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MINIMAL SPECTRALLY ARBITRARY SIGN PATTERNS∗

T. BRITZ† , J. J. MCDONALD‡, D. D. OLESKY§ , AND P. VAN DEN DRIESSCHE†

Abstract. An n × n sign pattern A is spectrally arbitrary if given any self-conjugate spectrum
there exists a matrix realization of A with that spectrum. If replacing any nonzero entry (or entries)
of A by zero destroys this property, then A is a minimal spectrally arbitrary sign pattern. For n ≥ 3,
several families of n×n spectrally arbitrary sign patterns are presented, and their minimal spectrally
arbitrary subpatterns are identified. These are the first known families of n × n minimal spectrally
arbitrary sign patterns. Furthermore, all such 3 × 3 sign patterns are determined and it is proved
that any irreducible n×n spectrally arbitrary sign pattern must have at least 2n−1 nonzero entries,
and conjectured that the minimum number of nonzero entries is 2n.

Key words. Spectrum, sign pattern, nilpotent matrix

AMS subject classifications. 15A18, 15A48.

1. Introduction. A sign pattern is a square matrix with entries in {+,−, 0}.
If A is a sign pattern and A is a real matrix for which each entry has the same
sign as the corresponding entry of A, then A is said to be a realization of A, and
we write A ∈ A. This convention is also used for zero-nonzero patterns A. A sign
pattern B = [bij ] is a superpattern of a sign pattern A = [aij ] if bij = aij whenever
aij 6= 0. Similarly, B is a subpattern of A if bij = 0 whenever aij = 0. Note that each
sign pattern is a superpattern and a subpattern of itself. An n × n sign pattern A
is spectrally arbitrary if for each real monic polynomial r(x) of degree n, there exists
some A ∈ A with characteristic polynomial pA(x) = r(x). Thus, A is spectrally
arbitrary if given any self-conjugate spectrum, there exists A ∈ A with that spectrum.
A sign pattern A is minimally spectrally arbitrary if it is spectrally arbitrary but is
not spectrally arbitrary if any nonzero entry (or entries) of A is replaced by zero.
If A is an n × n sign pattern or zero-nonzero pattern, then A allows nilpotency if
there exists some A ∈ A with characteristic polynomial pA(x) = xn. Note that each
spectrally arbitrary sign pattern must allow nilpotency, must be inertially arbitrary
(as explained below Theorem 2.5), and must also be potentially stable. These are
three important sign pattern problems that are considered in the literature (see, for
example, [1, 3, 4, 5, 7, 8, 9]).

In [8, Theorem 2.6], it is proved that a p-striped sign pattern, that is an n × n

(n ≥ 2) sign pattern having p (1 ≤ p ≤ n−1) columns all of whose entries are positive
and n− p columns all of whose entries are negative, is spectrally arbitrary. The proof
is based on constructions using a Soules matrix, and gives (as far as we are aware)
the first spectrally arbitrary sign pattern family for all n ≥ 2.

Each p-striped sign pattern is full, and current interest is in determining minimal
spectrally arbitrary patterns. In Section 2, an n×n (n ≥ 3) irreducible sign pattern Vn

is presented and proved to be minimally spectrally arbitrary. To our knowledge, no
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such family of minimal spectrally arbitrary sign patterns has been presented previ-
ously. Each of these sign patterns is a Hessenberg matrix, and all superpatterns of
these sign patterns are shown to be spectrally arbitrary. This strengthens results
in [5].

In Section 3, the family of sign patterns Vn is extended to a larger family of
n× n irreducible sign patterns Wn(k) with each superpattern shown to be spectrally
arbitrary. This provides an alternate proof that every p-striped pattern is spectrally
arbitrary [8]. The sign pattern Wn(k) is not necessarily minimally spectrally arbitrary.
However, the minimal spectrally arbitrary sign patterns that are contained in Wn(k)
are characterized.

The family of sign patterns Vn is generalized in another way in Section 4 by
introducing a family of zero-nonzero patterns V∗

n(I). It is shown that if V∗
n(I) allows

nilpotency, then V∗
n(I) determines an n × n irreducible sign pattern Vn(I) that is

minimally spectrally arbitrary with each superpattern being spectrally arbitrary. Two
families of irreducible minimal spectrally arbitrary patterns that arise in this manner
are described.

In this paper, two sign patterns A and B are equivalent if B may be obtained
from A by some combination of negation, transposition, permutation similarity, and
signature similarity. Note that if A and B are equivalent, then A is spectrally arbitrary
if and only if B is spectrally arbitrary. In Section 5, the family of spectrally arbitrary
3 × 3 sign patterns is characterized explicitly (up to equivalence).

In the concluding Section 6, it is proved that any n × n irreducible spectrally
arbitrary sign pattern must contain at least 2n − 1 nonzero entries. It is conjectured
that it must in fact contain at least 2n nonzero entries.

2. Hessenberg sign patterns Vn. Results throughout rely heavily upon the
following lemma, which is stated as Observations 10 and 15 in [1] and is proved using
the Implicit Function Theorem. Let x1, . . . , xn be real variables, and for each i =
1, . . . , n, let αi = αi(x1, . . . , xn) be a real function of (x1, . . . , xn) that is continuous

and differentiable in each xj . The Jacobian J = ∂(α1,...,αn)
∂(x1,...,xn) is the n × n matrix with

(i, j) entry equal to ∂αi

∂xj
for 1 ≤ i, j ≤ n.

