

The Pacific Institute for the Mathematical Sciences

http://www.pims.math.ca pims@pims.math.ca

The optimal evolution of the free energy of interacting gases and its applications

M. Agueh N. Ghoussoub X. Kang

PIMS Department of Mathematics Department of Mathematics University of British Columbia University of British Columbia University of British Columbia Vancouver, BC V6T 1Z2, Canada Vancouver, BC V6T 1Z2, Canada Vancouver, BC V6T 1Z2, Canada

Preprint number: PIMS-03-8 Received on April 14, 2003

The optimal evolution of the free energy of interacting gases and its applications

M. Agueh, N. Ghoussoub and X. Kang[∗]

July 7, 2003

Pacific Institute for the Mathematical Sciences and Department of Mathematics, The University of British Columbia, Vancouver, B. C. V6T 1Z2, Canada

Abstract: We establish an inequality for the relative total – internal, potential and interactive – energy of two arbitrary probability densities, their Wasserstein distance, their barycenters and their generalized relative Fisher information. This inequality leads to many known and powerful geometric inequalities, as well as to a remarkable correspondence between ground state solutions of certain quasilinear (or semi-linear) equations and stationary solutions of (non-linear) Fokker-Planck type equations. It also yields the HWBI inequalities – which extend the HWI inequalities in [11] and [4], with the additional "B" referring to the new barycentric term – from which most known Gaussian inequalities can be derived.

L'évolution de l'énergie totale d'un gaz le long d'un transport optimal et applications

Résumé: Nous établissons une inégalité reliant l'énergie totale – interne, potentielle et $interactive - de$ deux densités de probabilité, leur distance de Wasserstein, leurs barycentres ainsi que leur entropie relative généralisée. Cette inégalité implique plusieurs des inégalités géométriques classiques, ainsi qu'une correspondence remarquable entre les solutions de certaines équations quasilinéaires (ou semi-linéaires) et les solutions stationnaires d'équations du type Fokker-Planck. On établit aussi des inégalités HWBI – généralisant les inégalités HWI de $[11]$ et $[4]$, où le "B" refère au nouveau terme barycentrique – dont découlent plusieurs inégalités gaussiennes classiques.

Version française abrégée: Les récents progrès dans la théorie de Monge-Kantorovich du transport de masse ont conduit à des preuves simples et naturelles d'une variété d'inégalités géométriques (voir $[9]$, $[11]$, $[6]$). Dans ce même contexte, nous proposons ici une inégalité générale dont découlent la plupart de ces inégalités. A la base, se trouve un principe de comparaison assez simple dans la théorie d'évolution des gaz, qui compare les énergies – interne, potentielle et interactive – de deux états d'un système, après que l'un soit passé à l'autre selon un transport optimal. L'idée principale est de décrire l'évolution de l'énergie totale (1) d'un système, tranporté de façon optimale, d'un état $\rho_0 \in \mathcal{P}_a(\Omega)$ à un autre $\rho_1 \in \mathcal{P}_a(\Omega)$, en tenant compte du coût de transport – distance de Wasserstein – (4), des barycentres $b(\rho_0)$ et $b(\rho_1)$ et de l'entropie généralisée (2). Une fois ce principe de comparaison établi (section 1), une variété d'inégalités s'en déduisent, en considérant tout simplement quelques exemples

[∗]This work is partially supported by a grant from the Natural Science and Engineering Research Council of Canada.

d'énergies admissibles (section 2).

Let $F : [0, \infty) \to \mathbb{R}$ be continuous, and V (resp., $W : \mathbb{R}^n \to \mathbb{R}$ be a confinement (resp., interaction) potential, and let $\Omega \subset \mathbb{R}^n$ be open, bounded and convex. The set of probability densities over Ω is denoted by $\mathcal{P}_a(\Omega)$, and the associated free energy functional is defined on $\mathcal{P}_a(\Omega)$ by

$$
\mathcal{H}_V^{F,W}(\rho) = \int_{R^n} \left[F(\rho) + \rho V + \frac{1}{2} (W \star \rho) \rho \right] dx,
$$
 (1)

which is the sum of the internal energy $H^F(\rho) = \int_{R^n} F(\rho) dx$, the potential energy $H_V(\rho) = \int_{R^n} \rho V dx$ and the interaction energy $H^W(\rho) = \frac{1}{2} \int_{R^n} (W \star \rho) \rho dx$. By Young's function, we mean any nonnegative, C^1 , strictly convex function $c: \mathbb{R}^n \to \mathbb{R}$ such that $c(0) = 0$ and $\lim_{|x| \to \infty} \frac{c(x)}{|x|} = \infty.$

