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Abstract: We establish an inequality for the relative total – internal, potential and in-
teractive – energy of two arbitrary probability densities, their Wasserstein distance, their
barycenters and their generalized relative Fisher information. This inequality leads to many
known and powerful geometric inequalities, as well as to a remarkable correspondence be-
tween ground state solutions of certain quasilinear (or semi-linear) equations and stationary
solutions of (non-linear) Fokker-Planck type equations. It also yields the HWBI inequalities
– which extend the HWI inequalities in [11] and [4], with the additional “B” referring to the
new barycentric term – from which most known Gaussian inequalities can be derived.

L’évolution de l’énergie totale d’un gaz le long d’un transport
optimal et applications

Résumé: Nous établissons une inégalité reliant l’énergie totale – interne, potentielle et
interactive – de deux densités de probabilité, leur distance de Wasserstein, leurs barycentres
ainsi que leur entropie relative généralisée. Cette inégalité implique plusieurs des inégalités
géométriques classiques, ainsi qu’une correspondence remarquable entre les solutions de cer-
taines équations quasilinéaires (ou semi-linéaires) et les solutions stationnaires d’équations du
type Fokker-Planck. On établit aussi des inégalités HWBI – généralisant les inégalités HWI
de [11] et [4], où le “B” refère au nouveau terme barycentrique – dont découlent plusieurs
inégalités gaussiennes classiques.

Version française abrégée: Les récents progrès dans la théorie de Monge-Kantorovich
du transport de masse ont conduit à des preuves simples et naturelles d’une variété d’inégalités
géométriques (voir [9], [11], [6]). Dans ce même contexte, nous proposons ici une inégalité
générale dont découlent la plupart de ces inégalités. A la base, se trouve un principe de com-
paraison assez simple dans la théorie d’évolution des gaz, qui compare les énergies – interne,
potentielle et interactive – de deux états d’un système, après que l’un soit passé à l’autre
selon un transport optimal. L’idée principale est de décrire l’évolution de l’énergie totale (1)
d’un système, tranporté de façon optimale, d’un état ρ0 ∈ Pa(Ω) à un autre ρ1 ∈ Pa(Ω), en
tenant compte du coût de transport – distance de Wasserstein – (4), des barycentres b(ρ0)
et b(ρ1) et de l’entropie généralisée (2). Une fois ce principe de comparaison établi (section
1), une variété d’inégalités s’en déduisent, en considérant tout simplement quelques exemples
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d’énergies admissibles (section 2).

Let F : [0,∞) → IR be continuous, and V (resp.,W ) : IRn → IR be a confinement (resp.,
interaction) potential, and let Ω ⊂ IRn be open, bounded and convex. The set of probability
densities over Ω is denoted by Pa(Ω), and the associated free energy functional is defined on
Pa(Ω) by

HF,W
V (ρ) =

∫

IRn

[

F (ρ) + ρV +
1

2
(W ? ρ)ρ

]

dx, (1)

which is the sum of the internal energy HF (ρ) =
∫

IRn F (ρ) dx, the potential energy HV (ρ) =
∫

IRn ρV dx and the interaction energy HW (ρ) = 1
2

∫

IRn(W ? ρ)ρ dx. By Young’s function, we
mean any nonnegative, C1, strictly convex function c : IRn → IR such that c(0) = 0 and

lim|x |→∞
c(x)
|x | = ∞.

For ρ, ρ0, ρ1 ∈ Pa(Ω), we denote by HF,W
V (ρ0|ρ1) := HF,W

V (ρ0) − HF,W
V (ρ1) the relative

energy of ρ0 with respect to ρ1, by b(ρ) :=
∫

IRn xρ(x) dx the barycenter of ρ, and by

Ic∗(ρ|ρV ) :=

∫

Ω

ρ∇ (F ′(ρ) + V +W ? ρ) · ∇c? (∇ (F ′(ρ) + V +W ? ρ)) dx, (2)

the generalized relative Fisher information of ρ with respect to ρV measured against c∗, where
ρV ∈ Pa(Ω) satisfies