Lemma 2.1. [1] Let A be an n × n sign pattern, and suppose that there exists
some nilpotent A ∈ A with at least n nonzero entries, say ai1j1 , . . . , ainjn

. Let X be
the matrix obtained by replacing these entries in A by variables x1, . . . , xn, and let

pX(x) = xn − α1x
n−1 + α2x

n−2 − · · · + (−1)n−1αn−1x + (−1)nαn.

If J = ∂(α1,...,αn)
∂(x1,...,xn) is nonsingular at (x1, . . . , xn) = (ai1j1 , . . . , ainjn

), then every super-

pattern of A is spectrally arbitrary.
Example 2.2.

Let A =
[

+
+

−
−

]

. Then A =
[

1
1
−1
−1

]

∈ A is nilpotent. Let X =
[

x1

1
−1
x2

]

. Then

pX(x) = x2 − α1x + α2,

where α1 = x1 + x2 and α2 = x1x2 + 1. Thus

J =
∂(α1, α2)

∂(x1, x2)
=

[

1 1
x2 x1

]

, and det J = x1 − x2.

At (x1, x2) = (1,−1), det J = 2 6= 0. By Lemma 2.1, A is spectrally arbitrary, and
it is easily seen that it is minimal. Note that up to equivalence, A is the unique
(minimal) spectrally arbitrary 2 × 2 sign pattern.
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Given a sign pattern A, let D(A) be its associated digraph. For any digraph D,
let G(D) denote the underlying multigraph of D, i.e., the graph obtained from D by
ignoring the direction of each arc. The following lemma is well known and can be
proved by induction. We use this to normalize an n × n matrix A ∈ A by fixing up
to n − 1 entries to have magnitude 1.

Lemma 2.3. Let A be an n × n sign pattern and let A ∈ A. If T is a subdigraph
of D(A) such that G(T ) is a forest, then A has a realization that is positive diagonally
similar to A such that each entry corresponding to an arc of T has magnitude 1. In
particular, if A is irreducible, then G(D(A)) contains a spanning tree, and A must
therefore have a realization with at least n − 1 off-diagonal entries in {−1, 1} that is
positive diagonally similar to A.

Let n ≥ 3, and consider the n × n Hessenberg sign pattern

Vn =



















+ −
+ −
...

. . .

+ −
+ −
+ −

0

0


















.

Theorem 2.4. For n ≥ 3, the pattern Vn is a minimal spectrally arbitrary
pattern.

Proof. Let

r(x) = xn − r1x
n−1 + r2x

n−2 − · · · + (−1)n−1rn−1x + (−1)nrn

be a fixed but arbitrary real monic polynomial of degree n. Let

A =



















a1 −1
a2 −1
...

. . .

an−2 −1
an−1 −1
an −t

0

0


















.

The characteristic polynomial of A is

pA(x) = xn − α1x
n−1 + α2x

n−2 − · · · + (−1)n−1αn−1x + (−1)nαn,

where each coefficient αi is the sum of the i× i principal minors of A; thus α1 = a1− t

and αi = ai − tai−1 for i = 2, . . . , n. Set a1 = r1 + t. For each i = 2, . . . , n, set

ai = ti +

i
∑

j=1

rj t
i−j .

Then α1 = a1 − t = r1 + t − t = r1, and for i = 2, . . . , n,

αi = ai − tai−1 =



ti +

i
∑

j=1

rjt
i−j



 − t



ti−1 +

i−1
∑

j=1

rjt
i−1−j



 = ri.
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Thus, αi = ri for all i = 1, . . . , n, i.e., pA(x) = r(x). For all t > 0 sufficiently large,
each aj > 0 (1 ≤ j ≤ n) and thus A ∈ Vn. Hence, Vn is spectrally arbitrary.

By Lemma 2.3, each matrix with sign pattern Vn is positive diagonally similar
to a matrix A in the above form. If one of the −1 entries in columns 2, . . . , n − 1
of A is replaced by zero, then the resulting matrix is necessarily singular. Similarly, if
t = 0 or the −1 entry in column n of A is replaced by zero, then the resulting matrix
is necessarily nonsingular. If ai = 0 for some 1 ≤ i ≤ n, then αi ≤ 0. Thus, Vn is
minimally spectrally arbitrary.

Set t = 1 in the matrix A from the above proof. If a1 = · · · = an = 1, then A

is nilpotent. The Jacobian J = ∂(α1,...,αn)
∂(a1,...,an) has 1 in each diagonal position, −t = −1

in each subdiagonal position, and zeros elsewhere. Thus, det J = 1 6= 0. Hence, the
theorem below follows from Lemma 2.1.

Theorem 2.5. For n ≥ 3, any superpattern of Vn is a spectrally arbitrary pat-
tern.

An n × n sign pattern A is inertially arbitrary if given a nonnegative triple of
integers (n1, n2, n3) with n1 + n2 + n3 = n, there exists some A ∈ A that has n1

eigenvalues with positive real part, n2 eigenvalues with negative real part, and n3

eigenvalues with zero real part. Note that if a sign pattern is spectrally arbitrary,
then it is also inertially arbitrary. Recently, several families of sign patterns have
been shown to be inertially arbitrary (see [5, 8, 9]). The sign patterns described in [5]
are superpatterns of the pattern Vn. It follows from Theorem 2.5 that these sign
patterns are not only inertially arbitrary but are indeed spectrally arbitrary.