For $\rho, \rho_0, \rho_1 \in \mathcal{P}_a(\Omega)$, we denote by $H_V^{F,W}(\rho_0|\rho_1) := H_V^{F,W}(\rho_0) - H_V^{F,W}(\rho_1)$ the relative energy of ρ_0 with respect to ρ_1 , by $b(\rho) := \int_{R^n} x\rho(x) dx$ the barycenter of ρ , and by

$$
I_{c^*}(\rho|\rho_V) := \int_{\Omega} \rho \nabla \left(F'(\rho) + V + W \star \rho \right) \cdot \nabla c^* \left(\nabla \left(F'(\rho) + V + W \star \rho \right) \right) dx, \tag{2}
$$

the generalized relative Fisher information of ρ with respect to ρ_V measured against c^* , where $\rho_V \in \mathcal{P}_a(\Omega)$ satisfies

$$
\nabla (F'(\rho_V) + V + W \star \rho_V) = 0 \text{ a.e.}
$$
 (3)

When $c(x) = \frac{|x|^2}{2}$ $\frac{z_1}{2}$, we denote I_{c^*} by I_2 . The *Wasserstein distance* between ρ_0 and ρ_1 is defined by

$$
W_2(\rho_0, \rho_1)^2 := \inf \left\{ \int_{R^n} |x - Tx|^2 \rho_0(x) \, dx; \ T_\# \rho_0 = \rho_1 \right\},\tag{4}
$$

where $T_{\#}\rho_0 = \rho_1$ means that $\rho_1(B) = \rho_0(T^{-1}(B))$ for all Borel sets $B \subset \mathbb{R}^n$. In the sequel, supp ρ denotes the support of $\rho \in \mathcal{P}_a(\Omega)$, c^* is the Legendre transform of c, that is $c^*(y) = \sup_{x \in \mathbb{R}^n} \{x \cdot y - c(x)\}, |\Omega|$ is the Lebesgue measure of $\Omega \subset \mathbb{R}^n$, and $q > 1$ stands for the conjugate index of $p > 1$, $\frac{1}{p} + \frac{1}{q} = 1$.

1 Main inequality

Theorem 1.1 Let $\Omega \subset \mathbb{R}^n$ be open, bounded and convex, $F : [0, \infty) \to \mathbb{R}$ be differentiable on $(0, \infty)$ with $F(0) = 0$ and $x \mapsto x^n F(x^{-n})$ convex and non-increasing, and let $P_F(x) :=$ $xF'(x) - F(x)$ be its associated pressure function. Let $V, W : \mathbb{R}^n \to \mathbb{R}$ be C^2 -functions with W even, $D^2V \geq \lambda I$ and $D^2W \geq \nu I$ where $\lambda, \nu \in \mathbb{R}$, and I denotes the identity map. Then, for any Young's function $c : \mathbb{R}^n \to \mathbb{R}$, we have for all $\rho_0, \rho_1 \in \mathcal{P}_a(\Omega)$ satisfying supp $\rho_0 \subset \Omega$ and $P_F(\rho_0) \in W^{1,\infty}(\Omega)$,

$$
H_{V+c}^{F,W}(\rho_0|\rho_1) + \frac{\lambda + \nu}{2} W_2^2(\rho_0, \rho_1) - \frac{\nu}{2} |b(\rho_0) - b(\rho_1)|^2
$$