∇ (F ′(ρV ) + V +W ? ρV ) = 0 a.e. (3)

When c(x) = |x |2

2 , we denote Ic∗ by I2. The Wasserstein distance between ρ0 and ρ1 is
defined by

W2(ρ0, ρ1)
2 := inf

{
∫

IRn

|x− Tx |2ρ0(x) dx; T#ρ0 = ρ1

}

, (4)

where T#ρ0 = ρ1 means that ρ1(B) = ρ0

(

T−1(B)
)

for all Borel sets B ⊂ IRn. In the
sequel, supp ρ denotes the support of ρ ∈ Pa(Ω), c∗ is the Legendre transform of c, that is
c∗(y) = supx∈IRn{x · y − c(x)}, |Ω| is the Lebesgue measure of Ω ⊂ IRn, and q > 1 stands for
the conjugate index of p > 1, 1

p + 1
q = 1.

1 Main inequality

Theorem 1.1 Let Ω ⊂ IRn be open, bounded and convex, F : [0,∞) → IR be differentiable
on (0,∞) with F (0) = 0 and x 7→ xnF (x−n) convex and non-increasing, and let PF (x) :=
xF ′(x) − F (x) be its associated pressure function. Let V,W : IRn → IR be C2-functions with
W even, D2V ≥ λI and D2W ≥ νI where λ, ν ∈ IR, and I denotes the identity map. Then,
for any Young’s function c : IRn → IR, we have for all ρ0, ρ1 ∈ Pa(Ω) satisfying supp ρ0 ⊂ Ω
and PF (ρ0) ∈W 1,∞(Ω),

H
F,W

V +c
(ρ0|ρ1) +

λ+ ν

2
W 2

2 (ρ0, ρ1) −
ν

2
|b(ρ0) − b(ρ1)|2

≤ H
−nPF ,2x·∇W

c+∇V ·x (ρ0) +

∫

Ω

ρ0c
∗ (−∇ (F ′(ρ0) + V +W ? ρ0)) dx, (5)

with equality when ρ0 = ρ1 = ρV +c, where the latter satisfies

∇ (F ′(ρV +c) + V + c+W ? ρV +c) = 0 a.e. (6)
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In particular, if c(x) = cσ(x) = 1
2σ |x |2 for σ > 0, then we have the identity:

HF,W
V (ρ0|ρ1) +

1

2
(λ+ ν − 1

σ
)W 2

2 (ρ0, ρ1) −
ν

2
|b(ρ0) − b(ρ1)|2 ≤ σ

2
I2(ρ0|ρV ), (7)

where

I2(ρ0|ρV ) =

∫

Ω

ρ0| ∇ (F ′(ρ0) + V +W ? ρ0) |2 dx, (8)

Proof: The proof of (5) relies on the following energy inequality which is essentially a
compendium of various observations by many authors, McCann [9], Otto [10], Agueh [1],
Carillo-McCann-Villani [4] and Cordero-Gangbo-Houdré [5]: for all ρ0, ρ1 ∈ Pa(Ω) with
suppρ0 ⊂ Ω and PF (ρ0) ∈W 1,∞(Ω),

HF,W
V (ρ0) − HF,W

V (ρ1) +
λ+ ν

2
W 2

2 (ρ0, ρ1) −
ν

2
|b(ρ0) − b(ρ1)|2 (9)

≤
∫

Ω

(x − Tx) · ∇ (F ′(ρ0) + V +W ? ρ0) ρ0 dx.

This inequality describes the evolution of a generalized energy functional along optimal
transport. For its proof, we refer to [1] and [5]. Using (9) and an integration by parts
in

∫

Ω
ρ0∇(F ′(ρ0)) · x dx =

∫

Ω
∇ (PF (ρ0)) · x dx, we have that

H
F,W

V (ρ0) − HF,W
V (ρ1) +

λ+ ν

2
W 2

2 (ρ0, ρ1) −
ν

2
|b(ρ0) − b(ρ1)|2 (10)

≤ H
−nPF , 2x·∇W

x·∇V (ρ0) −
∫

Ω

ρ0∇ (F ′(ρ0) + V +W ? ρ0) · T (x) dx.

