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Abstract

The article builds on several recent advances in the Monge-Kantorovich theory of mass
transport which have – among other things – led to new and quite natural proofs for a
wide range of geometric inequalities such as the ones formulated by Brunn-Minkowski,
Sobolev, Gagliardo-Nirenberg, Beckner, Gross, Talagrand, Otto-Villani and their exten-
sions by many others. While this paper continues in this spirit, we however propose
here a basic framework to which all of these inequalities belong, and a general unifying
principle from which many of them follow. This basic inequality relates the relative total
energy – internal, potential and interactive – of two arbitrary probability densities, their
Wasserstein distance, their barycenters and their entropy production functional. The
framework is remarkably encompassing as it implies many old geometric – Gaussian
and Euclidean – inequalities as well as new ones, while allowing a direct and unified
way for computing best constants and extremals. As expected, such inequalities also
lead to exponential rates of convergence to equilibria for solutions of Fokker-Planck and
McKean-Vlasov type equations. The principle also leads to a remarkable correspon-
dence between ground state solutions of certain quasilinear – or semilinear – equations
and stationary solutions of – nonlinear – Fokker-Planck type equations.

∗This paper was done while this author held a postdoctoral fellowship at the University of British
Columbia.

†The three authors were partially supported by a grant from the Natural Science and Engineering
Research Council of Canada.

‡This paper is part of this author’s PhD’s thesis under the supervision of N. Ghoussoub.
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1 Introduction

The recent advances in the Monge-Kantorovich theory of mass transport have – among
other things – led to new and quite natural proofs for a wide range of geometric inequal-
ities. Most notable are McCann’s generalization of the Brunn-Minkowski’s inequality
[24], Otto-Villani’s [27] and Cordero-Gangbo-Houdre [14] extensions of the Log Sobolev
inequality of Gross [20] and Bakry-Emery [4], as well as Cordero-Nazaret-Villani’s proof
[12] of the Sobolev and the Gagliardo-Nirenberg inequalities. We refer to the superb
recent monograph of Villani [30] for more details on these remarkable developments.

This paper continues in this spirit, but our emphasis here is on developing a frame-
work for a unified and compact approach to a substantial number of these inequalities
which originate in disparate areas of analysis and geometry. The main idea is to try
to describe the evolution of the total – internal, potential and interactive – energy of a
system along an optimal transport that takes one configuration to another, taking into
account the entropy production functional, the transport cost (Wasserstein distance),
as well as the displacement of their centres of mass. Once this general comparison prin-
ciple is established, then several – new and old – inequalities follow directly by simply
considering different examples of – admissible – internal energies, and various confine-
ment and interactive potentials. Others (e.g., Concentration of measure phenomenon
and Poincaré’s inequality) will in turn follow from the well known hierarchy between
these inequalities.

Besides the obvious pedagogical relevance of a streamlining approach, we find it
interesting and intriguing that most of these inequalities appear as different manifesta-
tions of one basic principle in the theory of interacting gases that compares the ener-
gies of two states of a system after one is transported “at minimal cost” into another.
Here is our framework which is already present in McCann’s thesis [23]. Let Ω be an
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open and convex subset of IRn. The set of probability densities over Ω is denoted by
Pa(Ω) = {ρ : Ω → IR; ρ ≥ 0 and

∫

Ω ρ(x)dx = 1} and supp ρ will stand for the support
of ρ ∈ Pa(Ω), that is the closure of {x ∈ Ω : ρ 6= 0}, while |Ω| will denote the Lebesgue
measure of Ω ⊂ IRn. Let F : [0,∞) → IR be a differentiable function on (0,∞), and let
V and W be C2-real valued functions on IRn. The associated Free Energy Functional is
then defined on Pa(Ω) as:

HF,W
V (ρ) :=

∫

Ω

[

F (ρ) + ρV +
1

2
(W ? ρ)ρ

]

dx,

which is the sum of the internal energy HF(ρ) :=
∫

Ω F (ρ)dx, the potential energy
HV (ρ) :=

∫

Ω ρV dx and the interaction energy HW (ρ) := 1
2

∫

Ω ρ(W ? ρ) dx. Of impor-
tance is also the concept of relative energy of ρ0 with respect to ρ1 simply defined as:
HF,W

V (ρ0|ρ1) := HF,W
V (ρ0)−HF,W

V (ρ1), where ρ0 and ρ1 are two probability densities. The
relative entropy production of ρ with respect to ρV is normally defined as

I2(ρ|ρV ) =
∫

Ω
ρ
∣

∣

∣∇ (F ′(ρ) + V +W ? ρ))
∣

∣

∣

2
dx

in such a way that if ρ
V

is a probability density that satisfies

∇ (F ′(ρ
V
) + V +W ? ρ

V
) = 0 a.e.

then
I2(ρ|ρV

) =
∫

Ω
ρ|∇ (F ′(ρ) − F ′(ρ

V
) +W ? (ρ− ρ

V
) |2 dx.

Our notation for the density ρ
V

reflects this paper’s emphasis on its dependence on the
confinement potential, though it obviously also depends on F and W .
We need the notion of Wasserstein distance W2 between two probability measures ρ0

and ρ1 on IRn, defined as:

W 2
2 (ρ0, ρ1) := inf

γ∈Γ(ρ0 ,ρ1)

∫

IRn×IRn
|x− y|2dγ(x, y),

where Γ(ρ0, ρ1) is the set of Borel probability measures on IRn × IRn with marginals
ρ0 and ρ1, respectively. The barycentre (or centre of mass) of a probability density ρ,
denoted b(ρ) :=

∫

IRn xρ(x)dx will play a role in the presence of an interactive potential.
In this paper, we shall also deal with non-quadratic versions of the entropy. For

that we call Young function, any strictly convex C1-function c : IRn → IR such that
c(0) = 0 and lim|x |→∞

c(x)
|x | = ∞. We denote by c∗ its Legendre conjugate defined by

c∗(y) = supz∈IRn{y·z−c(z)}. For any probability density ρ on Ω, we define the generalized
relative entropy production-type function of ρ with respect to ρV measured against c∗ by

Ic∗(ρ|ρV
) :=

∫

Ω
ρc? (−∇ (F ′(ρ) + V +W ? ρ)) dx,

which is closely related to the generalized relative entropy production function of ρ with
respect to ρV measured against c∗ defined as:

Ic∗(ρ|ρV ) :=
∫

Ω
ρ∇ (F ′(ρ) + V +W ? ρ) · ∇c? (∇ (F ′(ρ) + V +W ? ρ)) dx.
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Indeed, the convexity inequality c∗(z) ≤ z · ∇c∗(z) satisfied by any Young function c,

readily implies that Ic∗(ρ|ρV ) ≤ Ic∗(ρ|ρV ). Note that when c(x) = |x |2
2

, we have

Ic∗(ρ|ρV ) =: I2(ρ|ρV ) =
∫

Ω
ρ
∣

∣

∣∇ (F ′(ρ) + V +W ? ρ)
∣

∣

∣

2
dx = 2Ic∗(ρ|ρV ),

and we denote Ic∗(ρ|ρV ) by I2(ρ|ρV ).
Throughout this paper, the internal energy will be given by a differentiable function

F : [0,∞) → IR on (0,∞) with F (0) = 0 and x 7→ xnF (x−n) convex and non-increasing.
We denote by PF (x) := xF ′(x)−F (x) its associated pressure function. The confinement
potential will be given by a C2-function V : IRn → IR with D2V ≥ λI, while the
interaction potential W will be an even C2-function with D2W ≥ νI where λ, ν ∈ IR,
and where I stands for the identity map.

In section 2, we start by establishing the following inequality relating the free ener-
gies of two arbitrary probability densities, their Wasserstein distance, their barycenters
and their relative entropy production functional. The fact that it yields many of the
admittedly powerful geometric inequalities is remarkable.

Basic comparison principle for interactive gases: If Ω is any open, bounded
and convex subset of IRn, then for any ρ0, ρ1 ∈ Pc(Ω) satisfying supp ρ0 ⊂ Ω and
PF (ρ0) ∈ W 1,∞(Ω), and any Young function c : IRn → IR, we have:

H
F,W

V +c
(ρ0|ρ1) +

λ+ ν

2
W 2

2 (ρ0, ρ1)−
ν

2
|b(ρ0)− b(ρ1)|2 ≤ H

−nPF ,2x·∇W

c+∇V ·x (ρ0) + Ic∗(ρ0|ρV ). (1)

Furthermore, equality holds in (1) whenever ρ0 = ρ1 = ρV +c, where the latter satisfies

∇ (F ′(ρV +c) + V + c+W ? ρV +c) = 0 a.e. (2)

To give an idea about the strength of the above inequality, assume V = W = 0 and
apply it with ρ0 being any probability density ρ satisfying supp ρ ⊂ Ω and ρ1 = ρc the
reference density. We obtain:

The General Euclidean Sobolev Inequality:

HF+nPF (ρ) ≤
∫

Ω
ρc? (−∇(F ′ ◦ ρ)) dx+Kc, (3)

where Kc is the unique constant determined by the equation

F ′(ρc) + c = Kc and
∫

Ω
ρc = 1. (4)

Applied to various – displacement convex – functionals F , we shall see in section 3
that (3) already implies the Sobolev, the Gagliardo-Nirenberg and the Euclidean p-Log
Sobolev inequalities, allowing in the process a direct and unified way for computing best
constants and extremals. This formulation also points to an interesting fact: that the
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various Sobolev inequalities are nothing but another manifestation of how free energy
is controlled by entropy production in appropriate systems.

In section 4, we notice that inequality (1) simplifies considerably in the case where c is
a quadratic Young function of the form c(x) := cσ(x) = 1

2σ
| x |2 for σ > 0, and we obtain:

The General Logarithmic Sobolev Inequality: For all probability densities ρ0 and
ρ1 on Ω, satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω), we have for any σ > 0,

HF,W
V (ρ0|ρ1) +

1

2
(λ+ ν − 1

σ
)W 2

2 (ρ0, ρ1) −
ν

2
|b(ρ0) − b(ρ1)|2 ≤

σ

2
I2(ρ0|ρV ). (5)

Minimizing the above inequality over σ > 0 then yields:

The HBWI inequality for interactive gases:

HF,W
V (ρ0|ρ1) ≤ W2(ρ0, ρ1)

√

I2(ρ0|ρV ) − λ+ ν

2
W 2

2 (ρ0, ρ1) +
ν

2
|b(ρ0) − b(ρ1)|2. (6)

This extends the HWI inequality established in [27] and [10], with the additional “B”
referring to the new barycentric terms, and constitutes yet another extension of various
powerful inequalities by Gross [20], Bakry-Emery[4], Talagrand [29], Otto-Villani [27],
Cordero [13] and others.

In section 5, we describe how these inequalities combined with the following energy
dissipation equation

d

dt
HF,W

V (ρ(t)|ρV ) = −I2 (ρ(t)|ρV ) , (7)

provide rates of convergence to equilibria for solutions to McKean-Vlasov type equations










∂ρ
∂t

= div {ρ∇ (F ′(ρ) + V +W ? ρ)} in (0,∞) × IRn

ρ(t = 0) = ρ0 in {0} × IRn.

(8)

One can then recover the recent results of Carillo, McCann and Villani in [10], which
estimate the rate of convergence of various quantities to the equilibrium state.

In section 6, we apply inequality (1) to the most basic system – where no potential
nor interaction energies are involved– to obtain:

The Energy-Entropy Duality Formula: For any probability density ρ0 ∈ W 1,∞(Ω)
with support in Ω, and any ρ1 ∈ Pa(Ω), we have

−HF
c (ρ1) ≤ −HF+nPF (ρ0) +

∫

Ω
ρ0c

? (−∇(F ′ ◦ ρ0)) dx. (9)

Moreover, equality holds whenever ρ0 = ρ1 = ρc where ρc is a probability density on Ω
such that ∇(F ′(ρc) + c) = 0 a.e.
Motivated by the recent work of Cordero-Nazaret-Villani [12], we show that (9) yields
a statement of the following type:

sup{J(ρ);
∫

Ω
ρ(x)dx = 1} ≤ inf{I(f);

∫

Ω
ψ(f(x))dx = 1}, (10)
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where
I(f) =

∫

Ω
[c∗(−∇f(x)) −G (ψ ◦ f(x))] dx (11)

and
J(ρ) = −

∫

Ω
[F (ρ(y)) + c(y)ρ(y)]dy (12)

with G(x) = (1−n)F (x)+nxF ′(x) and where ψ is computable from F and c. Moreover,
we have equality in (10) whenever there exists f̄ (and ρ̄ = ψ(f̄)) that satisfies the first
order equation:

−(F ′ ◦ ψ)′(f̄)∇f̄(x) = ∇c(x) a.e. (13)