\n
$$
\leq H_{c+\nabla V \cdot x}^{-n}(\rho_0) + \int_{\Omega} \rho_0 c^* \left(-\nabla \left(F'(\rho_0) + V + W \star \rho_0 \right) \right) dx,
$$
\n(5)

with equality when $\rho_0 = \rho_1 = \rho_{V+c}$, where the latter satisfies

$$
\nabla \left(F'(\rho_{V+c}) + V + c + W \star \rho_{V+c} \right) = 0 \quad a.e. \tag{6}
$$

In particular, if $c(x) = c_{\sigma}(x) = \frac{1}{2\sigma}|x|^2$ for $\sigma > 0$, then we have the identity:

$$
H_V^{F,W}(\rho_0|\rho_1) + \frac{1}{2}(\lambda + \nu - \frac{1}{\sigma})W_2^2(\rho_0, \rho_1) - \frac{\nu}{2}|b(\rho_0) - b(\rho_1)|^2 \le \frac{\sigma}{2}I_2(\rho_0|\rho_V),\tag{7}
$$

where

$$
I_2(\rho_0|\rho_V) = \int_{\Omega} \rho_0 |\nabla (F'(\rho_0) + V + W \star \rho_0)|^2 dx,
$$
 (8)

Proof: The proof of (5) relies on the following energy inequality which is essentially a compendium of various observations by many authors, McCann [9], Otto [10], Agueh [1], Carillo-McCann-Villani [4] and Cordero-Gangbo-Houdré [5]: for all $\rho_0, \rho_1 \in \mathcal{P}_a(\Omega)$ with $\text{supp}\rho_0 \subset \Omega \text{ and } P_F(\rho_0) \in W^{1,\infty}(\Omega),$

$$
\begin{split} \mathcal{H}_{V}^{F,W}(\rho_{0}) - \mathcal{H}_{V}^{F,W}(\rho_{1}) + \frac{\lambda + \nu}{2} W_{2}^{2}(\rho_{0}, \rho_{1}) - \frac{\nu}{2} |\mathbf{b}(\rho_{0}) - \mathbf{b}(\rho_{1})|^{2} \\ \leq & \int_{\Omega} (x - Tx) \cdot \nabla \left(F'(\rho_{0}) + V + W \star \rho_{0} \right) \rho_{0} \, dx. \end{split} \tag{9}
$$

This inequality describes the evolution of a generalized energy functional along optimal transport. For its proof, we refer to $\vert 1 \vert$ and $\vert 5 \vert$. Using (9) and an integration by parts in $\int_{\Omega} \rho_0 \nabla (F'(\rho_0)) \cdot x \, dx = \int_{\Omega} \nabla (P_F(\rho_0)) \cdot x \, dx$, we have that

$$
H_V^{F,W}(\rho_0) - H_V^{F,W}(\rho_1) + \frac{\lambda + \nu}{2} W_2^2(\rho_0, \rho_1) - \frac{\nu}{2} |b(\rho_0) - b(\rho_1)|^2
$$

\n
$$
\leq H_{x \cdot \nabla V}^{-n_{F_x, 2x \cdot \nabla W}}(\rho_0) - \int_{\Omega} \rho_0 \nabla (F'(\rho_0) + V + W \star \rho_0) \cdot T(x) dx.
$$
\n(10)

Now, use Young's inequality $c(y) + c^*(z) \ge \langle y, z \rangle$, to obtain:

$$
-\nabla (F'(\rho_0(x)) + V(x) + (W \star \rho_0)(x)) \cdot T(x)
$$

\n
$$
\leq c (T(x)) + c^* (-\nabla (F'(\rho_0(x)) + V(x) + (W \star \rho_0)(x))),
$$
\n(11)

and then rewrite $\int_{\Omega} c(T(x)) \rho_0(x) dx$ as $\int_{\Omega} c(y) \rho_1(y) dy$ to conclude (5). Setting $\rho_0 = \rho_1 :=$ ρ_{V+c} in (10), we have that $T = I$ and equality holds in (10). Therefore, equality holds in (5) whenever equality holds in (11), where $T(x) = x$. This occurs when (6) is satisfied. To prove (7), use (5) with c_{σ} , $V - c_{\sigma}$ and $\lambda - \frac{1}{\sigma}$, in place of c, V and λ , then observe that

$$
\mathcal{H}^{-nP_F,2x\cdot \nabla W}_{c_{\sigma}+\nabla (V-c_{\sigma})\cdot x} + \int_{\Omega} \rho_0 c_{\sigma}^{\star} \left(-\nabla \left(F'(\rho_0) + V - c_{\sigma} + W \star \rho_0 \right) \right) dx = \frac{\sigma}{2} I_2(\rho_0|\rho_V).
$$