Now, use Young’s inequality c(y) + c∗(z) ≥ 〈y, z〉, to obtain:

−∇ (F ′ (ρ0(x)) + V (x) + (W ? ρ0)(x)) · T (x) (11)

≤ c (T (x)) + c? (−∇ (F ′(ρ0(x)) + V (x) + (W ? ρ0)(x))) ,

and then rewrite
∫

Ω
c (T (x)) ρ0(x) dx as

∫

Ω
c(y)ρ1(y) dy to conclude (5). Setting ρ0 = ρ1 :=

ρV +c in (10), we have that T = I and equality holds in (10). Therefore, equality holds in (5)
whenever equality holds in (11), where T (x) = x. This occurs when (6) is satisfied.
To prove (7), use (5) with cσ, V − cσ and λ− 1

σ , in place of c, V and λ, then observe that

H−nPF ,2x·∇W
cσ+∇(V −cσ)·x +

∫

Ω

ρ0c
?
σ (−∇ (F ′(ρ0) + V − cσ +W ? ρ0)) dx =

σ

2
I2(ρ0|ρV ).

2 Applications

2.1 The case of non (necessarily) quadratic Young functions

The main inequality (5) combined with a scaling argument of the Young function lead to
the following optimal Euclidean p-Log Sobolev inequality for any p > 1. This inequality was
first established by Beckner [3] for p = 1, and by Del Pino and Dolbeault for 1 < p < n. The
case where p > n was also established recently and independently by Gentil [8] who used the
Prékopa-leindler inequality and the Hopf-lax semi-group associated to the Hamilton-Jacobi
equation.

Proposition 2.1 (General optimal Euclidean p-Log Sobolev inequality). Let Ω ⊂
IRn be open bounded and convex, and c be a Young’s function with p-homogeneous Legendre
transform c∗. Then, for all ρ ∈ Pa(IRn) ∩W 1,∞(IRn) with supp ρ ⊂ Ω,

∫

IRn

ρ ln ρ dx ≤ n

p
ln

(

p

nep−1σ
p/n
c

∫

IRn

ρc?
(

−∇ρ
ρ

)

dx

)

, (12)
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where σc =
∫

IRn e
−c dx, and equality holds in (12) if ρ(x) = Kλe

−λqc(x) for some λ > 0,

where Kλ =
(∫

IRn e
−λqc(x) dx

)−1
. In particular, if c(x) = (p− 1)|x |p and ρ = | f |p, we have

for all f ∈W 1,p(IRn) with ‖ f ‖p = 1,

∫

IRn

| f |p ln(| f |p) dx ≤ n

p
ln

(

Cp

∫

IRn

| ∇f |p dx

)

, (13)

where

Cp =
( p

n

)

(

p− 1

e

)p−1

π− p

2

[

Γ(n
2 + 1)

Γ(n
q + 1)

]

p

n

.

Proof: Use F (x) = x lnx, cλ(x) = c(λx), ρ0 = ρ, ρ1 = e−c
∫

IRn
e−c dx

and V = W = 0 in (5),

and the fact that c∗ is p-homogeneous, to have that

∫

IRn

ρ ln ρ dx ≤ 1

λp

∫

IRn

ρc?
(

−∇ρ
ρ

)

dx+ n lnλ− n− lnσc, (14)

then show that the infimum over λ > 0 in (14) is attained at λ̄ρ =
(

p
n

∫

IRn ρc
∗
(

−∇ρ
ρ

)

dx
)1/p

.

A similar scaling argument of the Young function also yields the following generalized
degenerate Log-Sobolev inequality, which may be used to study the trend to equilibrium for
the class of doubly degenerate PDEs studied recently in [1], in the absence of a confinement
potential.