In this case, the extrema are achieved at f̄ (resp. ρ̄ = ψ(f̄)). The latter is therefore a
solution for the quasilinear (or semi-linear) equation

div{∇c∗(−∇f)} − (G ◦ ψ)′(f) = ψ′(f) (14)

since it is the L2-Euler-Lagrange equation of I on {f ∈ C∞
0 (Ω);

∫

Ω ψ(f(x))dx = 1}.
Equally interesting is the fact that ψ(f̄) is also a stationary solution of the (non-linear)
Fokker-Planck equation:

∂u

∂t
= div{u∇(F ′(u) + c)} (15)

since J is nothing but the Free Energy functional on Pa(Ω), whose gradient flow with re-
spect to the Wasserstein distance is precisely the evolution equation (15). In other words,
this is pointing to a remarkable correspondence between Fokker-Planck evolution equa-
tions and certain quasilinear or semi-linear equations which appear as Euler-Lagrange
equations of the entropy production functionals.

In conclusion to this introduction, we mention that this paper is an expanded version
of the unpublished but distributed manuscript [2]. This unifying and compact approach
to so many important inequalities eventually led us to make the paper as self-contained
as possible so that it can serve as a quick introduction to these basic tools of modern
analysis. We should however warn the reader that we have barely scratched the surface
of the huge litterature that exists on these basic inequalities, their various generalizations
and on the hierarchy and relationships between them. Therefore, our references are in
no way complete nor exhaustive. Fortunately many books and surveys have already
appeared on these topics and we refer the reader to the monograph of Villani mentioned
above, as well as to the book of Ledoux [22] and the recent survey of Gardner [18].

2 Basic inequality between two configurations of in-

teracting gases

Here is our starting point.

Theorem 2.1 Let F : [0,∞) → IR be differentiable function on (0,∞) with F (0) = 0
and x 7→ xnF (x−n) convex and non-increasing, and let PF (x) := xF ′(x) − F (x) be
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its associated pressure function. Let V : IRn → IR be a C2-confinement potential with
D2V ≥ λI, and let W be an even C2-interaction potential with D2W ≥ νI where
λ, ν ∈ IR, and I denotes the identity map. If Ω is any open, bounded and convex subset
of IRn, then for any ρ0, ρ1 ∈ Pc(Ω), satisfying supp ρ0 ⊂ Ω and PF (ρ0) ∈ W 1,∞(Ω), and
any Young function c : IRn → IR, we have:

H
F,W

V +c
(ρ0|ρ1)+

λ+ ν

2
W 2

2 (ρ0, ρ1)−
ν

2
|b(ρ0)−b(ρ1)|2 ≤ H

−nPF ,2x·∇W

c+∇V ·x (ρ0)++Ic∗(ρ0|ρV ). (16)

Furthermore, equality holds in (16) whenever ρ0 = ρ1 = ρV +c, where the latter satisfies

∇ (F ′(ρV +c) + V + c +W ? ρV +c) = 0 a.e. (17)

In particular, we have for any ρ ∈ Pc(Ω) with supp ρ ⊂ Ω and PF (ρ) ∈ W 1,∞(Ω),

H
F+nPF , W−2x·∇W

V −x·∇V
(ρ) +

λ + ν

2
W 2

2 (ρ, ρV +c) −
ν

2
|b(ρ0) − b(ρV +c)|2 ≤ Ic∗(ρ|ρV ) − HPF ,W (ρV +c) + KV +c,

(18)

where KV +c is a constant such that

F ′(ρV +c) + V + c+W ? ρV +c = KV +c while
∫

Ω
ρV +c = 1. (19)

The proof is based on the recent advances in the theory of mass transport as developed
by Brenier [8], Gangbo-McCann [16], [17], Caffarelli [9] and many others. For a survey,
see Villani [30]. Here is a brief summary of the needed results.
Fix a non-negative C1, strictly convex function d : IRn → IR such that d(0) = 0. Given
two probability measures µ and ν on IRn, the minimum cost for transporting µ onto ν
is given by

Wd(µ, ν) := inf
γ∈Γ(µ,ν)

∫

IRn×IRn
d(x− y)dγ(x, y), (20)

where Γ(µ, ν) is the set of Borel probability measures with marginals µ and ν, respec-
tively. When d(x) = | x |2, we have thatWd = W 2

2 , where W2 is the Wasserstein distance.
We say that a Borel map T : IRn → IRn pushes µ forward to ν, if µ(T−1(B)) = ν(B) for
any Borel set B ⊂ IRn. The map T is then said to be d-optimal if

Wd(µ, ν) =
∫

IRn
d(x− Tx)dµ(x) = inf

S

∫

IRn
d(x− Sx)dµ(x), (21)

where the infimum is taken over all Borel maps S : IRn → IRn that push µ forward
to ν. For quadratic cost functions d(z) = 1

2
|z|2, Brenier [8] characterized the optimal

transport map T as the gradient of a convex function. An analogous result holds for
general cost functions d, provided convexity is replaced by an appropriate notion of
d-concavity. See [16], [9] for details.

Here is the lemma which leads to our main inequality (16). It is essentially a com-
pendium of various observations by several authors. It describes the evolution of a
generalized energy functional along optimal transport. The key idea behind it, is the
concept of displacement convexity introduced by McCann [24]. For generalized cost
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functions, and when V = 0, it was first obtained by Otto [26] for the Tsallis entropy
functionals and by Agueh [1] in general. The case of a nonzero confinement potential
V and an interaction potential W was included in [14], [10]. Here, we state the results
when the cost function is quadratic, d(x) = | x |2.