2 Applications

2.1 The case of non (necessarily) quadratic Young functions

The main inequality (5) combined with a scaling argument of the Young function lead to the following optimal Euclidean p -Log Sobolev inequality for any $p > 1$. This inequality was first established by Beckner [3] for $p = 1$, and by Del Pino and Dolbeault for $1 < p < n$. The case where $p > n$ was also established recently and independently by Gentil [8] who used the Prékopa-leindler inequality and the Hopf-lax semi-group associated to the Hamilton-Jacobi equation.

Proposition 2.1 (General optimal Euclidean p-Log Sobolev inequality). Let $\Omega \subset$ \mathbb{R}^n be open bounded and convex, and c be a Young's function with p-homogeneous Legendre transform c^* . Then, for all $\rho \in \mathcal{P}_a(\mathbb{R}^n) \cap W^{1,\infty}(\mathbb{R}^n)$ with $supp \rho \subset \Omega$,

$$
\int_{R^n} \rho \ln \rho \, dx \leq \frac{n}{p} \ln \left(\frac{p}{n e^{p-1} \sigma_c^{p/n}} \int_{R^n} \rho c^\star \left(-\frac{\nabla \rho}{\rho} \right) \, dx \right),\tag{12}
$$

where $\sigma_c = \int_{R^n} e^{-c} dx$, and equality holds in (12) if $\rho(x) = K_{\lambda} e^{-\lambda^q c(x)}$ for some $\lambda > 0$, where $K_{\lambda} = \left(\int_{R^n} e^{-\lambda^q c(x)} dx\right)^{-1}$. In particular, if $c(x) = (p-1)|x|^p$ and $\rho = |f|^p$, we have for all $f \in W^{1,p}(R^n)$ with $|| f ||_p = 1$,

$$
\int_{R^n} |f|^p \ln(|f|^p) dx \leq \frac{n}{p} \ln\left(C_p \int_{R^n} |\nabla f|^p dx\right),\tag{13}
$$

where

$$
C_p = \left(\frac{p}{n}\right) \left(\frac{p-1}{e}\right)^{p-1} \pi^{-\frac{p}{2}} \left[\frac{\Gamma(\frac{n}{2}+1)}{\Gamma(\frac{n}{q}+1)}\right]^{\frac{p}{n}}.
$$

Proof: Use $F(x) = x \ln x$, $c_{\lambda}(x) = c(\lambda x)$, $\rho_0 = \rho$, $\rho_1 = \frac{e^{-c}}{\sqrt{c_{\lambda}c_{\lambda}}}$ $\frac{e^{-c}}{\int_{\mathbb{R}^n} e^{-c} \, dx}$ and $V = W = 0$ in (5), and the fact that c^* is p -homogeneous, to have that

$$
\int_{R^n} \rho \ln \rho \, dx \le \frac{1}{\lambda^p} \int_{R^n} \rho c^\star \left(-\frac{\nabla \rho}{\rho} \right) \, dx + n \ln \lambda - n - \ln \sigma_c,\tag{14}
$$

then show that the infimum over $\lambda > 0$ in (14) is attained at $\bar{\lambda}_{\rho} = \left(\frac{p}{n} \int_{\mathbf{R}^n} \rho c^* \left(-\frac{\nabla \rho}{\rho}\right) dx\right)^{1/p}$.

A similar scaling argument of the Young function also yields the following generalized degenerate Log-Sobolev inequality, which may be used to study the trend to equilibrium for the class of doubly degenerate PDEs studied recently in [1], in the absence of a confinement potential.

