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Abstract

The phase retrieval problem, fundamental in applied physics and engineering, asks to determine
the phase of a complex-valued function from modulus data and additional a priori informa-
tion. Recently, we identified two important methods for phase retrieval, namely Fienup’s Basic
Input-Output (BIO) and Hybrid Input-Output (HIO) algorithms, with classical convex projec-
tion methods and suggested that further connections between convex optimization and phase
retrieval should be explored. Following up on this work, we introduce a new projection-based
method, termed the Hybrid Projection Reflection (HPR) algorithm, for solving phase retrieval
problems featuring nonnegativity constraints in the object domain. Motivated by properties of
the HPR algorithm for convex constraints, we recommend an error measure studied by Fienup
more than twenty years ago. This error measure, which has received little attention in the
literature, lends itself to an easily implementable stopping criterion. In numerical experiments,
we found the HPR algorithm to be a competitive alternative to the HIO algorithm and the
stopping criterion to be reliable and robust.
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1 Introduction

The best known and most widely used projection-based methods for phase retrieval are the Error
Reduction (ER) algorithm, that derived from the pioneering work of Gerchberg and Saxton [1], and
Fienup’s Basic Input-Output (BIO) and Hybrid Input-Output (HIO) algorithms [2]. In the mid-
1980s Levi and Stark [3, 4] identified the ER algorithm as a nonconvex application of a sequential
projection algorithm known in convex settings as Projections Onto Convex Sets or POCS [5, 6].
In the same spirit, we recently presented new interpretations of Fienup’s algorithms: the BIO and
HIO algorithms turn out to be nonconvex instances of Dykstra’s [7] and the Douglas-Rachford
[8] projection algorithm, respectively [9]. The POCS, Dykstra, and Douglas-Rachford projection
algorithms are governed by iterations of the form

xn+1 = T (xn), (1)

where xn is the current estimate of the function to be reconstructed and T is an operator that
utilizes in some fashion the projectors onto the constraint sets. The convergence behavior of these
algorithms is well-understood provided that all constraint sets are convex. While convergence
results do not carry over from the convex setting to the nonconvex setting of phase retrieval,
it is nonetheless useful to make this connection. Indeed, it not only provides different views and
insights on known phase retrieval methods but, more importantly, it also suggests a systematic way
of experimenting with novel algorithmic structures by the formal adaption of convex optimization
algorithms to phase retrieval.

We model a signal as a function x : X→ Y , where X is either RN or ZN , corresponding to analog
or discrete signals, respectively, and where Y is either R or C, depending on whether x is real- or
complex-valued. We denote the original object, or signal, to be recovered by x∗. In the analysis of
[9] the setting was Y = C. In many important applications (e.g. optical interferometry astronomy
and crystallography) the original signal x∗ is real-valued and nonnegative [10, 11]. The algorithms
discussed here are limited to these applications. Hence, throughout this work, signals are viewed
as points in L, the Hilbert space of square integrable functions from X to R. Our notation is the
same as in Ref. [9]. We denote by PX an arbitrary but fixed selection of the possibly multi-valued
projector onto a subset X of L. By definition, the operator RX = 2PX − I, where I is the identity
operator on L, is the reflector with respect to X; in other words, for every x ∈ L, PX(x) is the
midpoint between x and RX(x).

Many signal recovery problems can be formulated mathematically as a feasibility problem of the
form

find x ∈ S ∩M, (2)

where S is the set of signals in L that satisfy object domain constraints and M is the set of signals
in L that satisfy Fourier domain constraints [5, 13].