Lemma 2.2 Let Ω ⊂ IRn be open, bounded and convex, and let ρ0 and ρ1 be probability
densities on Ω, with supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω). Let T be the optimal map
that pushes ρ0 ∈ Pa(Ω) forward to ρ1 ∈ Pa(Ω) for the quadratic cost d(x) = | x |2. Then

1) Assume F : [0,∞) → IR is differentiable on (0,∞), F (0) = 0 and x 7→ xnF (x−n) is
convex and non-increasing, then the internal energy satisfies:

HF (ρ1) − HF (ρ0) ≥
∫

Ω
ρ0(T − I) · ∇ (F ′(ρ0)) dx. (22)

2) Assume V : IRn → IR is such that D2V ≥ λI for some λ ∈ IR, then the potential
energy satisfies

HV (ρ1) − HV (ρ0) ≥
∫

Ω
ρ0(T − I) · ∇V dx +

λ

2
W 2

2 (ρ0, ρ1). (23)

3) Assume W : IRn → IR is even, and D2W ≥ νI for some ν ∈ IR, then the interaction
energy satisfies

HW (ρ1)−HW (ρ0) ≥
∫

Ω
ρ0(T−I)·∇(W?ρ0)dx+

ν

2

(

W 2
2 (ρ0, ρ1) − |b(ρ0) − b(ρ1)|2

)

. (24)

Proof: If T (T = ∇ψ, where ψ is convex) is the optimal map that pushes ρ0 ∈ Pa(Ω)
forward to ρ1 ∈ Pa(Ω) for the quadratic cost d(x) = | x |2, one can then define a path of
probability densities joining them, by letting ρt be the push-forward measure of ρ0 by
the map Tt = (1 − t)I + tT . The key idea behind the estimate for the internal energy
is the fact first noticed by McCann [24]), that under the above assumptions on F , the
function t 7→ HF (ρt) is convex on [0, 1], which – at least for smooth ρt – essentially leads
to (22) via the following inequality for the internal energy:

HF (ρ1) − HF (ρ0) ≥ [
d

dt
HF (ρt)]t=0 = −

∫

Ω
F ′(ρ0) div (ρ0(T − I)) dx. (25)

We shall use here another approach due to Agueh [1] as it is more elementary and is
applicable to other cost functions.
First note that T = ∇ψ is diagonalizable with positive eigenvalues for ρ0 a.e., and
satisfies the Monge-Ampère equation

0 6= ρ0(x) = ρ1 (T (x)) det∇T (x) ρ0 a.e. (26)

So, ρ1 (T (x)) 6= 0 for ρ0 a.e. Here, ∇T (x) = ∇2ψ(x) denotes the derivative in the
sense of Aleksandrov of ψ (see McCann [24]). Set A(x) = xnF (x−n), which is non-

increasing by assumption, hence the pressure PF is non-negative and x 7→ F (x)
x

is also

8



non-increasing. Use that F (0) = 0, T#ρ0 = ρ1 and (26), to obtain that

HF (ρ1) =
∫

[ρ1 6=0]

F (ρ1(y))

ρ1(y)
ρ1(y) dy =

∫

Ω

F (ρ1(Tx))

ρ1(Tx)
ρ0(x) dx

=
∫

Ω
F

(

ρ0(x)

det∇T (x)

)

det∇T (x) dx. (27)

Comparing the geometric mean (det∇T (x))1/n with the arithmetic mean tr∇T (x)
n

, we

get 1

det∇T (x)
≥
(

n
tr∇T (x)

)n
, and since x 7→ F (x)

x
is non-decreasing, we obtain

F

(

ρ0(x)

det∇T (x)

)

det∇T (x) ≥ ΛnF

(

ρ0(x)

Λn

)

= ρ0(x)A

(

Λ

ρ0(x)1/n

)

, (28)

where Λ := tr∇T (x)
n

. Next, we use that A′(x) = −nxn−1PF (x−n) and that A is convex,
to obtain that

ρ0(x)A

(

Λ

ρ0(x)1/n

)

≥ ρ0(x)

[

A

(

1

ρ0(x)1/n

)

+ A′
(

1

ρ0(x)1/n

)(

Λ − 1

ρ0(x)1/n

)]

= ρ0(x)

[

F (ρ0(x))

ρ0(x)
− n(Λ − 1)

PF (ρ0(x))

ρ0(x)

]

= F (ρ0(x)) − PF (ρ0(x)) tr (∇T (x) − I). (29)

We combine (27) - (29), to conclude that

HF (ρ1) − HF (ρ0) ≥ −
∫

Ω
PF (ρ0(x)) tr (∇T (x) − I) dx

= −
∫

Ω
PF (ρ0(x)) div (T (x) − I) dx

≥
∫

Ω
ρ0 (T − I) · ∇ (F ′(ρ0)) dx. (30)

(2) As noted in [14], the fact that D2V ≥ λI, which means that

V (b) − V (a) ≥ ∇V (a) · (b− a) +
λ

2
| a− b |2

for all a, b ∈ IRn, easily implies (23) via the following inequality for the corresponding
potential energy:

HV (ρ1) − HV (ρ0) ≥ [
d

dt
HV (ρt)]t=0 +

λ

2

∫

Ω
|(T − I)(x)|2ρ0(x)dx

= −
∫

Ω
V div (ρ0(T − I)) dx +

λ

2
W 2

2 (ρ0, ρ1). (31)
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(3) The proof of (24) is due to Cordero-Gangbo-Houdré [14], and is also included here
for completeness. Rewrite the interaction energy as follows:

HW (ρ1) =
1

2

∫

Ω×Ω
W (x− y)ρ1(x)ρ1(y) dxdy

=
1

2

∫

Ω×Ω
W (T (x) − T (y))ρ0(x)ρ0(y) dxdy

=
1

2

∫

Ω×Ω
W (x− y + (T − I)(x) − (T − I)(y)) ρ0(x)ρ0(y) dxdy

≥ 1

2

∫

Ω×Ω
[W (x− y) + ∇W (x− y) · ((T − I)(x) − (T − I)(y)) ρ0(x)ρ0(y)] dxdy

+
ν

4

∫

Ω×Ω
|(T − I)(x) − (T − I)(y)|2ρ0(x)ρ0(y) dxdy

= HW (ρ0) +
1

2

∫

Ω×Ω
∇W (x− y) · ((T − I)(x) − (T − I)(y)) ρ0(x)ρ0(y) dxdy

+
ν

4

∫

Ω×Ω
|(T − I)(x) − (T − I)(y)|2ρ0(x)ρ0(y) dxdy, (32)

where we used above that D2W ≥ νI. The last term of the subsequent inequality can
be written as:

∫

Ω×Ω
|(T − I)(x) − (T − I)(y)|2ρ0(x)ρ0(y) dxdy

= 2
∫

Ω
|(T − I)(x)|2ρ0(x) dx− 2

∣

∣

∣

∫

IRn
(T − I)(x)ρ0(x) dx

∣

∣

∣

2

= 2
∫

Ω
|(T − I)(x)|2ρ0(x) dx− 2|b(ρ1) − b(ρ0)|2. (33)

And since ∇W is odd (because W is even), we get for the second term of (32)
∫

Ω×Ω
[∇W (x− y) · ((T − I)(x) − (T − I)(y))] ρ0(x)ρ0(y) dxdy

= 2
∫

Ω×Ω
∇W (x− y) · (T − I)(x)ρ0(x)ρ0(y) dxdy

= 2
∫

Ω×Ω
ρ0(T − I) · ∇(W ? ρ0) dx. (34)

Combining (32) - (34), we obtain that

HW (ρ1) − HW (ρ0)

≥
∫

Ω×Ω
ρ0(T − I) · ∇(W ? ρ0) dx +

ν

2

(∫

Ω
|(T − I)(x)|2ρ0dx− |b(ρ0) − b(ρ1)|2

)

.