3. Non-Hessenberg sign patterns Wn(k). We now define a general class of
n × n sign patterns that includes the Hessenberg patterns Vn. Let n ≥ 3 and 0 ≤
k ≤ n − 2 be given. Define Wn(k) to be the n × n sign pattern with positive signs
throughout the first column and in the entries

{(j, j + 1) : j = 1, . . . , k};

negative signs in the entries

{(j, j + 1) : j = k + 1, . . . , n − 1}, {(j, n) : j = 1, . . . , k}, and (n, n);

and zeros elsewhere. For k ≥ 1, let Wn(k) ∈ Wn(k) have values a1, . . . , an in column 1;
−b1, . . . ,−bk in the first k entries of column n; −bn in the (n, n) entry; and all entries
on the superdiagonal have magnitude 1. For example, the sign pattern W7(3) and a
realization W7(3) are





















+ + 0 0 0 0 −
+ 0 + 0 0 0 −
+ 0 0 + 0 0 −
+ 0 0 0 − 0 0
+ 0 0 0 0 − 0
+ 0 0 0 0 0 −
+ 0 0 0 0 0 −





















and





















a1 1 0 0 0 0 −b1

a2 0 1 0 0 0 −b2

a3 0 0 1 0 0 −b3

a4 0 0 0 −1 0 0
a5 0 0 0 0 −1 0
a6 0 0 0 0 0 −1
a7 0 0 0 0 0 −b7





















,

respectively. Then matrix Wn(k) ∈ Wn(k) has characteristic polynomial

xn − α1x
n−1 + α2x

n−2 − · · · + (−1)n−1αn−1x + (−1)nαn,
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where

α1 = a1 − bn

αi = (−1)i−1(ai + ai−1bn − bi−1an) for i = 2, . . . , k + 1

αi = (−1)k(ai − ai−1bn) for i = k + 2, . . . , n.

Proposition 3.1. For each pair n ≥ 3 and 0 ≤ k ≤ n−2, the pattern Wn(k) is a
spectrally arbitrary pattern, and every superpattern of Wn(k) is spectrally arbitrary.

Proof. Since the patterns Wn(0) are the Hessenberg patterns Vn, the result for
k = 0 follows from Theorem 2.5.

Let 1 ≤ k ≤ n−2 be given. Note that Wn(k) is nilpotent if a1 = · · · = an = bn = 1
and b1 = · · · = bk = 2. Now set b1 = · · · = bk = 2, and bn = 1, leaving a1, . . . , an as
variables. Then the terms of the characteristic polynomial of Wn(k) are

α1 = a1 − 1

αi = (−1)i−1(ai + ai−1 − 2an) for i = 2, . . . , k + 1

αi = (−1)k(ai − ai−1) for i = k + 2, . . . , n.

The Jacobian J = ∂(α1,...,αn)
∂(a1,...,an) is a matrix with ±1 entries on the main diagonal and

on the subdiagonal, and (i, n) entries equal to (−1)i2 for i = 2, . . . , k +1. Thus, det J

is a (positive or negative) odd integer, and the result follows from Lemma 2.1.
Corollary 3.2. [8, Theorem 2.6] For n ≥ 2, every n× n p-striped sign pattern

is spectrally arbitrary.
Proof. The case n = 2 is proved in Example 2.2. Suppose that n ≥ 3, and

consider the n × n p-striped sign pattern with precisely p = k + 1 ≤ n − 1 positive
columns for some k ≥ 0. By permutation similarity, it may be assumed that the first
k + 1 columns are positive. This p-striped sign pattern is a superpattern of Wn(k),
and the result follows by Proposition 3.1.

If k = 0, then Wn(0) = Vn is a minimal spectrally arbitrary pattern. For k = 1,
Wn(1) is minimally spectrally arbitrary, since at least one of the coefficients αi has
fixed sign if any of the variables a1, . . . , an, b1, bn are set to zero. This is not necessarily
true for values k ≥ 2. For such k, let Ik denote the family of subsets I ⊆ {2, . . . , k}
such that I does not contain two consecutive integers i, i + 1, and {1, . . . , k + 1}\I
does not contain three consecutive integers i, i + 1, i+ 2. Note that the set of all even
integers and the set of all odd integers in {2, . . . , k} both are members of Ik. For
I ∈ Ik, set ai = 0 for each i ∈ I , and let the resulting sign pattern and matrix be
denoted by WI

n(k) and W I
n(k), respectively.

Theorem 3.3. For each pair n ≥ 4 and 2 ≤ k ≤ n − 2, the family of minimal
spectrally arbitrary subpatterns of Wn(k) consists of the patterns WI

n(k), where I ∈ Ik.
Furthermore, any superpattern of these patterns is spectrally arbitrary.