In phase retrieval, M is the set of signals whose Fourier modulus agrees with some measured
data m, namely

M =
{
y ∈ L | |ŷ| = m

}
, (3)

where ŷ denotes the Fourier transform of y. For the applications we consider here, the data
m : X→ R is a measurement of the magnitude of the Fourier transform of the original signal x∗,
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thus m is a nonnegative even function. The projection of a signal x ∈ L onto the Fourier magnitude
constraint set M , PMx, is computed by replacing the magnitude of the Fourier transform of x by
the known magnitude data m and inverse transforming the result:

PM (x) = F−1(ŷ0), (4)

where F−1 is the inverse Fourier transform and ŷ0, a particular selection of the multi-valued Fourier
domain projection, is defined by

ŷ0(ω) =

m(ω)
x̂(ω)
|x̂(ω)|

, if x̂(ω) 6= 0;

m(ω), otherwise.
(5)

For further discussion of this projector see Example 3.6 of Ref. [9]. Note that, if x is real, then x̂ is
Hermitian (conjugate symmetric). Since the data m is an even function, our choice of selection ŷ0

also has this property; thus PM (x) is real-valued, that is, the projector PM necessarily maps the
space of real-valued functions L to itself.

Recalling the original signal x∗, let the set D ⊂ X satisfy

{t ∈ X |x∗(t) 6= 0} ⊂ D. (6)

Let us denote the complement of D by {D, and by 1{D the function that takes on the value 0 on
D and the value 1 on {D. Critical to the analysis of Ref. [9] is the fact that the object domain
constraint consists only of support information, namely

S =
{
y ∈ L | y · 1{D = 0

}
. (7)

We emphasize that S is a closed convex set (in fact, a linear subspace – see [6] or Example 3.14(i)
of Ref. [9]), whereas M defined by Eq.(3) is closed but not convex (see Example 3.15 and Remark
[111] of Ref. [9]). As shown in Example 3.14(i) of Ref. [9], the projection of a signal x ∈ L onto S
is given by

PS(x) = x · 1D. (8)

In Section 5 of Ref. [9], the BIO and HIO algorithms with β = 1 were shown to fit the structure of
Eq.(1) with T = PSPM + I −PM and T = PS(2PM − I) + I −PM , respectively. The ER algorithm
can also be put in this form by taking T = PSPM [3]. We show below that such closed-form
representations are not always easily obtained.

For the phase retrieval problems considered here, support information alone is insufficient for
satisfactory signal recovery, hence additional object domain constraints are utilized. Since the
original signal x∗ is real-valued and nonnegative, these properties are included in the problem
formulation by defining the object domain constraint set S+ as

S+ =
{
y ∈ L | y · 1{D = 0 and y ≥ 0

}
. (9)

Arguing as in Example 3.14(i)&(iii) of Ref. [9], the projection of a signal x ∈ L onto S+ is given by

(∀t ∈ X)
(
PS+(x)

)
(t) =

{
max{0, x(t)}, if t ∈ D;
0, otherwise.

(10)

3



Altogether, the feasibility problem Eq.(2) becomes

find x ∈ S+ ∩M. (11)

While the ER algorithm for Eq.(11) can immediately be put in the form of Eq.(1) by setting
T = PS+PM , we have not been able to find corresponding reformulations of the BIO and HIO
algorithms. Indeed, while in this case the set S+ is still closed and convex (see Example 3.14 of
Ref. [9]), the correspondences between Eqs. (19) and (20) of Ref. [9] on the one hand, and Eqs. (21)
and (23) of Ref. [9] on the other hand do not hold here because key properties of the object domain
projector are lost: most notably, PS is a linear operator, but PS+ is not. However, in an effort to
formalize the HIO algorithm for problem Eq.(11) as a fixed point scheme of type Eq.(1), we arrive
at a new algorithm for phase retrieval. This method, which we call the Hybrid Projection Reflection
(HPR) algorithm, is a relaxation of the Douglas-Rachford projection algorithm and is therefore well-
motivated by its counterpart in convex optimization. Moreover, based on our numerical results,
the HPR algorithm appears to be a competitive alternative to the HIO algorithm.

The remainder of the paper is organized as follows. In Section 2, we review the HIO algo-
rithm. The new algorithm (HPR) is introduced in Section 3 and Section 4 is devoted to numerical
simulations.