This complete the proof of (24).

Proof of Theorem 2.1: Adding (22), (23) and (24), one gets

HF,W
V (ρ0) − HF,W

V (ρ1) +
λ+ ν

2
W 2

2 (ρ0, ρ1) −
ν

2
|b(ρ0) − b(ρ1)|2 (35)

≤
∫

Ω
(x− Tx) · ρ0∇ (F ′(ρ0) + V +W ? ρ0) dx.
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Since ρ0∇(F ′(ρ0)) = ∇ (PF (ρ0)), we integrate by part
∫

Ω ρ0∇ (F ′(ρ0)) · x dx, and obtain
that ∫

Ω
x · ∇(F ′(ρ0) + V +W ? ρ0)ρ0 = H

−nPF , 2x·∇W

x·∇V (ρ0).

This leads to

H
F,W

V (ρ0) − HF,W
V (ρ1) +

λ+ ν

2
W 2

2 (ρ0, ρ1) −
ν

2
|b(ρ0) − b(ρ1)|2 (36)

≤ H
−nPF , 2x·∇W

x·∇V (ρ0) −
∫

Ω
ρ0∇ (F ′(ρ0) + V +W ? ρ0) · T (x) dx.

Now, use Young’s inequality to get

−∇ (F ′ (ρ0(x)) + V (x) + (W ? ρ0)(x)) · T (x) (37)

≤ c (T (x)) + c? (−∇ (F ′(ρ0(x)) + V (x) + (W ? ρ0)(x))) ,

and deduce that

HF,W
V (ρ0) − HF,W

V (ρ1) +
λ+ µ

2
W 2

2 (ρ0, ρ1) −
ν

2
|b(ρ0) − b(ρ1)|2 (38)

≤ H−nPF ,2x·∇W
x·∇V (ρ0) +

∫

Ω
ρ0c

? (−∇ (F ′(ρ0) + V +W ? ρ0))) +
∫

Ω
c(Tx)ρ0 dx.

Finally, use again that T pushes ρ0 forward to ρ1, to rewrite the last integral on the
right hand side of (38) as

∫

Ω c(y)ρ1(y)dy to obtain (16).
Now, set ρ0 = ρ1 := ρV +c in (36). We have that T = I, and equality then holds in (36).
Therefore, equality holds in (16) whenever equality holds in (37), where T (x) = x. This
occurs when (17) is satisfied.
(18) is straightforward when choosing ρ0 := ρ and ρ1 := ρV +c in (16).

3 The General Euclidean Sobolev Inequality

We start with the following general inequality, which can be seen as an extension of the
various Euclidean Sobolev inequalities, since once applied to appropriate functionals F
and c, one gets the Sobolev, the Gagliardo-Nirenberg and the Euclidean p-Log Sobolev
inequalities.

Theorem 3.1 (The General Sobolev Inequality) Under the hypothesis of Theorem 2.1,
assume that V and W are also convex. Then, for any Young function c : IRn → IR, and
any ρ ∈ Pc(Ω) with supp ρ ⊂ Ω and PF (ρ) ∈ W 1,∞(Ω), we have

H
F+nPF , W−2x·∇W

−V ∗(∇V )
(ρ) ≤

∫

Ω
ρc? (−∇ (F ′(ρ) + V +W ? ρ)) dx−HPF ,W (ρV +c)+KV +c, (39)

where ρV +c is the probability density and KV +c is the constant satisfying

F ′(ρV +c) + V + c+W ? ρV +c = KV +c. (40)
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In particular, if V = W = 0, we have

HF+nPF (ρ) ≤
∫

Ω
ρc? (−∇(F ′ ◦ ρ)) dx +Kc, (41)

where Kc is the unique constant determined by the equation

F ′(ρc) + c = Kc and
∫

Ω
ρc = 1. (42)

Proof: This follows immediately from inequality (18) in Theorem 2.1. Indeed, if λ+ν ≥
0, then the term involving the Wasserstein distance can be omitted from the equation,
while if W is convex, then the barycentric term can also be omitted. If V is strictly
convex, then V − x · ∇V = −V ∗(∇V ).
Now if V = W = 0, we obtain the remarkably simple inequality:

HF+nPF (ρ) ≤
∫

Ω
ρc? (−∇(F ′ ◦ ρ)) dx− HPF (ρc) +Kc, (43)

where Kc is the unique constant determined by (42). Finally, we obtain (41) by noting
that HPF (ρc) is always positive.

3.1 Euclidean Log-Sobolev inequalities

The following optimal Euclidean p-Log Sobolev inequality was first established by Beck-
ner in [5] for p = 1, and by Del-Pino and Dolbeault [15] for 1 < p < n. The case
where p > n was established recently and independently by I. Gentil [19] who used the
Prékopa-Leindler inequality and the Hopf-Lax semi-group associated to the Hamilton-
Jacobi equation.

Corollary 3.2 (General Euclidean Log-Sobolev inequality) Let Ω ⊂ IRn be open bounded
and convex, and let c : IRn → IR be a Young functional such that its conjugate c? is p-
homogeneous for some p > 1. Then,

∫

IRn
ρ ln ρ dx ≤ n

p
ln

(

p

nep−1σ
p/n
c

∫

IRn
ρc?

(

−∇ρ
ρ

)

dx

)

, (44)

for all probability densities ρ on IRn, such that supp ρ ⊂ Ω and ρ ∈ W 1,∞(IRn). Here,
σc :=

∫

IRn e−c dx. Moreover, equality holds in (44) if ρ(x) = Kλe
−λqc(x) for some λ > 0,

where Kλ =
(

∫

IRn e−λqc(x) dx
)−1

and q is the conjugate of p ( 1
p

+ 1
q

= 1).

