

∂t
+ wk

∂uj

∂xk

]

dxj +

∮

γ(w)

uj

[

d(
Dxj

Dt
)

]

Duj

Dt is material derivative of uj of the contour γ(w) around which the circulation

to be calculated. We can find
d(Dxj)

Dt as follows:

D(dxj)

Dt
= d(

Dxj

Dt
) = d(

∂xj

∂t
+ wk

∂xj

∂xk
)

Since u(x, t) is the Eulerian fluid
∂xj

∂t = 0 and
∂xj

∂xk
= δjk which is zero unless

k = j. Hence
D(dxj)

Dt
= dwj .
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We obtain:

D

Dt

∮

γ(w)

u · dx =

∮

γ(w)

[

∂uj

∂t
+ wk

∂uj

∂xk

]

dxj +

∮

γ(w)

ujdwj

Since dwj = ∂wk

∂xj
dxj the second integrand on the right hand side can be written

as follows.

∮

γ(w)

ujdwj =

∮

γ(w)

uj
∂wk

∂xj
dxj

Then we get:

D

Dt

∮

γ(w)

u · dx =

∮

γ(w)

[

∂uj

∂t
+ wk

∂uj

∂xk
+ uj

∂wk

∂xj

]

dxj

Along with the momentum equation we obtain:

D

Dt

∮

γ(w)

u · dx =

∮

γ(w)

[

∂uj

∂t
+ wk

∂uj

∂xk
+ uk

∂wk

∂xj

]

dxj −

[

∂p

∂xj
+ ν

∂2uj

∂2xk
+ fj

]

for all j, k = 1, 2, 3.
The latter equation with ∇ · w = 0 are called NS-Alpha model (or the

Cammasa-Holm model) with the homogeneous boundary conditions. They can
be written as follow:











ut + w · ∇u + u · ∇w + ∇p = −ν∆u + f in Ω,

u = 0 on Γ = ∂Ω × (0.T ),

∇ ·w = 0 in Ω × [0, T ],

(1.8)

Lemma: The operator O is positive, symmetric, and time-independent. The
kinetic energy type quantity:

‖|w‖| :=
1

2

∫

w · Ow d3x

defines a norm.
Proof : We need to show that ‖|w‖| := 1

2

∫

Ω
w · Ow d3x satisfies the following

properties.
N1) ‖|w‖| = (w, Ow) ≥ 0 since O is a positive operator .

N2) 0 = ‖|w‖|2 = (w, Ow) = 1
2 (w,w + α2Aw) =

1
2 (w,w) + α2

2 (w, Aw) = 1
2‖w‖2 + α2‖PH∇w‖2 ≥ C(1+α2)

2 ‖w‖2.
The last inequality implies that 0 = ‖|w‖| ⇐⇒ |w| = 0 ⇐⇒ w = 0.
N3) ‖|w+u‖|2 = (w+u, O(w+u)) = (u, Ou)+ (w, Ou)+ (u, Ow)+ (w, Ow)
since O is symmetric we get

‖|w + u‖|2 = (w + u, O(w + u)) = (u, Ou) + 2(u, Ow) + (w, Ow)
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Applying Cauchy-Schawartz inequality and definition of ‖|.‖| to the right hand
side of the last equation respectively gives:

‖|w + u‖|2 = ‖|u‖|2 + 2|u||Ow| + ‖|w‖|2 ≤ ‖|u‖|2 + 2‖|u‖|‖|Ow‖|+ ‖|w‖|2

So the triangle inequality follows after taking square root of both sides.
Lemma: Let u be a classical solution of the NS-α model. Then w satisfies

D

Dt

∮

γ(u)

1

2
u ·wd3x =

∮

γ(u)

f · w d3x − ν

∮

γ(u)

‖∇w‖2 + α2|PH∆w|2 d3x.

Proof : By the definition of material derivative we have:

D

Dt

∮

γ(u)

1

2
u · wd3x =

∮

γ(u)

D(ujwjdxj)

Dt
.