Proposition 2.2 (Degenerate generalized Log-Sobolev inequality). In addition to
the hypothesis on Ω, F, V and W in Theorem 1.1, assume that the Young function c : IRn →
IRn is even and q homogeneous for some q > 1. Then, for all ρ0, ρ1 ∈ Pa(Ω) with supp ρ0 ⊂ Ω,

PF (ρ0) ∈W 1,∞(Ω), H−nPF ,2x·∇W
x·∇V (ρ0) ≤ 0 and Hc(ρ1) 6= 0, we have

HF,W
V (ρ0|ρ1) ≤

p

(p− 1)1/q
[Hc(ρ1)]

1− 1
p [Ic∗(ρ0|ρV )]

1
p . (15)

where p is the conjugate of q.
In particular, when V = W = 0 we obtain for for all ρ0, ρ1 ∈ Pa(Ω) with supp ρ0 ⊂ Ω,
PF (ρ0) ∈W 1,∞(Ω),

HF (ρ0|ρ1) ≤
p

(p− 1)1/q
[Hc(ρ1)]

1− 1
p [Ic∗(ρ0|ρ∞)]

1
p , (16)

where ρ∞ ∈ Pa(Ω) satisfies ∇ (F ′(ρ∞)) = 0 a.e.

Proof: Use (5) with cσ(x) = c(σx) and the fact that H−nPF ,2x·∇W
x·∇V (ρ0) ≤ 0, cσ(x) ≤ x ·

∇cσ(x) and c is q-homogeneous, to have that

HF,W
V (ρ0|ρ1) +

λ+ ν

2
W 2

2 (ρ0, ρ1)
2 − ν

2
|b(ρ0) − b(ρ1)|2 ≤ 1

σp
Ic∗(ρ0|ρV ) + σqHc(ρ1), (17)

then show that the infimum over σ > 0 of (17) is attained at

σ̄ =

(

pIc∗(ρ0|ρV )

qHc(ρ1)

)
1

p+q

.

The main inequality (5) applied when V = W = 0, leads to a remarkable duality between
ground state solutions of some quasilinear (or semi-linear) PDEs and stationary solutions of
(non-linear) Fokker-Planck type equations.
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Proposition 2.3 Assume that Ω and F satisfy the hypothesis in Theorem 1.1, and let ψ :

IR → [0,∞) be differentiable and such that ψ(0) = 0 and |ψ 1
p (F ′ ◦ ψ)′ | = K where p > 1,

and K is chosen to be 1 for simplicity. Then, for any q-homogeneous Young function c,

sup{−
∫

Ω

F (ρ) + cρ; ρ ∈ Pa(Ω)} ≤ inf{
∫

Ω

c∗(−∇f) −GF ◦ ψ(f); f ∈ C∞
0 (Ω),

∫

Ω

ψ(f) = 1}
(18)

where GF (x) := (1−n)F (x) + nxF ′(x). Furthermore, equality holds in (18) if there exists f̄
(and ρ̄ = ψ(f̄)) that satisfies the ODE

−(F ′ ◦ ψ)′(f̄)∇f̄(x) = ∇c(x) a.e. (19)

Moreover, f̄ solves the quasilinear PDE

div{∇c∗(−∇f)} − (GF ◦ ψ)′(f) = λψ′(f) in Ω
∇c∗(−∇f) · ν = 0 on ∂Ω,

(20)

for some λ ∈ IR, while ρ̄ is a stationary solution of the Fokker-Planck type equation

∂ρ
∂t = div{ρ∇ (F ′(ρ) + c)} in (0,∞) × Ω
ρ∇ (F ′(ρ) + c) · ν = 0 on (0,∞) × ∂Ω.

(21)

Proof: Let Q′′(x) = x
1
q F ′′(x),

J(ρ) := −
∫

Ω

(F (ρ) + cρ) dy and J̃(ρ) := −
∫

Ω

(F + nPF )(ρ)dx+

∫

Ω

c∗(−∇(Q′(ρ))dx.

From Theorem 1.1, J(ρ) ≤ J̃ (ψ(f)) for all ρ ∈ Pa(Ω) and f ∈ C∞
c (Ω) with

∫

Ω
ψ(f) dx = 1,

and equality holds for ρ̄ = ψ(f̄) satisfying (19). This, combined with the assumption

|ψ 1
p (F ′ ◦ψ)′ | = 1 and the q-homogeneity of c∗ proves (18). The Euler-Lagrange equation of

the right hand side of (18) is (20), where λ is a Lagrange multiplier. Using the arguments in
[10], one sees that the maximizer ρ̄ of the left hand side of (18) is a stationary solution of (21).