Proof. Let I ∈ Ik, and set an = bn = 1 in W I
n(k). Then W I

n(k) is nilpotent if and
only if the following coefficients all equal 0:

α1 = a1 − 1

αi = (−1)i−1(ai−1 − bi−1) for i ∈ I

αi = (−1)i−1(ai − bi−1) for i − 1 ∈ I, i ∈ {2, . . . , k + 1}\I
αi = (−1)i−1(ai + ai−1 − bi−1) for i − 1, i ∈ {1, . . . , k + 1}\I
αi = (−1)k(ai − ai−1) for i ∈ {k + 2, . . . , n}.
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Note that W I
n(k) is nilpotent if ai = 1 for all variables ai appearing in the equations

above, and for each i ∈ {2, . . . , k + 1}, the variables bi−1 = 2 if both i and i +
1 are contained in {1, . . . , k + 1}\I , and bi−1 = 1 otherwise. The Jacobian J =

∂(α1,...,αn)
∂(a1,b1,...,bk,ak+1,...,an−1)

is the direct sum of a lower-triangular k × k matrix and an

upper-triangular (n − k) × (n − k) matrix, with ±1 entries on the main diagonal.
The determinant of J has magnitude 1, so J is nonsingular. By Lemma 2.1, W I

n(k)
is spectrally arbitrary, and each superpattern of WI

n(k) is also spectrally arbitrary.
By the definition of Ik, if any variable ai, where i ∈ {2, . . . , k}\I , is set to 0, then
either ai−1 or ai+1 also equals 0, and the sign of αi or αi+1 is fixed. Thus, WI

n(k) is
a minimal spectrally arbitrary sign pattern.

Suppose that W is a minimal spectrally arbitrary subpattern of Wn(k) with
realization W obtained by setting some of the variables in Wn(k) to 0. Since W
is spectrally arbitrary, no coefficient αi has fixed sign. Thus, none of the vari-
ables a1, ak+1, . . . , an, b1, . . . , bk, bn equals 0. Furthermore, no two consecutive vari-
ables ai−1 and ai can both equal zero. Suppose that i, i + 1, i + 2 are three con-
secutive integers contained in {1, . . . , k + 1} such that ai, ai+1, ai+2 6= 0. If the
entry ai+1 is replaced by a zero, then the resulting sign pattern is also spectrally
arbitrary, contradicting the minimality of W . It follows that W = W I

n(k), where
I = {i : 2 ≤ i ≤ k, ai = 0}.

4. Sign patterns Vn(I). For n ≥ 3, consider the matrix

A =

























a0 −1
a1 −1
...

. . .
...

. . .

an−3 −1
an−2 −1
an−1 bn−2 bn−3 · · · · · · b1 b0

























0

0

, (4.1)

where the entries a0, b0, and an−1 are nonzero, and precisely one of ai and bi for each
i = 1, . . . , n − 2 is nonzero. The zero-nonzero pattern determined by A is denoted
by V∗

n(I), where I = {i : ai = 0}. The matrix A has characteristic polynomial

pA(x) = xn − α0x
n−1 + α1x

n−2 − · · · + (−1)n−1αn−2x + (−1)nαn−1,

where (on computing the sum of the principal minors of each order)

α0 = a0 + b0,

αi = ai + bi +

i−1
∑

j=0

ajbi−1−j for i = 1, . . . , n − 2,

and αn−1 = an−1 +
n−2
∑

j=0

ajbn−2−j .

Define si = ai+bi for i = 0, · · · , n−2 and sn−1 = an−1. Since ∂αi

∂sj
is zero whenever

j > i, the Jacobian J = ∂(α0,...,αn−1)
∂(s0,...,sn−1)

is lower triangular. The diagonal entries ∂αi

∂si

each equal 1, so the Jacobian has determinant 1 and is therefore nonsingular.
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For nilpotency to hold, each coefficient αi for i = 0, . . . , n − 1 must vanish, i.e.,

0 = a0 + b0

0 = a1 + b1 + a0b0

0 = a2 + b2 + a0b1 + a1b0 (4.2)

...

0 = an−2 + bn−2 + a0bn−3 + a1bn−4 + · · · + an−3b0

0 = an−1 + a0bn−2 + a1bn−3 + · · · + an−2b0

For any fixed I , an induction argument shows that there exist constants c0, . . . , cn−1,
d0, . . . , dn−2, t such that the parameters in (4.1) for any nilpotent A ∈ V ∗

n (I) satisfy
ai = cit

i+1 for i = 0, . . . , n − 1 and bi = dit
i+1 for i = 0, . . . , n − 2. If c0 and t are

positive, then the sign of ai for i = 0, . . . , n−1 and the sign of bi for i = 0, . . . , n−2 are
uniquely determined. Thus, if V∗

n(I) allows nilpotency, then this determines uniquely
a sign pattern with a positive (1, 1) entry and negative superdiagonal, denoted Vn(I),
which allows nilpotency. By Lemma 2.1, Vn(I) is a spectrally arbitrary pattern, and
each superpattern of Vn(I) is spectrally arbitrary. To show minimality, first note that
if a0 = 0 or b0 = 0, then ai = bi = 0 for all i = 0, . . . , n − 2 and an−1 = 0, thus
A is clearly not spectrally arbitrary. Thus a0b0 6= 0. If a1 = b1 = 0, then a0b0 = 0
from the second equation in (4.2), contradicting the above. Proceeding similarly, it is
not difficult to show that Vn(I) is an irreducible minimal spectrally arbitrary pattern.
The preceding discussion gives the following result.

Lemma 4.1. If V∗
n(I) allows nilpotency, then Vn(I) exists and is minimally spec-

trally arbitrary, and each superpattern of Vn(I) is spectrally arbitrary.
Note that V∗

n(φ) allows nilpotency (let a0 = · · · = an−1 = 1 and b0 = −1), and
that Vn(φ) = Vn.