2 Fienup’s HIO algorithm

Let x0 ∈ L be an initial guess and β be a fixed real relaxation parameter [14]. Fienup’s HIO
algorithm [2] generates a sequence of signals (xn)n∈N recursively as follows. Given a current iterate
xn ∈ L, define

γn =
{
t ∈ X | PM (xn) violates the object domain constraint at t

}
. (12)

The next iterate xn+1 is given by

(∀t ∈ X) xn+1(t) =

{(
PM (xn)

)
(t), if t 6∈ γn;

xn(t)− β
(
PM (xn)

)
(t), if t ∈ γn.

(13)

We show below that the form of the object domain constraint is critical to the analysis and im-
plementation of HIO. To illustrate this we specialize the HIO algorithm to the cases in which the
object domain contains: (A) only a support constraint; and (B) both support and nonnegativity
constraints.

A. Support constraint only

If the object domain constraint set incorporates only a support constraint (as in Eq.(7)) and the
zero crossings of PM (xn) outside of D are assumed to be negligible [15], then Algorithm (13) can
be rewritten as

(∀t ∈ X) xn+1(t) =

{(
PM (xn)

)
(t), if t ∈ D;

xn(t)− β
(
PM (xn)

)
(t), otherwise.

(14)
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This formulation of the HIO algorithm leads to the following convenient expression in terms of
reflectors and projectors (recall that RS = 2PS − I and that RM = 2PM − I):

Proposition 1 Algorithm (14) is equivalent to

xn+1 = 1
2

(
RS(RM + (β − 1)PM ) + I + (1− β)PM

)
(xn). (15)

Proof. For every n ≥ 0, Eq.(14) yields

xn+1 = 1D · PM (xn) + 1{D · (xn − βPMxn)
= 1D · PM (xn) + (1− 1D) · (xn − βPMxn)
= 1D ·

(
(1 + β)PM − I

)
(xn) + xn − βPM (xn)

= PS
(
(1 + β)PM − I

)
(xn) + xn − βPM (xn)

= 1
2

(
(2PS − I)((1 + β)PM − I) + I + (1− β)PM

)
(xn)

= 1
2

(
RS(RM + (β − 1)PM ) + I + (1− β)PM

)
(xn),

where the fourth equality follows from Eq.(8).

Proposition 1 is an extension of Observation 5.10 of Ref. [9]. Indeed, if β = 1, then Algorithm (14)
is equivalent to the following nonconvex version of the Douglas-Rachford projection algorithm:

xn+1 = 1
2

(
RSRM + I

)
(xn). (16)

B. Support and nonnegativity constraints

We now turn to the situation in which the object domain constraint is given by the set S+ of
Eq.(9). As in the previous case, again assuming that the zero crossings of PM (xn) outside of D are
negligible, the HIO algorithm Eq.(13) becomes

(∀t ∈ X) xn+1(t) =

{(
PM (xn)

)
(t), if t ∈ D and

(
PM (xn)

)
(t) ≥ 0;

xn(t)− β
(
PM (xn)

)
(t), otherwise.

(17)

While the HIO algorithm without nonnegativity constraint Eq.(14) can be reformulated in terms
of projectors and reflectors as in Eq.(15), the nonlinearity of PS+ — which is due to the nonnega-
tivity constraint in Eq.(9) — appears to make a corresponding reformulation of Eq.(17) impossible.

3 The Hybrid Projection Reflection (HPR) algorithm

In this section, we derive a new phase retrieval algorithm based on the following two principles.
Firstly, the spirit of the method should be close to that of the HIO algorithm, whose effectiveness is
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well-established. Secondly, it should bear a strong connection with a convex optimization algorithm.
Eq.(16) suggests the use of the Douglas-Rachford projection scheme as an algorithmic model. For
the sets S+ and M , the Douglas-Rachford algorithm is simply

xn+1 = 1
2

(
RS+RM + I

)
(xn). (18)

As with the HIO algorithm, it is desirable to incorporate a relaxation parameter for added flexibility.
This leads to the following analog to Eq.(15),

xn+1 = 1
2

(
RS+(RM + (β − 1)PM ) + I + (1− β)PM

)
(xn). (19)