Applying the product rule for derivatives we obtain the following:

D

Dt

∮

γ(u)

1

2
u·wd3x =

∮

γ(u)

Dwj

Dt
ujd

3xj+

∮

γ(u)

wj
Duj

Dt
d3xj+

∮

γ(u)

ujwj
D(d3xj)

Dt
.

As in the proof of the previous theorem
D(d3xj)

Dt = d3(
Dxj

Dt ) = d3uj . Hence

D

Dt

∮

γ(u)

1

2
u·wd3x =

∮

γ(w)

uj
∂wj

∂t
+uk

∂wj

∂xk
uj+wj

∂uj

∂t
+wjuk

∂uj

∂xk
d3xj+

∮

γ(w)

wjujd
3uj .

By the product for derivatives we have:

D

Dt

∮

γ(u)

1

2
u ·wd3x =

∮

γ(u)

∂(ujwj)

∂t
+ uk

∂(ujwj)

∂xj
d3xj .

Using the momentum equation we get:

D

Dt

∮

γ(u)

1

2
u ·wd3x =

∮

γ(u)

[

∂p

∂xj
w + ν

∂2(ujwj)

∂2xk
+ fjwj

]

d3xj

The first term in the last equation will vanish since we integrate over a closed
loop. Applying Green’s theorem to the remaining terms on the right hand side
,using the fact that ∇ · w = 0 , and w = 0 on the boundary as we integrate by
parts, we obtain:

D

Dt

∮

γ(u)

1

2
u · w d3x =

∮

γ(u)

f · w d3x − ν

∮

γ(u)

∇u · ∇w d3x

Replacing u by Ow gives:

D

Dt

∮

γ(u)

1

2
u · w d3x =

∮

γ(u)

f · w d3x − ν

∮

γ(u)

∇Ow∇w d3x.
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The result follows from replacing O by I + α2A. �

Using the relation u = (I + α2A)w in the NS − α equations give us the
relation between pressure q and the hydrodynamic pressure p as

q = p −
‖w‖2

2
+

α2|PH∇w|2

2

and the kinetic energy for NS-α model becomes:

Eα =

∫

(
‖w‖2

2
+

α2|PH∇w|2

2
)d3x.

2 Notation and Mathematical Preliminaries

For our mathematical formulation we introduce the following spaces:

X = H1
0 (Ω)d ∩ H2(Ω)d,

Y = L2
0(Ω) =

{

q ∈ L2(Ω) | (q, 1) = 0
}

,

V = {v ∈ X | (∇ · v, q) = 0, ∀ q ∈ L2
0(Ω)},

and H−2(Ω)d is the dual space of X . Through out the paper Lp(Ω)d denotes
the lebesgue space of n-vector functions with components being to the p − th
power integrable functions over Ω. Hm(Ω)d is the m − th order Sobolev space
of L2-functions having generalized derivatives up to order m in L2(Ω)d. The
corresponding norms are

‖u‖Lp =

∫

Ω

|u|p

1/p‖u‖m =
∑m

k=0 ‖∇
ku‖2

L
2 1/2where∇ku is the tensor of all k− th order deriva-

tives of u. In the case p = 2 we set for convenience

(u,v) =

∫

Ω

u · v dx

‖u‖L2 = ‖u‖ = (u,u)1/2.

|u|2 = (Bu,u)

where B is a linear operator. H1
0 (Ω)d denotes the closure of C∞

0 (Ω)d vector
functions having compact support in Ω. For time dependent functions into
some Banach space X we use the

Lp(0, T ; X) = {u| u(t) : (0, T ) → X measurable :

∫ T

0

‖u(s)‖p
X ≤ ∞}

Finally we introduce the trilinear forms

b̃(u;v,w) := 2(u ×∇× v,w), and b(u;v,w) := (u · ∇v,w).
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Lemma (Vector Identity I) :

(b · ∇a) +
3

∑

j=1

aj∇bj = −b×∇× a + ∇(a · b).

Lemma (Vector Identity II):

(u · ∇)u =
1

2
∇(u · u) − (∇× u) × u.