Lemma 4.2. For I ⊆ {1, . . . , n−2}, let IC = {1, . . . , n−2}\I. Then V∗
n(I) allows

nilpotency if and only if V∗
n(IC) allows nilpotency. Also, if V∗

n(I) allows nilpotency,
then V∗

n′(I ′) allows nilpotency for all 3 ≤ n′ ≤ n, where I ′ = {i ∈ I : i ≤ n′ − 2}.
Proof. Note that V∗

n(I) and V∗
n(IC) are equivalent by transposition and per-

mutation similarity. This proves the first statement of the lemma. If V∗
n(I) allows

nilpotency, then equations (4.2) are satisfied by some A ∈ V∗
n(I). In particular, the

first n′ equations are satisfied, so V∗
n′(I ′) also allows nilpotency.

There are a large number of spectrally arbitrary patterns arising from patterns
V∗

n(I) but they do not generally seem to fall into easily described categories. Numerical
evidence suggests that for n ≥ 4, precisely 2n−3 + 2 of the 2n−2 patterns V∗

n(I) allow
nilpotency. The following theorems with I = {k} and I = {i : 1 ≤ i ≤ n− 2 is odd},
respectively, describe two classes, Vn(k) = Vn({k}) and Valt

n , of minimal spectrally
arbitrary sign patterns arising from V∗

n(I).
Let n ≥ 3 and 1 ≤ k ≤ n−2 be given and define Vn,k to be the n×n sign pattern

with negative signs in the entries

{(j, j + 1) : j = 1, . . . , n − 1}, {(j, 1) : j = k + 2, . . . , n}, and (n, n) ;

positive signs in the entries

{(j, 1) : j = 1, . . . , k} and (n, n − k) ;

and zeros elsewhere. Note that Vn,k has the same zero-nonzero pattern as V∗
n(k). To
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illustrate,

V5,1 =













+ − 0 0 0
0 0 − 0 0
− 0 0 − 0
− 0 0 0 −
− 0 0 + −













and V5,2 =













+ − 0 0 0
+ 0 − 0 0
0 0 0 − 0
− 0 0 0 −
− 0 + 0 −













.

Theorem 4.3. Let k ≥ 1 and k + 2 ≤ n < 2k + 1
2 (
√

1 + 8k + 3) be given. Then
Vn(k) exists and is identical to Vn,k. Furthermore, it is a minimal spectrally arbitrary
pattern, and any superpattern of Vn(k) is spectrally arbitrary.

Proof. Let A be as in (4.1), and set

ai =











1 for i = 0, . . . , k − 1

k − i for i = k, . . . , 2k
1
2 (i2 − i) + 2(k2 − ik) for i = 2k + 1, . . . , n − 1

and

bi =











−1 for i = 0

1 for i = k

0 for otherwise .

The polynomial 1
2 (x2 − x) + 2(k2 − xk) has roots 2k + 1

2 ± 1
2

√
1 + 8k. Thus, the

inequality

n − 1 < 2k +
1

2
+

1

2

√
1 + 8k

implies that 1
2 (i2− i)+2(k2− ik) < 0 for all 2k+1 ≤ i ≤ n−1. Hence, A ∈ V∗

n(k) and
A ∈ Vn,k. To prove Theorem 4.3, it suffices, by Lemma 4.1, to show that A is nilpotent,
i.e., that the entries of A satisfy equations (4.2). Certainly, a0 + b0 = 1 − 1 = 0 and

ai + bi + a0bi−1 + · · · + ai−1b0 = ai + ai−1b0 = 1 − 1 = 0

for all i = 1, . . . , k − 1. Also,

ak + bk + a0bk−1 + · · · + ak−1b0 = bk + ak−1b0 = 1 − 1 = 0.

Since b0 = −1 and bj = 0 for j = k + 1, . . . , n− 2, on letting bn−1 = 0, the remaining
equations have the form

0 = ai + bi + a0bi−1 + · · · + ai−1b0 = ai + ai−1−k − ai−1,

where k + 1 ≤ i ≤ n − 1. For k + 1 ≤ i ≤ min{2k, n− 1},

ai + ai−(k+1) − ai−1 = k − i + 1 − (k − i + 1) = 0.

If n − 1 ≤ 2k, then the proof is concluded. Suppose that n ≥ 2k + 2. The inequality

n < 2k + 2 +
1

2
(
√

1 + 8k − 1) ≤ 3k + 2,
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implies that n − 1 ≤ 3k. Thus

ai + ai−1−k − ai−1 =
1

2
(i2 − i) + 2(k2 − ik) + k − (i − 1 − k)

−(
1

2
((i − 1)2 − (i − 1)) + 2(k2 − (i − 1)k)) = 0

for all i = 2k + 1, . . . , n − 1. This concludes the proof.
To illustrate Theorem 4.3, consider the case k = 1. Since

2k +
1

2
(
√

1 + 8k + 3) = 5,

it follows from Theorem 4.3 that V3(1) and V4(1) exist and are minimal spectrally
arbitrary patterns such that all of their superpatterns are spectrally arbitrary pat-
terns. Since V∗

5 (1) does not allow nilpotency, V5(1) does not exist. On the other hand,
5 < 4 + 1

2 (
√

17 + 3), so V5(2) exists and is equal to V5,2. Thus for n = 5, V5(k) exists
if and only if the inequality in Theorem 4.3 holds. In general, this is not true. For
instance, the pattern V∗

8 (2) allows nilpotency, as demonstrated by
























1 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
−1 0 0 0 −1 0 0 0
−2 0 0 0 0 −1 0 0
−2 0 0 0 0 0 −1 0
−1 0 0 0 0 0 0 −1
1 0 0 0 0 1 0 −1

























∈ V∗
8 (2).