Proposition 2.2 (Degenerate generalized Log-Sobolev inequality). In addition to the hypothesis on Ω, F, V and W in Theorem 1.1, assume that the Young function $c : \mathbb{R}^n \to$ \mathbb{R}^n is even and q homogeneous for some $q > 1$. Then, for all $\rho_0, \rho_1 \in \mathcal{P}_a(\Omega)$ with supp $\rho_0 \subset \Omega$, $P_F(\rho_0) \in W^{1,\infty}(\Omega)$, $H_{x\cdot \nabla V}^{-nP_F,2x\cdot \nabla W}(\rho_0) \leq 0$ and $H_c(\rho_1) \neq 0$, we have

$$
\mathcal{H}_V^{F,W}(\rho_0|\rho_1) \le \frac{p}{(p-1)^{1/q}} [H_c(\rho_1)]^{1-\frac{1}{p}} \left[I_{c^*}(\rho_0|\rho_V) \right]^{\frac{1}{p}}.
$$
 (15)

where p is the conjugate of q.

In particular, when $V = W = 0$ we obtain for for all $\rho_0, \rho_1 \in \mathcal{P}_a(\Omega)$ with $supp \rho_0 \subset \Omega$, $P_F(\rho_0) \in W^{1,\infty}(\Omega),$

$$
H^{F}(\rho_0|\rho_1) \leq \frac{p}{(p-1)^{1/q}} [H_c(\rho_1)]^{1-\frac{1}{p}} [I_{c^*}(\rho_0|\rho_{\infty})]^{\frac{1}{p}}, \qquad (16)
$$

where $\rho_{\infty} \in \mathcal{P}_a(\Omega)$ satisfies $\nabla \left(F'(\rho_{\infty}) \right) = 0$ a.e.

Proof: Use (5) with $c_{\sigma}(x) = c(\sigma x)$ and the fact that $H_{x \cdot \nabla V}^{-nP_F, 2x \cdot \nabla W}(\rho_0) \leq 0, c_{\sigma}(x) \leq x \cdot$ $\nabla c_{\sigma}(x)$ and c is q-homogeneous, to have that

$$
H_V^{F,W}(\rho_0|\rho_1) + \frac{\lambda + \nu}{2} W_2^2(\rho_0, \rho_1)^2 - \frac{\nu}{2} |b(\rho_0) - b(\rho_1)|^2 \le \frac{1}{\sigma^p} I_{c^*}(\rho_0|\rho_V) + \sigma^q H_c(\rho_1), \quad (17)
$$

then show that the infimum over $\sigma > 0$ of (17) is attained at

$$
\bar{\sigma} = \left(\frac{pI_{c^*}(\rho_0|\rho_V)}{qH_c(\rho_1)}\right)^{\frac{1}{p+q}}.
$$

The main inequality (5) applied when $V = W = 0$, leads to a remarkable duality between ground state solutions of some quasilinear (or semi-linear) PDEs and stationary solutions of (non-linear) Fokker-Planck type equations.

Proposition 2.3 Assume that Ω and F satisfy the hypothesis in Theorem 1.1, and let ψ : $R \to [0, \infty)$ be differentiable and such that $\psi(0) = 0$ and $|\psi^{\frac{1}{p}}(F' \circ \psi)'| = K$ where $p > 1$, and \overline{K} is chosen to be 1 for simplicity. Then, for any q-homogeneous Young function c,

$$
\sup\{-\int_{\Omega} F(\rho) + c\rho; \rho \in \mathcal{P}_a(\Omega)\} \le \inf\{\int_{\Omega} c^*(-\nabla f) - G_F \circ \psi(f); f \in C_0^{\infty}(\Omega), \int_{\Omega} \psi(f) = 1\}
$$
\n(18)

where $G_F(x) := (1-n)F(x) + nxF'(x)$. Furthermore, equality holds in (18) if there exists \overline{f} (and $\bar{\rho} = \psi(\bar{f})$) that satisfies the ODE

$$
-(F' \circ \psi)'(\bar{f})\nabla \bar{f}(x) = \nabla c(x) \quad a.e. \tag{19}
$$