Proof :
Proof of the last two lemmas are direct calculations.

Lemma:
b̃(u;v,w) = b(u;v,w) + b(w;v,u)

Proof :
It follows from the vector identities.
In the coming sections we will be frequently using the following Sobolev inequal-
ities for d ≤ 3.
Lemma: Let Ω be a bounded, convex domain and w ∈ H1(Ω)d then the fol-
lowing inequalities hold

‖w‖L6 ≤ C‖w‖1.

‖w‖L4 ≤ C‖w‖
1/4
L2 ‖w‖

3/4
1 .

‖w‖L3 ≤ C‖w‖
1/2
L2 ‖w‖

1/2
1 .

Proof :
See [1].

Lemma: Let Ω be a bounded, convex domain then Poincaré inequality

‖w‖1 ≤ C‖∇w‖, w ∈ H1
0 (Ω)d holds.

Proof : See [14].
Lemma: Let Ω be a bounded, convex domain then the priori estimate

‖w‖2 ≤ C‖∆w‖, w ∈ H1
0 (Ω)d ∩ H2(Ω)d.

Proof : See [14].
The last inequality leads together with the Hölder’s inequality

‖w‖L3 ≤ C‖w‖1/2‖∇w‖
1/2
L6

to the estimates

‖w‖L3 ≤ C‖∇w‖1/2‖∆w‖1/2, w ∈ H1
0 (Ω)d ∩ H2(Ω)d,

‖w‖L3 ≤ C‖∇w‖1/2‖∆w‖1/2, w ∈ H1
0 (Ω)d.
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Lemma: Let Ω be a bounded, convex domain then The Agmon’s inequality

‖w‖L∞ ≤ C‖w‖1‖w‖2, w ∈ H1
0 (Ω)d ∩ H2(Ω)d holds.

Proof : See [14].
Lemma: The differential form of the Gronwall Inequality:
Let g(·) be nonnegative, absolutely continuous on [0, T ], which satisfies for a.e
the differential inequality

g′(t) ≤ f(t)g(t) + h(t),

where f(t) and h(t) are nonnegative, summable functions on [0, T ]. Then

g(t) ≤ exp
R

T

0
f(s)[g(0) +

∫ T

0

h(s)]

for all 0 ≤ t ≤ T.
Proof : See [13].

3 The Continuous Problem

In the first section we have shown how to to obtain the NS-α model in detail.
In this section we will obtain variational formulation of the model for finite
element analysis of it. Before we find the variational formulation of the model
we would like to put the model in the form of NSE. For the reason we substitute
u = w + α2Aw and ut = wt + α2Awt in (1.8) this leads the following problem:
Find (w, q) ∈ (X, Y ) such that















∂
∂t (w + α2Aw) − ν∆(w + α2Aw) + 2w · ∇w+

α2w · ∇Aw + α2Aw · ∇w −∇q = f in Ω × (0, T ),
∆w = w = 0 on Γ,

∇ ·w = 0 in Ω × (0, T ).

(3.1)

Remark: The boundary condition ∆w = 0 is sensical since α2∆w = u − w
and u = w = 0 on Γ.

Using the vector identities I and II we can rewrite (4.1) as















∂
∂t (w + α2Aw) − ν∆(w + α2Aw) − 2(w ×∇) ×w+

α2(w ×∇) × Aw + ∇r = f in Ω × (0, T )
∆w = w = 0 on Γ,

∇ · w = 0 in Ω

(3.2)

.
where r = −p+ |w|2+α2(w ·Aw). In order to obtain the variational formulation
of the model we multiply (3.2) by a test function in X and integrate by parts.
This yields the variational formulation of (3.2) as follows :
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Find (w, p) ∈ (X, Y ) satisfying

{

(wt, φ) + α2(PH∇wt · ∇φ) + ν(∇w : ∇φ) + να2(Aw : Aφ) − (r,∇ · φ)
2(w ×∇×w, φ) + α2(w ×∇× Aw, φ) = (f , φ) ∀φ ∈ X.