However, n 6< 2k + 1
2 (
√

1 + 8k + 3) for n = 8 and k = 2. Note also that the above
sign pattern is not equal to V8,2.

A second class of sign patterns arising from patterns V∗
n(I) is as follows. Let

n ≥ 4, and let Valt
n be the n × n sign pattern with positive signs in the positions

{(4j + 1, 1) : 0 ≤ j ≤
⌊

n − 1

4

⌋

} and {(n, n − (4j + 1)) : 0 ≤ j ≤
⌊

n − 2

4

⌋

} ;

negative signs in the positions

{(j, j + 1) : 1 ≤ j ≤ n − 1},

{(4j + 3, 1) : 0 ≤ j ≤
⌊

n − 3

4

⌋

},

{(n, n − (4j + 3)) : 0 ≤ j ≤
⌊

n − 4

4

⌋

}, and (n, n) ;

and zeros elsewhere. To illustrate,

Valt
7 =





















+ − 0 0 0 0 0
0 0 − 0 0 0 0
− 0 0 − 0 0 0
0 0 0 0 − 0 0
+ 0 0 0 0 − 0
0 0 0 0 0 0 −
− + 0 − 0 + −





















, Valt
8 =

























+ − 0 0 0 0 0 0
0 0 − 0 0 0 0 0
− 0 0 − 0 0 0 0
0 0 0 0 − 0 0 0
+ 0 0 0 0 − 0 0
0 0 0 0 0 0 − 0
− 0 0 0 0 0 0 −
− 0 + 0 − 0 + −

























.
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Theorem 4.4. For n ≥ 4, let I consist of all odd integers i ≤ n − 2. Then
Vn(I) exists and is identical to Valt

n . Furthermore, it is a minimal spectrally arbitrary
pattern, and any superpattern of Vn(I) is spectrally arbitrary.

Proof. Let A be as in (4.1), and assume that n is odd. Let ai = bj = 0 for all odd
i ≤ n − 2 and all even j such that 2 ≤ j ≤ n − 2, let b0 = −1, and define bn−1 = 0.
For all 0 ≤ i ≤ n−1

2 , let a2i = (−1)iCi, where Ci = 1
i+1

(

2i
i

)

is the ith Catalan number

(see, for example, [10, 11], and note that C0 = 1). Also, let b2i+1 = a2i = (−1)iCi for
all 0 ≤ i ≤ n−3

2 . Then A ∈ V∗
n(I) and A ∈ Valt

n . To conclude the proof, it is sufficient,
by Lemma 4.1, to show that A is nilpotent. Certainly, a0 + b0 = 0. For each i ≥ 0,
the Catalan number Ci+1 satisfies the recursive identity

Ci+1 =

i
∑

j=0

CjCi−j .

(see [11, p. 117]). Thus, for 0 ≤ i ≤ n−3
2 ,

a2i+1 + b2i+1 + a2ib0 + · · · + a0b2i = b2i+1 − a2i = 0

and

a2i+2 + b2i+2 + a2i+1b0 + · · · + a0b2i+1 = a2i+2 +

i
∑

j=0

a2ja2(i−j) =

(−1)i+1Ci+1 +
i

∑

j=0

(−1)jCj(−1)i−jCi−j = (−1)i(−Ci+1 +
i

∑

j=0

CjCi−j) = 0.

The equations (4.2) are all satisfied, so A is nilpotent.

Assume that n is even. Let ai = bj = 0 for all odd i ≤ n − 2 and all even j such
that 2 ≤ j ≤ n − 2, and let b0 = −1. For all 0 ≤ i ≤ n−2

2 , let a2i = (−1)iCi. Let
an−1 = an−2, and let b2i+1 = a2i = (−1)iCi for all 0 ≤ i ≤ n−4

2 . Then A ∈ V∗
n(I)

and A ∈ Valt
n . To conclude the proof, it is sufficient, by Lemma 4.1, to show that A

is nilpotent. Certainly, a0 + b0 = 0. For 0 ≤ i ≤ n−4
2 ,

a2i+1 + b2i+1 + a2ib0 + · · · + a0b2i = b2i+1 − a2i = 0

and

a2i+2 + b2i+2 + a2i+1b0 + · · · + a0b2i+1 = a2i+2 +

i
∑

j=0

a2ja2(i−j) =

(−1)i+1Ci+1 +

i
∑

j=0

(−1)jCj(−1)i−jCi−j = (−1)i(−Ci+1 +

i
∑

j=0

CjCi−j) = 0.

Furthermore,

an−1 + an−2b0 + · · · + a0bn−2 = an−1 − an−2 = 0.

The equations (4.2) are all satisfied, so A is nilpotent.
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5. All minimal 3 × 3 spectrally arbitrary patterns. In the proof of Theo-
rem 5.2, it will be shown that a 3 × 3 irreducible sign pattern is spectrally arbitrary
if and only it allows nilpotency. Our approach to deciding whether or not a 3 × 3
sign pattern allows nilpotency is more explicit than that in [3, Theorem 4.1]. First,
the following lemma is given, which precludes certain 3 × 3 patterns from allowing
nilpotency.

Lemma 5.1. Let A be the sign pattern determined by any n × n matrix A with
nonzero entries aii for i = 1, . . . , n; ai,i+1 for i = 1, . . . , n− 1; and an1 (i.e., D(A) is
a directed n-cycle with a loop at each vertex). Then A allows nilpotency if and only
if n = 2.