Proposition 2.3 applied to F (x) = xγ

γ−1 where 1 6= 1 − 1
n , and c(x) = rγ

2 |x |2 where r ∈
(

0, 2n
n−2

]

yields the optimal Sobolev and Gagliardo-Nirenberg inequalities recently obtained

in [7] and [6]. (See details in [2]).

Corollary 2.4 (Optimal Sobolev and Gagliardo-Nirenberg inequalities)
Let 1 < p < n and r ∈ (0, p∗), with r 6= p and p∗ = np

n−p . Set γ := 1
r + 1

q , where 1
p + 1

q = 1.

Then, for any f ∈W 1,p(IRn), we have the Gagliardo-Nirenberg inequality:

‖f‖r ≤ C(p, r)‖∇f‖θ
p ‖f‖1−θ

rγ , (22)

where 1
r = θ

p∗ + 1−θ
rγ , and the best constant C(p, r) > 0 can be obtained by scaling.

In particular, if r = p∗, we have the Sobolev inequality:

‖f‖r ≤ C(p, n)‖∇f‖p,

where the best constant C(p, n) > 0 can be obtained from (18) and (19).

2.2 The case of quadratic Young functions

Here, we establish the HWBI inequality, an extension of the HWI inequality in [11], and we
deduce extensions of generalized Log-Sobolev and Talagrand’s inequalities recently obtained
in [4].
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Proposition 2.5 (HWBI inequalities). Assume that Ω, F,W and V satisfy the hypothesis
in Theorem 1.1. Then, for any σ > 0, we have for all ρ0, ρ1 ∈ Pa(Ω) with supp ρ0 ⊂ Ω and
PF (ρ0) ∈W 1,∞(Ω),

HF,W
V (ρ0|ρ1) ≤W2(ρ0, ρ1)

√

I2(ρ0|ρV ) − λ+ ν

2
W 2

2 (ρ0, ρ1) +
ν

2
|b(ρ0) − b(ρ1)|2. (23)

Proof: Rewrite (7) as

HF,W
V (ρ0|ρ1) +

λ+ ν

2
W 2

2 (ρ0, ρ1) −
ν

2
|b(ρ0) − b(ρ1)|2 ≤ 1

2σ
W 2

2 (ρ0, ρ1) +
σ

2
I2(ρ0|ρV ), (24)

and show that the minimizer over σ > 0 of (24) is attained at σ̄ = W2(ρ0,ρ1)√
I2(ρ0|ρV )

.

Corollary 2.6 (Generalized Log-Sobolev and Talagrand’s inequalities). In addition
to the hypothesis on Ω, F, V,W in Theorem 1.1, assume that λ + ν > 0. Then, for all
ρ, ρ0, ρ1 ∈ Pa(Ω) with supp ρ0 ⊂ Ω and PF (ρ0) ∈W 1,∞(Ω), we have

HF,W
V (ρ0|ρ1) −

ν

2
|b(ρ0) − b(ρ1)|2 ≤ 1

2(λ+ ν)
I2(ρ0|ρV ), and (25)

λ+ ν

2
W 2

2 (ρ, ρV ) − ν

2
|b(ρ) − b(ρV )|2 ≤ HF,W

V (ρ|ρV ). (26)

Furthermore, if W is convex, then

HF,W
V (ρ0|ρ1) ≤

1

2λ
I2(ρ0|ρV ), and (27)

W2(ρ, ρV ) ≤

√

2HF,W
V (ρ|ρV )

λ
. (28)

Many Gaussian inequalities can be derived from (7), (27) and (28) (see details in [2], [11]).
Also, using (25)-(28), one can recover results obtained in [4] for the trend to equilibrium of
Fokker-Planck and McKean-Vlasov type equations (see details in [2], [4]).
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