(3.3)
.

Theorem 3.1 (Energy Estimate) Let f ∈ L2(0, T ; L2(Ω)d) and u0 ∈ V .
Then for any T ≥ 0 the equation (3.3) has a solution w in the interval [0, T ),
and it satisfies

‖w‖2+α2|PH∇w|2+
ν

2

∫ t

0

(‖∇w(s)‖2+α2|Aw(s)|2) ds ≤ e−Ct(‖w0‖
2+α2|Aw0|

2)+C(1−exp−Ct)

where

C = 2 min{
‖f‖2

2ν
,
‖f‖2

−2

να2
}.

Proof 3.1 Existence of solution w of (3.3) with the homogeneous boundary
condition can be obtain following exactly same analysis as in Theorem 3 in [8].
In order to prove the inequality we set φ = w in (3.3). This gives

d

dt
(‖w‖2+α2|PH∇w|2)+ν(‖∇w‖2+α2|Aw|2)+b̃(w;w,w)+b̃(w; Aw,w) = (f ,w)

d

dt
(‖w‖2 + α2|PH∇w|2) + ν(‖∇w‖2 + α2‖Aw‖2) ≤ |f ||w|

≤
‖f‖2

2ν
+

ν

2
‖w‖2

≤
‖f‖2

2ν
+

cν

2
‖∇w‖2,

or
d

dt
(‖w‖2 + α2|PH∇w|2) + ν(‖∇w‖2 + α2|Aw|2) ≤ ‖f‖−2‖w‖2.

By Young’s inequality

d

dt
(‖w‖2 + α2|PH∇w|2) + ν(‖∇w‖2 + α2|Aw|2) ≤

‖f‖2
−2

να2
+

να2

2
‖w‖2

2.

Via the priori estimate, we have

d

dt
(‖w‖2 + α2|PH∇w|2) +

ν

2
(|∇w|2 + α2|Aw|2) ≤ C

where

C = 2 min{
‖f‖2

2ν
,
‖f‖2

−2

να2
}

Multiplying both sides of the last inequality by expCt and integrating from
0 to t yields the following inequality
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‖w‖2+α2|PH∇w|2+
ν

2

∫ t

0

(‖∇w(s)‖2+α2|Aw(s)|2) ds ≤ exp−Ct(‖w0‖
2+α2|Aw0|

2)+C(1−e−Ct).�

Taking the maximum over 0 ≤ t ≤ T of the latter inequality implies that
w ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)).

Theorem 3.2 (Uniqueness) Let f ∈ L2(0, T ; L2(Ω)d) and u0 ∈ V . Then for
any T ≥ 0 the equation (3.3) has a unique solution w(t) in the interval [0, T ).

Proof 3.2 Let w and v be two solutions of (3.3) in V then

(wt, φ) + α2(PH∇wt : ∇φ) + ν(∇w : ∇φ) + να2(Aw : Aφ)− (3.4)

b̃(w;w, φ) + b̃(w; Aw, φ) = (f , φ) ∀φ ∈ V.

(vt, φ) + α2(PH∇vt : ∇φ) + ν(∇v : ∇φ) + να2(Av : Aφ)− (3.5)

b̃(v;v, φ) + b̃(v; Av, φ) = (f , φ) ∀φ ∈ V.

Subtracting (3.5) from (3.4) gives:

(wt − vt, φ) + α2(PH∇(wt − vt) : ∇φ) + ν(∇(w − v) : ∇φ) (3.6)

+να2(A(w − v) : Aφ) + b̃(w;w, φ)−

b̃(v;v, φ) + b̃(w; Aw, φ) − b̃(v; Av, φ) = 0 ∀φ ∈ V.