Next, we unravel Eq.(19) into an algorithmic prescription analogous to Eq.(17). Given an ar-
bitrary signal z ∈ L, let z+ = max{z, 0} and z− = min{z, 0} be its positive and negative parts,
respectively. Then the following relations hold:

xn+1 = 1
2

(
RS+(RM + (β − 1)PM ) + I + (1− β)PM

)
(xn)

= 1
2

(
(2PS+ − I)((1 + β)PM − I) + I + (1− β)PM

)
(xn)

= PS+

(
(1 + β)PM − I

)
(xn) + xn − βPM (xn)

=
[
1D ·

(
(1 + β)PM − I

)
(xn)

]+ + xn − βPM (xn)

= 1D · PM (xn) + 1{D · (xn − βPMxn)−
[
1D ·

(
(1 + β)PM − I

)
(xn)

]−
. (20)

The fourth equality follows from (10) and the last equality uses the identity 1− 1D = 1{D together
with the fact that z = z+ + z− where z = 1D ·

(
(1 + β)PM − I

)
(xn). We now consider two cases:

(i) if t ∈ D, then Eq.(20) yields

xn+1(t) = (PM (xn)) (t)−
[(

(1 + β)PM − I
)
(xn)

]−(t)

=

{(
PM (xn)

)
(t), if (1 + β)

(
PM (xn)

)
(t) ≥ xn(t);

xn(t)− β
(
PM (xn)

)
(t), otherwise.

(21)

(ii) if t /∈ D, then Eq.(20) yields directly

xn+1(t) = xn(t)− β
(
PM (xn)

)
(t). (22)

The following formal statement of the Hybrid Projection Reflection algorithm summarizes these
results.

HPR Algorithm. Starting with an arbitrary signal x0 ∈ L, the Hybrid Projection Reflection
(HPR) algorithm is governed by the recursion

(∀t ∈ X) xn+1(t) =


(
PM (xn)

)
(t), if t ∈ D and(

RM (xn)
)
(t) ≥ (1− β)

(
PM (xn)

)
(t);

xn(t)− β
(
PM (xn)

)
(t), otherwise.

(23)

We have thus proven the following analog to Proposition 1.
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Proposition 2 Algorithm (23) is equivalent to the recursion Eq.(19).

For the case β = 1 the recursion Eq.(23) specializes to

(∀t ∈ X) xn+1(t) =

{(
PM (xn)

)
(t), if t ∈ D and

(
RM (xn)

)
(t) ≥ 0;

xn(t)−
(
PM (xn)

)
(t), otherwise.

(24)

Note that xn+1(t) is
(
PM (xn)

)
(t) or xn(t)−

(
PM (xn)

)
(t), exactly as in the HIO algorithm Eq.(17)

for β = 1. The crucial difference is the condition used to determine when, for t ∈ D, the update rule
xn+1(t) =

(
PM (xn)

)
(t) applies: in Eq.(17), the requirement of the HIO algorithm (with β = 1) is(

PM (xn)
)
(t) ≥ 0, (25)

whereas in Eq.(24) the update rule depends on(
RM (xn)

)
(t) ≥ 0. (26)

4 HIO and HPR: a comparison.

We compare the HPR algorithm to the HIO algorithm, which is the leading iterative transform
algorithm for the type of problem considered in this paper. The error reduction (ER) algorithm is
not as effective as HIO for these problems and the Basic Input-Output (BIO) algorithm is seldom
used as it does not work nearly as well as HIO. For our evaluation we use the two standard digital
images shown in Figure 1(a)&(d).

A. Error measure

Before describing the details of our comparison, a few remarks about performance measures are
necessary. Any meaningful and quantifiable comparison requires a performance measure. This is
a difficult topic in the signal recovery literature. Often times what is measured in phase retrieval
is the normalized root mean squared error between the magnitude of the Fourier transform of the
current iterate and the Fourier magnitude data m, namely

ERMS(xn) =

∥∥ |x̂n| −m∥∥
‖m‖

, (27)

where m is assumed to be nonzero throughout this section [16]. The convex theory that guides
our investigations suggests a different performance measure which we found in practice to be quite
robust and reliable. This is described next.