Proof. The characteristic equation of A is

0 = λn −
n

∑

i=1

aiiλ
n−1 +

∑

1≤i<j≤n

aiiajjλ
n−2 − · · · + (−1)n

n
∏

i=1

aii − an1

n−1
∏

i=1

ai,i+1.

If A is to be nilpotent, then

0 =
n

∑

i=1

aii

0 =
∑

1≤i<j≤n

aiiajj

...

0 =
∑

1≤i1<i2<···<in−1≤n

ai1i1ai2i2 · · · ain−1in−1

The aii are roots of the equation (x − a11)(x − a22) · · · (x − ann) = 0, which is

xn + (−1)n

n
∏

i=1

aii = 0

by the above equations.
If n = 2, then this can be satisfied with the two real numbers ±

√

|a11a22|, i.e.,
a11 = a and a22 = −a. But for n ≥ 3, the equation cannot be satisfied for n real
values, thus A does not allow nilpotency.

Theorem 5.2. The family of 3 × 3 minimal spectrally arbitrary sign patterns
consists of the sign patterns that are equivalent to one of the patterns T3, U3, V3,
and W3 in Figure 5.1. Furthermore, every 3 × 3 spectrally arbitrary sign pattern is
equivalent to a superpattern of one of these four patterns.





+ − 0
+ 0 −
0 + −









+ − +
+ − 0
+ 0 −









+ − 0
+ 0 −
+ 0 −









+ + −
+ 0 −
+ 0 −





T3 U3 V3 W3 = W3(1)

Fig. 5.1. The minimal 3 × 3 spectrally arbitrary patterns
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Proof. In [1], it is shown that T3 and U3 are minimal spectrally arbitrary patterns,
and that each superpattern of these two patterns is also spectrally arbitrary. By
Theorem 2.5, Proposition 3.1, and the comments following Corollary 3.2, the patterns
V3 and W3 are both minimal spectrally arbitrary patterns, and each superpattern of
these two patterns is also spectrally arbitrary. Since it is easily shown that there are
no reducible 3× 3 spectrally arbitrary patterns, to conclude the proof, it is necessary
to demonstrate that the patterns that are equivalent to these four patterns and their
superpatterns are the only (irreducible) 3 × 3 spectrally arbitrary patterns. This is
done by proving that each 3 × 3 sign pattern not equivalent to any superpattern of
T3, U3, V3, or W3 does not allow nilpotency and, thus, is not a spectrally arbitrary
pattern. There are many such sign patterns and a detailed account for each pattern
would be quite tedious. Fortunately, this number can be reduced as follows. Up to
equivalence, each irreducible 3×3 spectrally arbitrary pattern has one of the following
forms





+ # #
+ # #
0 + −









+ # #
+ # #
+ # −



 ,

where each # denotes either a plus, minus, or zero entry. Of 34 + 35 = 324 possible
sign patterns, 78 are reducible and 115 are equivalent to superpatterns of one or
more of the patterns T3, U3, V3, and W3. Of the remaining 131 patterns, there
are 71 patterns A such that for any matrix A ∈ A, the characteristic polynomial
pA(x) = x3 − α1x

2 + α2x − α3 contains a coefficient α1, α2, or α3 that has a fixed
sign, regardless of the specific matrix A. Such patterns cannot allow nilpotency.

The remaining 60 patterns fall into four general classes described below. By
Lemma 2.3, it may be assumed that any two of the nonzero strictly upper triangular
entries of any given irreducible 3 × 3 matrix both have magnitude 1.

The first of the four classes consists of the four patterns





+ 0 −
+ − 0
0 + −



 ,





+ 0 +
+ − 0
0 + −



 ,





+ 0 −
+ + 0
0 + −



 , and





+ 0 +
+ + 0
0 + −



 .

By Lemma 5.1, such sign patterns do not allow nilpotency.
For the second class, consider

A =





+ + +
+ + +
+ + −



 with A =





a d g

b e h

c f −j



 ∈ A.

The matrix A has the characteristic polynomial

pA(x) = x3 + (j − a − e)x2 + (ae − aj − bd − cg − ej − fh)x

+ aej + ahf − bdj − bgf − cdh + cge.

Assuming that A allows nilpotency, then values of a, b, . . . , j exist such that A is
nilpotent, i.e., pA(x) = x3. In this case, j = a + e, which implies that

0 = ae − aj − bd − cg − ej − fh

= −a2 − ae − bd − cg − e2 − fh < 0,
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a contradiction. Thus, A does not allow nilpotency. The same conclusion is valid if
one or more of the entries b, c, d, f , g, or h is equal to 0, and/or both b and d, both c

and g, and/or both f and h are nonpositive. These sign patterns and their equivalent
patterns account for 35 of the remaining 60 patterns.

For the third sign pattern class (see, e.g., [3]), consider

A =





+ − −
+ − +
+ + −



 with A =





a −d −1
b −e h

c f −j



 ∈ A.

The matrix A has the characteristic polynomial

pA(x) = x3 + (e + j − a)x2 + (bd + cd + ej − ae − aj − fh)x

+ afh + bf + bdj + ce + ch − aej.

To show that A does not allow nilpotency, assume that pA(x) = x3 for appropriate
values of a, b, . . . , j. It must hold that a = e + j, so

c = ae + aj + fh − bd − ej = e2 + ej + fh + j2 − bd.