Let Φ = w − v and set φ = Φ in (3.6) we obtain

d

dt
(‖Φ‖2 + α2|PH∇Φ|2) + ν(‖∇Φ‖2 + α2|AΦ|2) − b̃(w; Φ, Φ) + b̃(w; AΦ, Φ) = 0

d

dt
(|Φ|2 + α2|∇Φ|2) + ν(|∇Φ|2 + α2|AΦ|2) = b̃(w; Φ, Φ) − b̃(w; AΦ, Φ)

Using Holder’s inequality we get

≤ C‖w‖L3‖PH∇Φ‖L2‖Φ‖L6 + C‖w‖L6‖AΦ‖L2‖Φ‖L3

By Sobolev Embedding theorem we have

≤ C(‖w‖
1/2
L2 ‖w‖

1/2
1 ‖PH∇Φ‖L2‖Φ‖1 + ‖w‖L6‖AΦ‖L2‖Φ‖

1/2
L2 ‖Φ‖

1/2
1 )

Using Young’s inequality we obtain

≤
C

ν
(‖w‖L2‖w‖1‖Φ‖2

1 + ‖w‖2
L6‖Φ‖L2‖Φ‖1) +

ν

2
(α2|PH∇Φ|2 + α2|AΦ|2)
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≤
C(α)‖w‖2

1

ν

(

‖Φ‖2 + α2|PH∇Φ|2
)

+
ν

2
(‖∇Φ‖2 + α2|AΦ|2)

d

dt
(‖Φ‖2+α2|PH∇Φ|2)+

ν

2
(‖∇Φ‖2+α2|AΦ|2) ≤

C(α)‖w‖2
1

ν

(

‖Φ‖2 + α2|PH∇Φ|2
)

applying the Gronwall’s inequality gives :

(|Φ(t)|2 + α2|∇Φ(t)|2) ≤ (‖Φ0‖
2 + α2|PH∇Φ0|

2) exp( Cα
ν

R

t

0
‖w(s)‖2

1 ds) .

�

4 Finite Element Method

Let T h be the finite element rectangulations of the polyhedral domain Ω which
satisfies the usual regularity conditions (see e.g. [2]) that is for mesh size h
tending to zero namely that each K ∈ Ωh contains a d-ball of diameter kh and
is contained in a d-ball of diameter k−1h.

Our purpose now is to construct an approximation of X by piecewise poly-
nomial functions of degree ≤ k and to obtain an internal approximation of V in
the following sense:
Since X = H1

0 (Ω)d∩H2(Ω)d the discrete space Xh ⊂ H1
0 (Ω)d∩H2(Ω)d requires

the use of finite element functions that are continuously differentiable over Ω,
and we impose boundary conditions by setting all degrees of freedom at the
boundary nodes to be zero. Thus we let Xh be the finite element space asso-
ciated with Bogner-Fox-Schmit rectangle. Then by the Theorem 2.2.15 in [2]
Xh ⊂ C1(Ω) ∩ H2(Ω) holds. Also let Y h ⊂ Y .

Figure 1: Velocity Space.

In the element PK = Q3; dimPK = 16 (in 2 d) and

∑

K

= {p(ai), ∂1p(ai), ∂2p(ai), ∂12p(ai), 1 ≤ i ≤ 4}.
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For pressure space we consider P disc
2 . Q3/P disc

2 pair form a stable pair (See
[2]).

We assume the spaces Xh and Y h satisfy the following properties:
I. There is a constant β̃ > 0 independent of h for which:

inf
06=ph∈Y h

sup
06=u

h∈Xh
0

∫

Ω
phdivuh dx

‖ph‖0,Ω‖uh‖1,Ω
≥ β̃, (4.1)

II.
inf

ph∈Y h
‖p − ph‖0,Ω ≤ ch‖p‖1,Ω, ∀ p ∈ H1(Ω),

III. There exists a continuous linear operator Πh : H1(Ω)d → Xh for
which:

Πh(H1
0 (Ω)d) ⊂ Xh

0 ,

‖u− Πhu‖s,Ω ≤ cht−s‖u‖t,Ω, ∀u ∈ Ht(Ω) with s = 0, 1 and t = 1, 2,

‖u− Πhu‖0,Γ ≤ ch1/2‖u‖1,Ω,

where ‖.‖0,Γ = (
∑k

j=1 ‖.‖0,Γj
)1/2. Assumption I balances the influence of the

constraint divu = 0 and also implies that the space:

V h =
{

vh ∈ Xh | 〈qh,∇ · vh〉 = 0, ∀ qh ∈ Y h
}

is also not empty.