Moreover, \bar{f} solves the quasilinear PDE

$$
\operatorname{div}\{\nabla c^*(-\nabla f)\} - (G_F \circ \psi)'(f) = \lambda \psi'(f) \quad \text{in } \Omega
$$

$$
\nabla c^*(-\nabla f) \cdot \nu = 0 \qquad \text{on } \partial\Omega,
$$
 (20)

for some $\lambda \in \mathbb{R}$, while $\bar{\rho}$ is a stationary solution of the Fokker-Planck type equation

$$
\frac{\partial \rho}{\partial t} = \text{div}\{\rho \nabla (F'(\rho) + c)\} \quad \text{in } (0, \infty) \times \Omega
$$

\n
$$
\rho \nabla (F'(\rho) + c) \cdot \nu = 0 \qquad \text{on } (0, \infty) \times \partial \Omega.
$$
\n(21)

Proof: Let $Q''(x) = x^{\frac{1}{q}}F''(x)$,

$$
J(\rho) := -\int_{\Omega} \left(F(\rho) + c\rho \right) dy \text{ and } \tilde{J}(\rho) := -\int_{\Omega} \left(F + nP_F(\rho) \right) dx + \int_{\Omega} c^* \left(-\nabla (Q'(\rho)) dx \right).
$$

From Theorem 1.1, $J(\rho) \leq \tilde{J}(\psi(f))$ for all $\rho \in \mathcal{P}_a(\Omega)$ and $f \in C_c^{\infty}(\Omega)$ with $\int_{\Omega} \psi(f) dx = 1$, and equality holds for $\bar{\rho} = \psi(\bar{f})$ satisfying (19). This, combined with the assumption $|\psi^{\frac{1}{p}}(F' \circ \psi)'| = 1$ and the q-homogeneity of c^* proves (18). The Euler-Lagrange equation of the right hand side of (18) is (20), where λ is a Lagrange multiplier. Using the arguments in [10], one sees that the maximizer $\bar{\rho}$ of the left hand side of (18) is a stationary solution of (21).

Proposition 2.3 applied to $F(x) = \frac{x^{\gamma}}{\gamma - 1}$ where $1 \neq 1 - \frac{1}{n}$, and $c(x) = \frac{r\gamma}{2} |x|^2$ where $r \in$ $\left(0, \frac{2n}{n-2}\right)$ yields the optimal Sobolev and Gagliardo-Nirenberg inequalities recently obtained in [7] and [6]. (See details in [2]).

Corollary 2.4 (Optimal Sobolev and Gagliardo-Nirenberg inequalities)

Let $1 < p < n$ and $r \in (0, p^*)$, with $r \neq p$ and $p^* = \frac{np}{n-p}$. Set $\gamma := \frac{1}{r} + \frac{1}{q}$, where $\frac{1}{p} + \frac{1}{q} = 1$. Then, for any $f \in W^{1,p}(\mathbb{R}^n)$, we have the Gagliardo-Nirenberg inequality:

$$
||f||_{r} \le C(p,r) ||\nabla f||_{p}^{\theta} ||f||_{r\gamma}^{1-\theta},
$$
\n(22)

where $\frac{1}{r} = \frac{\theta}{p^*} + \frac{1-\theta}{r\gamma}$, and the best constant $C(p,r) > 0$ can be obtained by scaling. In particular, if $r = p^*$, we have the Sobolev inequality:

$$
||f||_r \le C(p, n) ||\nabla f||_p,
$$

where the best constant $C(p, n) > 0$ can be obtained from (18) and (19).

2.2 The case of quadratic Young functions

Here, we establish the HWBI inequality, an extension of the HWI inequality in [11], and we deduce extensions of generalized Log-Sobolev and Talagrand's inequalities recently obtained in [4].