Given an initial guess x0 ∈ L and a parameter β ∈ R, let (xn)n∈N be the sequence generated by
the HPR algorithm (Algorithm (23)). The main convergence result in the convex case (see Fact 5.9
of Ref. [9]) suggests that the pertinent sequence to monitor is [17](

PM (xn)
)
n∈N (28)
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rather than (xn)n∈N. Alternatively, since one is often more interested in signals satisfying the object
domain constraint, we recommend to monitor the sequence(

PS+

(
PM (xn)

))
n∈N. (29)

Since each signal PM (xn) satisfies the Fourier modulus constraint and since our aim is to solve
Eq.(11), i.e., to find a point in S+ ∩M , it is natural to monitor the squared distance from the
signal PM (xn) to the set S+, i.e., ‖PS+

(
PM (xn)

)
− PM (xn)‖2. In fact, Fienup originally suggested

this quantity as an error measure for the HIO algorithm; see end of Section V on page 2764 of
Ref. [2] and remark [18]. Following the standard practice in numerical analysis of relativizing the
error and recalling that ‖PM (xn)‖ = ‖m‖, we define the error measure at the nth iteration as
follows

ES+(xn) =

∥∥PS+

(
PM (xn)

)
− PM (xn)

∥∥2∥∥PM (xn)
∥∥2 =

∥∥PS+

(
PM (xn)

)
− PM (xn)

∥∥2

‖m‖2
. (30)

Using this error measure, we compare the performance of the HPR algorithm to that of HIO for
the two original images shown in Figure 1(a)&(d).

B. Initialization

We study the performance of the algorithms under noiseless and noisy settings. For noiseless data,
we initialize the algorithms as in [20]. More specifically, the initial points x0 are chosen to be random
pixel magnitude maps that satisfy the object domain constraint, i.e., x0 ∈ S+. Such an image is
shown in Figure 1(f). For noisy data, we take the initial guess to be simply the characteristic
function of the support constraint shown in Figure 1(c). For both noiseless and noisy experiments,
the initial guess is normalized so as to have the same energy as the known Fourier magnitude data,
i.e., ‖x̂0‖ = ‖m‖.

C. Noiseless data

The data consists of the support/nonnegativity constraint shown in Figure 1(c) and the Fourier
magnitude data shown in Figure 1(b)&(e). To better illustrate the differences in the algorithms, we
have made the problem more difficult than it normally would be by making the support constraint
larger than necessary. For more reasonable strategies for choosing the support constraint in practical
applications, see Refs. [20, 21].

We select 100 random initial points x0 generated by the method described in Section 4.B and
use them to compare the performance of HIO and HPR (the same 100 random initial points are
used for each algorithm). Note that these initial points have random phases in the Fourier domain,
as well as random Fourier magnitudes. Moreover, since x0 is real-valued and the data m is a real
nonnegative even function, PMx0 and all subsequent iterates are also real-valued up to machine
error. To compensate for limited machine precision, we take only the real part of the computed
projection, that is, we compute Re(PMxn). First, we compare the asymptotic behavior (1000
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iterations) of two realizations of the HPR and HIO algorithms, each corresponding to different
values of the relaxation parameter, β = 0.75 and β = 1.0. The average value of the error metric
at iteration n, ES+(xn), is shown in Figure 2 and Figure 3. These are all given in decibels (recall
that the decibel value of α > 0 is 10 log10(α)).