5 Semi-Discretization in Space

Note that similar inequalities as stated in section three even hold for the func-
tions in the discrete space V h, for n ≤ 3 especially for the conforming case.

Let V h be a finite-dimensional subspace of V with basis {φ1, φ2, ..., φM}.
Replacing V by the finite-dimensional subspace V h we get the following semi-
discrete analogue of (3.3) as:







(wh
t ,v) + α2(PH∇wh

t ,∇v) + ν(∇wh,∇v) + να2(Awh, Av)

−b̃(wh;wh,v) − α2b̃(wh; Awh,v) − (rh,∇ · v) = (f ,v) ∀v ∈ V h, t ∈ [0, T )
(wh(0),v) = (wh

0 ,v) ∀v ∈ V h

(5.1)
where wh

0 ∈ V h is an approximation to the initial data w0 ∈ V satisfying
uniformly for h → 0:

|w0−wh
0 | ≤ Chk+1‖w0‖k+1, k = 1, 2, .. ∀w0 ∈ Hk

0 (Ω)d∩Hk+2(Ω)d (5.2)

We can rewrite (5.1) using the representation

wh(t, x) =
M
∑

i=1

ci(t)φi(x), t ∈ [0, T ]

13



with the time dependent coefficients ci(t) ∈ R, and setting v = φj ,
j = 1, 2, ...M in (5.1) we obtain:

M
∑

i=1

c′i(t)
[

(φh
i , φh

j ) + α2(PH∇φh
i ,∇φh

j )
]

+

M
∑

i=1

ci(t)
[

ν(∇φh
i ,∇φh

j ) + να2(Aφh
i , Aφh

j )
]

+

M
∑

l,i=1

ci(t)cl(t)
[

b̃(φh
i ; φh

i , φh
j ) + α2b̃(φh

i ; Aφh
i , φh

j )
]

= (f(t), φh
j ) (5.3)

M
∑

i=1

ci(0)(φh
i , φh

j ) = (w0, φ
h
j ), j = 1, 2, ...M.

These equations form a nonlinear differential system for the functions (c1(t), c2(t), ..., cM (t)).
Inverting the nonsingular matrix with elements

[

(φh
i , φh

j ) + α2(PH∇φh
i ,∇φh

j )
]

, i, j = 1, ..., M.

We can write the differential equations in the usual form as:

c′i(t) +

M
∑

i=1

ajicj(t) +

M
∑

k,i=1

ajikci(t)ck(t) =

M
∑

j=1

bji(f(t), φ
h
j ), ∀t ∈ [0, T )

(5.4)

where aji, ajik , bji ∈ R.

The last condition in (5.3) is equivalent to ci(0) is the i − th component of
w0. The nonlinear differential system (5.4) with the initial condition has a local
solution on some interval [0, t]. If t ≤ T , we will prove that this doesn’t happen
and therefore t = T.

Stability of (5.1) can be obtained taking v = wh(t) in (5.1)

d

dt

(

‖wh‖2 + α2|PH∇wh|2
)

+ ν(‖∇wh‖2 + α2|Awh|2) ≤ ‖f‖−2‖w
h‖2

Similar to proof of the energy estimate and also recalling

(wh(0),w0) = (wh
0 ,w0)

we get

‖wh‖2+α2|PH∇wh|2+

∫ t

0

(|wh|2+α2|Awh|2) ds ≤ e−ct(‖wh
0‖

2+α2|Awh
0 |

2)+c(1−exp−ct).

This guarantees the existence of discrete solution of equations (5.1) which
are L∞(0, T ; V h) ∩ L2(0, T ; V h) for T > 0. To guarantee the existence and
uniqueness of the pressure rh we assume our discrete spaces satisfy the inf-sup
condition:

14



There is a constant β > 0 independent of h for which:

inf
06=ph∈Y h

sup
06=w

h∈Xh
0

(ph · ∇uh)

‖ph‖1‖wh‖−1
≥ β (5.5)

, and

|f |2 := sup
vh∈V h

(f ,∇ · vh)

‖vh)‖2
.