Proof: Use F (x) = x ln(x) and V = W = 0 in (18). Note that PF (x) = x, and

then, HPF (ρ) = 1 for any ρ ∈ Pa(IR
n). So, ρc(x) = e−c(x)

σc
. We then have for ρ ∈

Pa(IR
n) ∩W 1,∞(IRn) such that supp ρ ⊂ Ω,

∫

Ω
ρ ln ρ dx ≤

∫

IRn
ρc?

(

−∇ρ
ρ

)

dx− n− ln
(∫

IRn
e−c(x) dx

)

, (45)
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with equality when ρ = ρc.
Now assume that c? is p-homogeneous and set Γc

ρ =
∫

IRn ρc?
(

−∇ρ
ρ

)

dx. Using

cλ(x) := c(λx) in (45), we get for λ > 0 that

∫

IRn
ρ ln ρ dx ≤

∫

IRn
ρc?

(

−∇ρ
λρ

)

dx + n lnλ− n− ln σc, (46)

for all ρ ∈ Pa(IR
n) satisfying supp ρ ⊂ Ω and ρ ∈ W 1,∞(Ω). Equality holds in (46) if

ρλ(x) =
(

∫

IRn e−λqc(x) dx
)−1

e−λqc(x). Hence

∫

IRn
ρ ln ρ dx ≤ −n− ln σc + inf

λ>0
(Gρ(λ)) ,

where

Gρ(λ) = n ln(λ) +
1

λp

∫

IRn
ρc?

(

−∇ρ
ρ

)

= n ln(λ) +
Γc

ρ

λp
.

The infimum of Gρ(λ) over λ > 0 is attained at λ̄ρ =
(

p
n
Γc

ρ

)1/p
. Hence

∫

IRn
ρ ln ρ dx ≤ Gρ(λ̄ρ) − n− ln(σc)

=
n

p
ln
(

p

n
Γc

ρ

)

+
n

p
− n− ln(σc)

=
n

p
ln

(

p

nep−1σ
p/n
c

Γc
ρ

)

,

for all probability densities ρ on IRn, such that supp ρ ⊂ Ω, and ρ ∈ W 1,∞(IRn).

Corollary 3.3 (Optimal Euclidean p-Log Sobolev inequality)

∫

IRn
| f |p ln(| f |p) dx ≤ n

p
ln
(

Cp

∫

IRn
| ∇f |p dx

)

, (47)

holds for all p ≥ 1, and for all f ∈ W 1,p(IRn) such that ‖ f ‖p = 1, where

Cp :=























(

p
n

) (

p−1
e

)p−1
π− p

2

[

Γ( n
2
+1)

Γ( n
q
+1)

]
p

n

if p > 1,

1
n
√

π

[

Γ(n
2

+ 1)
] 1

n if p = 1,

(48)

and q is the conjugate of p ( 1
p

+ 1
q

= 1).

For p > 1, equality holds in (47) for f(x) = Ke−λq | x−x̄ |q

q for some λ > 0 and x̄ ∈ IRn,

where K =
(

∫

IRn e−(p−1)|λx |q dx
)−1/p

.
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Proof: First assume that p > 1, and set c(x) = (p− 1)| x |q and ρ = | f |p in (44), where

f ∈ C∞
c (IRn) and ‖ f ‖p = 1. We have that c?(x) = | x |p

pp , and then,
∫

IRn ρc∗
(

−∇ρ
ρ

)

dx =
∫

IRn | ∇f |p dx. Therefore, (44) reads as

∫

IRn
| f |p ln(| f |p) dx ≤ n

p
ln

(

p

nep−1σ
p/n
c

∫

IRn
| ∇f |p dx

)

. (49)

Now, it suffices to note that

σc :=
∫

IRn
e−(p−1)| x |q dx =

π
n
2 Γ
(

n
q

+ 1
)

(p− 1)
n
q Γ
(

n
2

+ 1
) . (50)

To prove the case where p = 1, it is sufficient to apply the above to pε = 1 + ε for
some arbitrary ε > 0. Note that

Cpε =
(

1 + ε

n

)(

ε

e

)ε

π− 1+ε
2

[

Γ(n
2

+ 1)

Γ( nε
1+ε

+ 1)

]
1+ε
n

,

so that when ε go to 0, we have

lim
ε→0

Cpε
=

1

n
√
π

[

Γ
(

n

2
+ 1

)] 1
n

= C1.

3.2 Sobolev and Gagliardo-Nirenberg inequalities

Corollary 3.4 (Gagliardo-Nirenberg inequalities) Let 1 < p < n and r ∈
(

0, np
n−p

)

such

that r 6= p. Set γ := 1
r

+ 1
q
, where 1

p
+ 1

q
= 1. Then, for any f ∈ W 1,p(IRn) we have

‖f‖r ≤ C(p, r)‖∇f‖θ
p ‖f‖1−θ

rγ , (51)

where θ is given by
1

r
=

θ

p∗
+

1 − θ

rγ
, (52)

p∗ = np
n−p

and where the best constant C(p, r) > 0 can be obtained by scaling.

Proof: Let F (x) = xγ

γ−1
, where 1 6= γ > 1 − 1

n
, which follows from the fact that

p 6= r ∈
(

0, np
n−p

)

. For this value of γ, the function F satisfies the conditions of Theorem

3.1. Let c(x) = rγ
q
| x |q so that c∗(x) = 1

p(rγ)p−1 | x |p, and set V = W = 0. Inequality (18)

then gives for all f ∈ C∞
c (IRn) such that ‖ f ‖r = 1,

(

1

γ − 1
+ n

)

∫

IRn
| f |rγ ≤ rγ

p

∫

IRn
| ∇f |p −HPF (ρ∞) + C∞. (53)

where ρ∞ = hr
∞ satisfies

−∇h∞(x) = x| x |q−2h
r
p (x) a.e., (54)
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and where C∞ insures that
∫

hr
∞ = 1. The constants on the right hand side of (53) are

not easy to calculate, so one can obtain θ and the best constant by a standard scaling
procedure. Namely, write (53) as

rγ

p

‖∇f‖p
p

‖f‖p

r

−
(

1

γ − 1
+ n

) ‖f‖rγ
rγ

‖f‖rγ

r

≥ HPF (ρ∞) − C∞ =: C, (55)

for some constant C. Then apply (55) to fλ(x) = f(λx) for λ > 0. A minimization over
λ gives the required constant.

The limiting case where r is the critical Sobolev exponent r = p∗ = np
n−p

(and then

γ = 1 − 1
n
) leads to the Sobolev inequalities:

Corollary 3.5 (Sobolev inequalities) If 1 < p < n, then for any f ∈ W 1,p(IRn),

‖ f ‖p∗ ≤ C(p, n)‖∇f ‖p (56)

for some constant C(p, n) > 0.