Figure 2 and Figure 3 show the relative progress of the algorithms with respect to the error
measure Eq.(30). It is clear from these graphs that the HIO algorithm reaches its smallest error
value more rapidly than the HPR algorithm. Indeed, the HPR algorithm appears to move away
from the intersection of the constraint sets in the first several iterations. This is due to the path that
the HPR algorithm takes toward the solution. Every trial of the HPR algorithm behaved in this
manner, though ultimately HPR reduced the error metric well below that of the HIO algorithm.
As we show in part D of this section, in the presence of noise, the HPR algorithm did not always
reduce the value of the error metric below that the HIO algorithm achieved. Nevertheless, in both
noiseless and noisy experiments, the HPR algorithm consistently delivered superior picture quality.
While we have found the error metric Eq.(30) to be a reliable indicator of picture quality, this
is only relative to the algorithm it is being used to monitor. In other words, the quality of an
image with ES+ = −50 dB will not be as good as that of an image with ES+ = −55 dB when both
images are generated from the same algorithm. In contrast to this, an iterate of the HIO algorithm
with ES+ = −55 dB will not necessarily look better than an iterate of the HPR algorithm with
ES+ = −53 dB. In fact we have observed that it was often the case that images produced by the
HPR algorithm still looked better than those produced by the HIO algorithm, whose error value
were a few percent lower. This is an artifact of the fit of the error metric to the algorithm.

We now turn to qualitative image reconstruction results. The more than twenty years of experi-
ence that has accumulated with HIO indicates that user intervention is often necessary to achieve
satisfactory results. Fienup and Wackerman [22] study several strategies to ensure that HIO reaches
an acceptable stagnation point. These strategies can also be used with HPR. However, the HPR
algorithm appears to be very robust and, in our trials, reaches good stagnation points without any
user intervention or case-specific heuristics. In that sense, HPR can be described as an autonomous
algorithm. This is illustrated in Figure 4 and Figure 6, where we show a typical reconstruction for
each of the algorithms after 600 iterations (while good reconstructions are achievable with signifi-
cantly fewer iterations, 600 iterations guarantee that HIO did reach stagnation, in agreement with
Figure 2 and Figure 3). For the satellite images shown in Figure 4 the difference in picture quality
is not discernible to the naked eye. However, if we now consider the worst cases produced by these
algorithms, as shown in Figure 5, then HPR outperforms HIO (the worst of the 100 reconstructions
is that image for which ES+ is the largest at iteration 600). The difference in performance between
the two algorithms is much starker with the second example shown in Figure 6, where we display
typical reconstructions.

To illustrate the robustness of the HPR algorithm, we perform the following experiment. First,
we observe that the image of Figure 6(b) is actually a stagnation point of HIO (it essentially did
not evolve through 5000 additional iterations of HIO). This image is then used as an initial point
for HPR, which iterated to the stagnation point shown in Figure 7. This experiment shows that
HPR can recover further significant information from images for which HIO did its best.

Our experiments with noiseless data reveal fundamental differences between the HIO and HPR
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algorithms, namely the effect of changing the update rule (see Eq.(17) and Eq.(23)). These differ-
ences are born out in the presence of noise, as we illustrate next.

D. Noisy data

We investigate another aspect of robustness, namely sensitivity to noise. This is an important
issue since in practical applications the Fourier data are often corrupted by additive noise. To
model this phenomenon, a symmetric noise vector u is added to the magnitude data m shown in
Figure 1(b)&(e). The components of the vector u are drawn from a zero mean Gaussian white
noise. The signal-to-noise ratio (SNR) is 20 log10 ‖m‖/‖u‖ = 34 dB. We compute the mean value
of the error measure ES+ over 100 trials with different realizations of the noise and the same initial
zero-phase guess, which is generated as described in Section 4.B. Let us note that there is no direct
connection between the error metric ES+ and the noise level. The error ES+ measures the gap
between the constraint sets at a particular iterate. There is no reason this gap should scale in
any predictable manner with the noise since the noisy data makes up one of the constraint sets.
In principle it is possible, though unlikely, that, even with noise, the constraint sets could have a
nonempty intersection. In this case the error metric ES+ could be arbitrarily small even with a
significant amount of noise. This is illustrated in Figures 8 and 9 where ES+ is less than −60 dB
while the signal to noise ratio is 34 dB.