For the approximate solution wh we have the following convergent result.

Theorem: Assume that the finite element spaces V h are k − th order approx-
imation of the space V in the sense described above. Further, assume that w0 ∈
V, f ∈ L∞(0, T ; L2(Ω)), and let w ∈ L∞(0, T ; H1(Ω))∩L2(0, T ; H2(Ω)) and wh ∈
L∞(0, T ; V h) ∩ L2(0, T ; V h) for some T 6= 0 be the corresponding unique solu-
tions of equations (3.3) and (5.1), respectively then the error function e = w−wh

satisfies the estimate

‖w −wh‖2
L∞(0,T ;L2(Ω)) + α2|PH∇(w −wh)|2L∞(0,T ;L2(Ω)) ≤

Ch2(k+1)
{

‖w‖2
L∞(0,T ;Hk+1(Ω)) + C1

(

‖w0‖
2 + 1/ν‖wt − vh

t‖
2
L∞(0,T ;Hk+1(Ω))

)}

+

Ch2k
{

α2‖∇w‖2
L∞(0,T ;Hk+1(Ω)) + C1α

2‖∇w0‖
2 + 1/ν‖p‖2

L2(0,T ;Hk(Ω))

}

+

Ch2k(1 + να2)‖∆w‖2
L∞(0,T ;Hk(Ω)) + C1

(

‖w0 −wh
0‖

2 + α2|PH∇(w0 −wh
0 )|2

)

where C1 = e(−C(α)/να2)‖w‖L2(0,T ;H1(Ω).

Proof: Suppose V h uses piecewise polynomials of degree ≤ k, by approximation
assumption ‖∇(w − vh)‖ ≤ Chk‖w‖k+1.
Since w is in H2(Ω) so it is optimal

‖∇(w − vh)‖ ≤ Chk+1‖w‖k+1.

Subtracting (5.1) from (3.3) and defining η := w− vh and φh := wh − vh then
we obtain:

(ηt − φh
t ,v) + α2(PH∇(ηt − φh

t ),∇v) + ν
[

(∇(η − φh),∇v) + α2(A(η − φh), Av)
]

− b̃(w; η − φh,v) − b̃(w; A(η − φh),v) − (p − qh),∇ · v) = 0 ∀v ∈ Xh.
(5.6)

Let elliptic projection PE : X → V h be defined by

(∇(w − PEw),∇v) = 0 ∀v ∈ Xh.

Note that the projection operator commute with time differentiation that is
PEwt = (PEw)t. Hence the following equation also holds

(PH∇(wt − PEwt),∇v) = 0 ∀v ∈ V h.
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Then the last equation can be rewritten as :

(φh
t ,v) + α2(PH∇φh

t ,∇v) + ν(∇φh,∇v) + α2(Aφh, Av) =

(ηt,v) + α2(Aη, Av) − b̃(w; η,v) + b̃(w; φh,v)+

b̃(w; Aφh,v) + b̃(w; Aη,v) + (p − qh,∇ · v) ∀v ∈ Xh.

Setting v = φh and rearranging terms in the latter equation we obtain:

1

2

d

dt
(‖φh‖2 + α2|PH∇φh|2) + ν

(

‖∇φh‖2 + α2|Aφh|2
)

=

(ηt, φ
h) + να2(Aη, Aφh) + b̃(w; η, φh) + b̃(w; φh, φh)+

b̃(w; Aη, φh) + b̃(w; Aφh, φh) + (p − qh,∇ · φh). (5.7)

We would like to bound φh by in terms of η.
Applying Hölder’s inequality, Sobolev Imbedding, Poincaré inequality respec-
tively we get that the right hand side of (5.7) as follows:

1

2

d

dt
(‖φh‖2 + α2|PH∇φh|2) + ν

(

‖∇φh‖2 + α2|Aφh|2
)

≤ (5.8)

‖ηt‖|PH∇φh| + να2|Aη||Aφh|+

‖w‖1/2|PH∇w|1/2‖η |‖φh‖1 + ‖w‖1/2‖∇w‖1/2|PH∇φh|‖φh‖1

+ ‖w‖1/2‖∇w‖1/2|Aη|‖φh‖1+

‖w‖1/2‖∇w‖1/2|Aφh|‖φh‖1 + ‖p − qh‖‖∇φh‖

Applying Young’s inequality to (5.8) we get:

1

2

d

dt
(‖φh‖2 + α2|PH∇φh|2) + ν

(

‖∇φh‖2 + α2|Aφh|2
)

≤

(
8

ν
‖ηt |2 +

ν

8
|PH∇φh|2) + (να2|Aη|2 +

α2ν

4
|Aφh|2) + (

1

4
‖w‖2

1‖φ
h‖2

1 + ‖η‖2)+

(
8

ν
‖w‖2

1‖φ
h‖2

1 +
ν

8
|PH∇φh|) + (

1

4
‖w‖2

1‖φ
h‖2

1 + |Aη|2)+

(
1

να2
‖w‖2

1‖φ
h‖2

1 +
να2

4
|Aφh|2|) + (

1

ν
‖p − qh‖2 +

ν

4
‖∇φh‖2)

Grouping the similar terms together gives:

1

2

d

dt

(

‖φh‖2 + α2|PH∇φh|2
)

+ ν
(

‖∇φh‖2 + α2|Aφh|2
)

≤

8

ν
‖ηt‖

2 + (1 + να2)|Aη|2 + ‖η‖2 +
C(α)

να2
‖w‖2

(

‖φh‖2 + α2|PH∇φh|2
)

+
1

ν
‖p − qh‖2
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Applying Gronwall’s inequality:

1

2

d

dt

(

‖φh‖2 + α2|PH∇φh|2
)

+ ν
(

‖∇φh‖2 + α2|Aφh|2
)

≤

e
C(α)

να2

R

t

0
‖w(s)‖2

1 ds
(

‖φh
0‖

2 + α2|PH∇φh
0 |

2
)

+
8

ν

∫ t

0

‖ηt‖
2 ds

+ (1 + να2)

∫ t

0

|Aη|2 ds +

∫ t

0

‖η‖2 ds +
1

ν

∫ t

0

‖p − qh‖2 ds.

Adding and subtracting w(t) on the right hand side of the latter inequality we
obtain

max
0≤t≤T

(‖w −wh‖2 + α2|PH∇(w −wh)|2) ≤ max
0≤t≤T

(

2‖w − vh‖2 + α2|∇(w − vh)|2
)

+

K[|w0 −wh
0 |

2 + |w0 − vh
0 |

2 + α2|PH∇(w0 −wh
0 )|2 + α2|∇(w0 − vh

0 )|2]+

+
8

ν
max

0≤t≤T
‖wt −wh

t ‖
2 + (1 + να2) max

0≤t≤T
|A(w − vh)|2 +

1

ν
‖p− qh‖2

where K = e
Cα

να2 ‖w‖2
L(0,T ;H1(Ω)).

Applying the approximation assumption:

max
0≤t≤T

(‖w −wh‖2 + α2|PH∇(w −wh)|2) ≤

Ch2(k+1) max
0≤t≤T

‖w‖2
k+1 + Ch2k max

0≤t≤T
‖∇w‖2

k+1 + K[‖w0 − vh
0‖

2

+Ch2(k+1)‖w0‖
2
k+1 + α2Chk‖∇w0‖

2
k+1 + |PH∇(w0 − vh

0 )|2]+

Ch2(k+1)

ν
max

0≤t≤T
‖wt‖

2
k+1 + C(1 + να2)h2k max

0≤t≤T
‖Aw‖2

k +
Ch2k

ν
‖∇p‖2

k

From the latter inequality the desired result follows.
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