Thus the constant term gives

0 = −bd2h − bde + e3 + bdj + bf + de2h + dehj + dfh2 + dhj2 + 2efh + fhj,

so

b =
de2h + dehj + dfh2 + dhj2 + e3 + 2efh + fhj

d2h + de − dj − f
.

Since a, b, . . . , j > 0, it follows that d2h + de − dj − f > 0. However,

c = e2 + ej + fh + j2 − bd

=
−defh− 2dfhj − dj3 − e2f − efj − f2h − fj2

d2h + de − dj − f
< 0,

a contradiction, so A does not allow nilpotency. The same arguments are valid if any
of d, f , and h equal 0 such that d + f > 0. These sign patterns and their equivalent
patterns account for 8 of the 60 patterns.

For the fourth class, let

A =





+ − 0
+ − +
+ + −



 with A =





a −1 0
b −e 1
c f −j



 ∈ A.

Assuming that A allows nilpotency, it is possible to assign values to a, b, . . . , j such
that the characteristic polynomial

pA(x) = x3 + (e + j − a)x2 + (b + ej − ae − aj − f)x + af + bj + c − aej

equals x3. If this is true, then a = j + e, so

b = ae + aj − ej + f = e2 + j2 + ej + f
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and

0 = af + bj + c − aej = c + ef + 2fj + j3 > 0,

a contradiction. Thus, A does not allow nilpotency. The same arguments and con-
clusion are true if c or f equals 0. The cases





+ − −
+ − 0
0 + −



 ,





+ − −
+ − +
0 + −



 ,





+ + 0
+ + −
0 + −



 , and





+ + +
+ + −
0 + −





are proven to not allow nilpotency in the same way. The sign patterns above and
their equivalent patterns account for 13 of the 60 patterns.

It may be verified by inspection that every one of the 60 sign pattern belongs to
one of the four classes above, no members of which allow nilpotency. This concludes
the proof.

6. Concluding remarks. Since our interest is on minimal spectrally arbitrary
patterns, we address the question of the least number of nonzero entries required by
such a pattern.

Conjecture 6.1. For n ≥ 2, an n × n sign pattern that is spectrally arbitrary
has at least 2n nonzero entries.

Conjecture 6.1 is verified for n = 2 by Example 2.2, and Theorem 5.2 verifies
the conjecture for n = 3 (since there are no 3 × 3 reducible spectrally arbitrary sign
patterns). For all n ≥ 3, this bound is realized by Vn (Theorem 2.4). It is also realized
by the antipodal tridiagonal sign pattern Tn in [1, 2] for all values of n for which Tn

is known to be spectrally arbitrary (i.e., 2 ≤ n ≤ 16).
Let Q[X ] be the set of polynomials with rational coefficients. A set S ⊆ R

is algebraically independent if, for all s1, . . . , sn ∈ S and each nonzero polynomial
p(x1, . . . , xn) ∈ Q[X ], p(s1, . . . , sn) 6= 0 (see [6, p. 316] for further details). Let Q(S)
denote the field of rational expressions

{

p(s1, . . . , sm)

q(t1, . . . , tn)
: p(x1, . . . , xm), q(x1, . . . , xn) ∈ Q[X ], s1, . . . , sm, t1, . . . , tn ∈ S

}

,

and let the transcendental degree of S be

tr.d.S = sup{|T | : T ⊆ S, T is algebraically independent}.

The following theorem very nearly verifies Conjecture 6.1.
Theorem 6.2. For n ≥ 2, an irreducible n × n sign pattern that is spectrally

arbitrary has at least 2n − 1 nonzero entries.
Proof. Let A be an irreducible n × n spectrally arbitrary sign pattern with

nA nonzero entries. Choose a set {α1, . . . , αn} ⊆ R that is algebraically indepen-
dent. By Lemma 2.3, A has a realization A = [aij ] with characteristic polynomial

pA(x) = xn − α1x
n−1 + · · · + (−1)nαn

and n − 1 (off-diagonal) entries with magnitude 1. Since for each 1 ≤ i ≤ n, αi is a
polynomial in the entries {aij : 1 ≤ i, j ≤ n} with rational coefficients, it follows that
Q(α1, . . . , αn) ⊆ Q(aij : 1 ≤ i, j ≤ n), so

n = tr.d.Q(α1, . . . , αn) ≤ tr.d.Q(aij : 1 ≤ i, j ≤ n) ≤ nA − (n − 1).
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Thus, nA ≥ 2n − 1.
It is clear from the proof of Theorem 5.2 that a 3×3 irreducible sign pattern allows

nilpotency if and only if it is a spectrally arbitrary pattern. This is not generally true,
as the following 4 × 4 sign pattern demonstrates. Let

A =









+ + 0 0
0 0 + 0
0 − 0 +
− 0 0 −









with A =









a 1 0 0
0 0 1 0
0 −c 0 1
−b 0 0 −d









∈ A.

By Lemma 2.3, it may be assumed without loss of generality that each realization
of A has the form of A above. The characteristic polynomial of A is

pA(x) = x4 − (a − d)x3 − (ad − c)x2 − (a − d)cx − acd + b.

If (a − d)c = 0, then a − d = 0, so pA(x) cannot equal x4 − αx3 for any nonzero α.
Thus, A does not allow the spectrum {0, 0, 0, α} for any nonzero α, and thus A is
not spectrally arbitrary. However, A does allow nilpotency, since A is nilpotent for
a = b = c = d = 1.
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