The behavior of the algorithms in this noisy environment is described by the plots shown in
Figure 8 and Figure 9. As with the experiments with noiseless data, the HIO algorithm achieves
its minimum value of ES+ more rapidly than the HPR algorithm, which, as in the noiseless cases,
appears to move away from the solution in the first few iterations. Note also in Figure 9 that
the HIO algorithm achieves a lower error value than the HPR algorithm. Consistent with our
observations in the noisless experiments, the value of the error metric is only a reliable indicator
of picture quality relative to a single algorithm. This is illustrated in Figure 10 (for β = 1.0) and
Figure 11 (for β = 0.75), where we show typical iterates generated by the algorithms for the same
random trial. The algorithms are compared at the 100, 200, and 400 iteration marks. In both
cases, stagnation occurs roughly around 200 iterations and little improvement is noticeable beyond
that point. The value of ES+ for each of the iterates generated by HIO shown in Figure 10 and
Figure 11 is lower by about 2% dB than those generated by HPR, but clearly the quality of the
iterates generated by the HPR algorithm is superior.

E. Coupling algorithms

It is common practice in phase retrieval to couple algorithms in order to obtain improved perfor-
mance. For instance, iterating ER after HIO has been reported to improve the estimate produced by
HIO alone [20]. We perform various experiments of this sort in Figure 12 (for β = 1) and Figure 13
(for β = 0.75) where, as in Section 4.D, the SNR is 34 dB. In each case, 200 iterations of the HIO
and HPR algorithms are first performed (as seen in Section 4.D, this corresponds to stagnation)
and then a second algorithm is used for another 200 iterations. These experiments show that while
HIO does slightly benefit from a coupling with ER (compare Figure 10(b) with Figure 12(a), and
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Figure 11(b) with Figure 13(a)), it is still less competitive than HPR alone (compare Figure 12(d)
with Figure 12(a), and Figure 13(d) with Figure 13(a)). On the other hand, iterating HPR after
HIO improves significantly the estimate obtained by HIO (compare Figure 10(b) with Figure 12(b),
and Figure 11(b) with Figure 13(b)). This shows that the behavior observed in Figure 7 persists
in the presence of noise. Finally, iterating ER after HPR does not improve the estimate obtained
by HPR alone (compare Figure 12(d) with Figure 12(c), and Figure 13(d) with Figure 13(c)).
This lends further support to the idea of using HPR as an autonomous algorithm, obviating user
intervention.
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(a) (d)

(b) (e)

(c) (f)

Figure 1: Original images and corresponding data used for the comparison of the HIO and HPR algorithms.
(a) is a 128 × 128 pixel image of a satellite used in [20]. The center of (d) is a 38 × 38 pixel section of the
standard Lena image, zero-padded to a 128 × 128 matrix. (b) and (e) are the Fourier magnitude data m

corresponding to images (a) and (d), respectively. The same object domain support constraint of size 64×64
pixels, shown in (c), is used for each example. An initial image x0 is shown in (f).16



Figure 2: Asymptotic behavior of the HIO and HPR algorithms (β = 0.75 and 1.0) over 100 random trials
for the original image shown in Figure 1(a). Shown here is the mean value of the performance measure ES+

defined by Eq.(30) at each iteration.
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Figure 3: Asymptotic behavior of the HIO and HPR algorithms (β = 0.75 and 1.0) over 100 random trials
for the original image shown in Figure 1(d). Shown here is the mean value of ES+ defined by Eq.(30) at
each iteration.
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(a) (c)

(b) (d)

Figure 4: Typical images recovered with 600 iterations of the HIO and HPR algorithms for the data
corresponding to Figure 1(a) and a random initial guess similar to that shown in Figure 1(f). (a) and (b) are
reconstructed with the HIO algorithm for β = 0.75 and β = 1.0, respectively. (c) and (d) are reconstructed
with the HPR algorithm for β = 0.75 and β = 1.0, respectively. The rotation of all recovered images from
the original image, with the exception of (d), reflects the nonuniqueness in recovery from phase.
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(a) (c)