Proposition 2.5 (HWBI inequalities). Assume that Ω , F, W and V satisfy the hypothesis in Theorem 1.1. Then, for any $\sigma > 0$, we have for all $\rho_0, \rho_1 \in \mathcal{P}_a(\Omega)$ with $supp \rho_0 \subset \Omega$ and $P_F(\rho_0) \in W^{1,\infty}(\Omega),$

$$
\mathrm{H}_{V}^{F,W}(\rho_{0}|\rho_{1}) \le W_{2}(\rho_{0},\rho_{1})\sqrt{I_{2}(\rho_{0}|\rho_{V})} - \frac{\lambda + \nu}{2}W_{2}^{2}(\rho_{0},\rho_{1}) + \frac{\nu}{2}|\mathbf{b}(\rho_{0}) - \mathbf{b}(\rho_{1})|^{2}.
$$
 (23)

Proof: Rewrite (7) as

$$
\mathcal{H}_V^{F,W}(\rho_0|\rho_1) + \frac{\lambda + \nu}{2} W_2^2(\rho_0, \rho_1) - \frac{\nu}{2} |b(\rho_0) - b(\rho_1)|^2 \le \frac{1}{2\sigma} W_2^2(\rho_0, \rho_1) + \frac{\sigma}{2} I_2(\rho_0|\rho_V), \tag{24}
$$

and show that the minimizer over $\sigma > 0$ of (24) is attained at $\bar{\sigma} = \frac{W_2(\rho_0, \rho_1)}{\sqrt{L(\rho_0)}\sigma_0}$ $\frac{V_2(\rho_0,\rho_1)}{I_2(\rho_0|\rho_V)}$.

Corollary 2.6 (Generalized Log-Sobolev and Talagrand's inequalities). In addition to the hypothesis on Ω, F, V, W in Theorem 1.1, assume that $\lambda + \nu > 0$. Then, for all $\rho, \rho_0, \rho_1 \in \mathcal{P}_a(\Omega)$ with supp $\rho_0 \subset \Omega$ and $P_F(\rho_0) \in W^{1,\infty}(\Omega)$, we have

$$
H_V^{F,W}(\rho_0|\rho_1) - \frac{\nu}{2}|b(\rho_0) - b(\rho_1)|^2 \le \frac{1}{2(\lambda + \nu)}I_2(\rho_0|\rho_V), \text{ and } (25)
$$

$$
\frac{\lambda + \nu}{2} W_2^2(\rho, \rho_V) - \frac{\nu}{2} |b(\rho) - b(\rho_V)|^2 \le H_V^{F,W}(\rho | \rho_V). \tag{26}
$$

Furthermore, if W is convex, then

$$
\mathcal{H}_V^{F,W}(\rho_0|\rho_1) \le \frac{1}{2\lambda} I_2(\rho_0|\rho_V), \quad \text{and} \tag{27}
$$

$$
W_2(\rho, \rho_V) \le \sqrt{\frac{2H_V^{F,W}(\rho|\rho_V)}{\lambda}}.\tag{28}
$$

Many Gaussian inequalities can be derived from (7) , (27) and (28) (see details in $[2]$, $[11]$). Also, using (25)-(28), one can recover results obtained in [4] for the trend to equilibrium of Fokker-Planck and McKean-Vlasov type equations (see details in [2], [4]).

References

- [1] M. Agueh. Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Preprint, 2002.
- [2] M. Agueh, N. Ghoussoub and X. Kang. Geometric inequalities via a general comparison principle for interacting gases. Preprint, 2002
- [3] W. Beckner. Geometric asymptotics and the logarithmic Sobolev inequality. Forum Math. 11 (1999), No. 1, 105-137.
- [4] J. Carrillo, R. McCann, and C. Villani. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. To appear in Revista Matematica Iberoamericana.
- [5] D. Cordero-Erausquin, W. Gangbo, and C. Houdré. *Inequalities for generalized entropy* and optimal transportation. To appear in Proceedings of the Workshop: Mass transportation Methods in Kinetic Theory and Hydrodynamics.
- [6] D. Cordero-Erausquin, B. Nazaret, and C. Villani. A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Preprint 2002.
- [7] M. Del Pino, and J. Dolbeault. The optimal Euclidean L^p -Sobolev logarithmic inequality. To appear in J. Funct. Anal. (2002).
- [8] I. Gentil. The general optimal L^p -Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations. Preprint 2002.
- [9] R. McCann. A convexity principle for interacting gases. Adv. Math 128, 1, (1997), 153 - 179.
- [10] F. Otto. Doubly degenerate diffusion equations as steepest descent. Preprint. Univ. Bonn, (1996).
- [11] F. Otto and C. Villani. Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 2 (2000), 361 - 400.