Proof: It follows directly from (53), by using γ = 1 − 1
n

and r = p∗. Note that the
scaling argument cannot be used here to compute the best constant C(p, n) in (56), since
‖∇fλ ‖p

p = λp−n‖∇f ‖p
p and ‖ fλ ‖p

r = λp−n‖ f ‖p
r scale the same way in (55). Instead,

one can proceed directly from (53) to have that

‖ f ‖p∗ = 1 ≤
(

rγ

p [HPF (ρ∞) − C∞]

)1/p

‖∇f ‖p =

(

p∗(n− 1)

np [HPF (ρ∞) − C∞]

)1/p

‖∇f ‖p,

which shows that

C(p, n) =

(

p∗(n− 1)

np [HPF (ρ∞) − C∞]

)1/p

, (57)

where ρ∞ = hp∗

∞ =
(

p∗

nq
| x |q − C∞

n−1

)−n
is obtained from (54), and C∞ can be found using

that ρ∞ is a probability density,

C∞ = (1 − n)





∫

IRn

(

p∗

nq
| x |q + 1

)−n

dx





p/n

. (58)

4 The General Logarithmic Sobolev Inequality

In this section, we consider the case where c is a quadratic Young function of the form
c(x) := cσ(x) = 1

2σ
| x |2 for σ > 0. In this case, our basic inequality (1) simplifies

considerably to yield Theorem 4.1 below, which relates the total energy of two arbitrary
probability densities, their Wasserstein distance, their barycenters and their entropy
production functional. This gives yet another remarkable extension of various powerful
inequalities by Gross [20], Bakry-Emery[4], Talagrand [29], Otto-Villani [27], Cordero[13]
and others.
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Theorem 4.1 (General Logarithmic Sobolev Inequality) Under the hypothesis of Theo-
rem 2.1, we have for all ρ0, ρ1 ∈ Pc(Ω), satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω),
and any σ > 0,

HF,W
U (ρ0|ρ1) +

1

2
(µ+ ν − 1

σ
)W 2

2 (ρ0, ρ1) −
ν

2
|b(ρ0) − b(ρ1)|2 ≤

σ

2
I2(ρ0|ρU). (59)

Proof: Apply inequality (16) with a quadratic Young functional c(x) = 1
2σ
| x |2, V =

U − c and λ = µ− 1
σ

to obtain

HF,W
U (ρ0|ρ1) +

1

2
(µ+ ν − 1

σ
)W 2

2 (ρ0, ρ1) −
ν

2
|b(ρ0) − b(ρ1)|2 (60)

≤ H−nPF ,2x·∇W
c+∇(U−c)·x (ρ0) +

∫

Ω
ρ0c

∗ (−∇ (F ′(ρ0) + U − c+W ? ρ0)) dx.

Now we show the identity:

Ic∗σ(ρ0|ρV ) +H
−nPF ,2x·∇W
cσ+x·∇V (ρ0) = Ic∗σ(ρ0|ρV +cσ

) =
σ

2
I2(ρ0|ρV +cσ

).

Indeed, by elementary computations, we have
∫

Ω
ρ0c

∗ (−∇ (F ′ ◦ ρ0 + U − c+W ? ρ0)) dx

=
σ

2

∫

Ω
ρ0

∣

∣

∣∇ (F ′(ρ0) + U +W ? ρ0)
∣

∣

∣

2
dx +

1

2σ

∫

Ω
ρ0| x |2 dx−

∫

Ω
ρ0x · ∇ (F ′(ρ0)) dx

−
∫

Ω
ρ0x · ∇U dx−

∫

Ω
ρ0x · ∇(W ? ρ0) dx,

and

H−nPF ,2x·∇W
c+∇(U−c)·x (ρ0) = −HnPF (ρ0)+

∫

Ω
ρ0x ·∇(W ?ρ0) dx+

∫

Ω
ρ0x ·∇U dx− 1

2σ

∫

Ω
| x |2ρ0 dx.

By combining the last 2 identities, we can rewrite the right hand side of (60) as

H−nPF ,2x·∇W
c+∇(U−c)·x (ρ0) +

∫

Ω
ρ0c

∗ (−∇(F ′ ◦ ρ0 + U − c+W ? ρ0)) dx

=
σ

2

∫

Ω
ρ0| ∇ (F ′(ρ0) + U +W ? ρ0) |2 dx−

∫

Ω
ρ0x · ∇ (F ′ ◦ ρ0) dx−

∫

Ω
nPF (ρ0) dx

=
σ

2

∫

Ω
ρ0| ∇ (F ′(ρ0) + U +W ? ρ0) |2dx+

∫

Ω
div (ρ0x)F

′(ρ0) dx−
∫

Ω
nPF (ρ0) dx

=
σ

2

∫

Ω
ρ0

∣

∣

∣∇ (F ′(ρ0) + U +W ? ρ0)
∣

∣

∣

2
dx + n

∫

Ω
ρ0F

′(ρ0) dx+
∫

Ω
x · ∇F (ρ0) dx

−
∫

Ω
nPF (ρ0) dx

=
σ

2

∫

Ω
ρ0

∣

∣

∣∇ (F ′(ρ0) + U +W ? ρ0)
∣

∣

∣

2
dx+

∫

Ω
x · ∇F (ρ0) dx+ n

∫

Ω
F ◦ ρ0 dx

=
σ

2

∫

Ω
ρ0

∣

∣

∣∇ (F ′(ρ0) + U +W ? ρ0)
∣

∣

∣

2
dx. (61)

Inserting (61) into (60), we conclude (59).
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4.1 HWBI inequalities

We now establish the HWBI inequality which extends the HWI inequality established
in [27] and [10], with the additional “B” referring here to the new barycentric term.

Theorem 4.2 (HWBI inequality) Under the hypothesis of Theorem 2.1, we have for
all ρ0, ρ1 ∈ Pc(Ω), satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω),

HF,W
U (ρ0|ρ1) ≤ W2(ρ0, ρ1)

√

I2(ρ0|ρU) − µ+ ν

2
W 2

2 (ρ0, ρ1) +
ν

2
|b(ρ0) − b(ρ1)|2. (62)

Proof: Rewrite (59) as

HF,W
U (ρ0|ρ1)+

µ+ ν

2
W 2

2 (ρ0, ρ1)−
ν

2
|b(ρ0)−b(ρ1)|2 ≤

1

2σ
W 2

2 (ρ0, ρ1)+
σ

2
I2(ρ0|ρU). (63)

Now minimize the right hand side of (63) over σ > 0. The minimum is obviously

achieved at σ̄ = W2(ρ0,ρ1)√
I2(ρ0|ρU )

. This yields (62).