(b) (d)

Figure 5: Worst images recovered by the HIO and HPR algorithms for the data corresponding to Figure 1(a)
and a random initial guess similar to that shown in Figure 1(f). (a) and (b) are reconstructed with the HIO
algorithm for β = 0.75 and β = 1.0, respectively. (c) and (d) are reconstructed with the HPR algorithm for
β = 0.75 and β = 1.0, respectively. The rotation of all recovered images from the original image, with the
exception of (b), reflects the nonuniqueness in recovery from phase.
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(a) (c)

(b) (d)

Figure 6: Typical images recovered with 600 iterations of the HIO and HPR algorithms for the data
corresponding to Figure 1(d) and a random initial guess similar to that shown in Figure 1(f). (a) and (b) are
reconstructed with the HIO algorithm for β = 0.75 and β = 1.0, respectively. (c) and (d) are reconstructed
with the HPR algorithm for β = 0.75 and β = 1.0, respectively.
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Figure 7: Using the stagnated HIO (β = 1.0) iterate shown in Figure 6(b) as the initial point, the HPR
(β = 1.0) algorithm finds a stagnation point with a much better picture quality.
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Figure 8: Behavior of the HIO and HPR algorithms (β = 0.75 and 1.0) with noise (SNR=34 dB) over 100
random trials for the original image shown in Figure 1(a). Shown here is the mean value of ES+ at each
iteration.

23



Figure 9: Behavior of the HIO and HPR algorithms (β = 0.75 and 1.0) with noise (SNR=34 dB) over 100
random trials for the original image shown in Figure 1(d). Shown here is the mean value of ES+ at each
iteration.
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(a) (d)

(b) (e)

(c) (f)

Figure 10: Typical images recovered by the HIO (β = 1) and HPR (β = 1) algorithms with noise
(SNR=34 dB) for the data corresponding to Figure 1(d) and the normalized zero-phase initial guess shown
in Figure 1(c). (a), (b), and (c) are reconstructed with 100, 200, and 400 iterations of the HIO algorithm,
respectively; (d), (e), and (f) are reconstructed with 100, 200, and 400 iterations of the HPR algorithm,
respectively.
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(a) (d)

(b) (e)

(c) (f)

Figure 11: Typical images recovered by the HIO (β = 0.75) and HPR (β = 0.75) algorithms with noise
(SNR=34 dB) for the data corresponding to Figure 1(d) and the normalized zero-phase initial guess shown
in Figure 1(c). (a), (b), and (c) are reconstructed with 100, 200, and 400 iterations of the HIO algorithm,
respectively; (d), (e), and (f) are reconstructed with 100, 200, and 400 iterations of the HPR algorithm,
respectively.
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(a) (b)

(c) (d)

Figure 12: Typical images recovered by coupling the HIO (β = 1), HPR (β = 1), and ER algorithms
for the noisy data corresponding to Figure 1(d) (SNR=34 dB) and the normalized zero-phase initial guess
shown in Figure 1(c). (a) is reconstructed with 200 iterations of HIO followed by 200 iterations of ER. (b)
is reconstructed with 200 iterations of HIO followed by 200 iterations of HPR. (c) is reconstructed with
200 iterations of HPR followed by 200 iterations of ER. For reference, the reconstruction obtained with 200
iterations of HPR is shown in (d).
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(a) (b)

(c) (d)

Figure 13: Typical images recovered by coupling the HIO (β = 0.75), HPR (β = 0.75), and ER algorithms
for the noisy data corresponding to Figure 1(d) (SNR=34 dB) and the normalized zero-phase initial guess
shown in Figure 1(c). (a) is reconstructed with 200 iterations of HIO followed by 200 iterations of ER. (b)
is reconstructed with 200 iterations of HIO followed by 200 iterations of HPR. (c) is reconstructed with
200 iterations of HPR followed by 200 iterations of ER. For reference, the reconstruction obtained with 200
iterations of HPR is shown in (d).

28