Setting W = 0 (and then ν = 0) in Theorem 4.2, we obtain in particular, the following
HWI inequality first established by Otto-Villani [27] in the case of the classical entropy
F (x) = x lnx, and extended later on, for generalized entropy functions F by Carillo,
McCann and Villani in [10].

Corollary 4.3 (HWI inequalities [10]) Under the hypothesis on Ω and F in Theorem
2.1, let U : IRn → IR be a C2-function with D2U ≥ µI, where µ ∈ IR. Then we have for
all ρ0, ρ1 ∈ Pc(Ω) satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω),

HF
U(ρ0|ρ1) ≤ W2(ρ0, ρ1)

√

I(ρ0|ρU) − µ

2
W 2

2 (ρ0, ρ1). (64)

If U + W is uniformly convex (i.e., µ + ν > 0) inequality (59) yields the following
extensions of the Log-Sobolev inequality:

Corollary 4.4 (Log-Sobolev inequalities with interaction potentials)
In addition to the hypothesis on Ω, F , U and W in Theorem 2.1, assume µ + ν > 0.
Then for all ρ0, ρ1 ∈ Pc(Ω) satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω), we have

HF,W
U (ρ0|ρ1) −

ν

2
|b(ρ0) − b(ρ1)|2 ≤

1

2(µ+ ν)
I2(ρ0|ρU). (65)

In particular, if b(ρ0) = b(ρ1), we have that

HF,W
U (ρ0|ρ1) ≤

1

2(µ+ ν)
I2(ρ0|ρU). (66)

Furthermore, if W is convex, then we have the following inequality, established in [10]

HF,W
U (ρ0|ρ1) ≤

1

2µ
I2(ρ0|ρU). (67)
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Proof: (65) follows easily from (59) by choosing σ = 1
µ+ν

, and (67) follows from (65),
using ν = 0 because W is convex.
In particular, setting W = 0 in Corollary 4.4, one obtains the following generalized
Log-Sobolev inequality obtained in [11], and in [14] for generalized cost functions.

Corollary 4.5 (Generalized Log-Sobolev inequalities [11], [14])
Assume that Ω and F satisfy the assumptions in Theorem 2.1, and that U : IRn → IR is a
C2- uniformly convex function with D2U ≥ µI, where µ > 0. Then for all ρ0, ρ1 ∈ Pc(Ω)
satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω), we have

HF
U(ρ0|ρ1) ≤

1

2µ
I2(ρ0|ρU). (68)

One can also deduce the following generalization of Talagrand’s inequality. We note
in particular that when W = 0, the result below is obtained previously by Blower [6],
Otto-Villani [27] and Bobkov-Ledoux [7] for the Tsallis entropy F (x) = x ln x, and by
Carillo-McCann-Villani [10] for generalized entropy functions F .

Corollary 4.6 (Generalized Talagrand Inequality with interaction potentials)
In addition to the hypothesis on Ω, F , U and W in Theorem 2.1, assume µ + ν > 0.
Then for all probability densities ρ on Ω, we have

ν + µ

2
W 2

2 (ρ, ρU) − ν

2
|b(ρ) − b(ρU)|2 ≤ HF,W

U (ρ|ρU). (69)

In particular, if b(ρ) = b(ρU ), we have that

W2(ρ, ρU) ≤

√

√

√

√

2HF,W
U (ρ|ρU)

µ+ ν
. (70)

Furthermore, if W is convex, then the following inequality established in [10] holds:

W2(ρ, ρU) ≤

√

√

√

√

2HF,W
U (ρ|ρU)

µ
. (71)

Proof: (69) follows from (59) if we use ρ0 := ρU , ρ1 := ρ, notice that I2(ρU |ρU) = 0, and
then let σ go to ∞. (71) follows from (69), where we use ν = 0 because W is convex.

4.2 Inequalities with Boltzmann reference measures

To each confinement potential U : IRn → IR with D2U ≥ µI where µ ∈ IR, one associates
a Boltzmann reference measure denoted by ρU which is the normalized e−U

σU
, where

σU =
∫

IRn e−U dx is assumed to be finite. To deduce inequalities involving such reference
measures, we can apply Proposition 4.1 with F (x) = x ln x and W = 0 to get Gross’
Log-Sobolev inequality (when U(x) = 1

2
|x|2) and its extension by Bakry and Emery in

[4] (when U uniformly convex). We first state the following HWI-type inequality from
which we deduce Otto-Villani’s HWI inequality [27], and the Log-Sobolev inequality of
Gross [20] and Bakry-Emery [4].
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Corollary 4.7 Let U : IRn → IR be a C2-function with D2U ≥ µI where µ ∈ IR.
Then for any σ > 0, the following holds for any nonnegative function f such that
fρU ∈ W 1,∞(IRn) and

∫

IRn fρU dx = 1:

∫

IRn
f ln(f) ρUdx +

1

2
(µ− 1

σ
)W 2

2 (fρU , ρU) ≤ σ

2

∫

IRn

| ∇f |2
f

ρUdx. (72)

Proof: First assume that f has compact support, and set F (x) = x ln x, ρ0 = fρU , ρ1 =
ρU and W = 0 in (59). We have that

HF
U (fρU |ρU) +

1

2
(µ− 1

σ
)W 2

2 (fρU , ρU) ≤ σ

2

∫

IRn

∣

∣

∣

∇(fρU)

fρU
+ U

∣

∣

∣

2
fρU dx. (73)

By direct computations,
∇(fρU)

fρU
=

∇f
f

−∇U, (74)

and

HF,W
U (fρU |ρU) ≤

∫

IRn
[fρU ln(fρU) + UfρU − ρU ln ρU − UρU ] dx (75)

=
∫

IRn
(fρU ln f) dx+ ln σU

∫

IRn
(ρU − fρU) dx

=
∫

IRn
f ln(f)ρU dx.

Combining (73) - (75), we get (72). We finish the proof using a standard approximation
argument.

Corollary 4.8 (Otto-Villani’s HWI inequality [27]) Let U : IRn → IR be a C2-uniformly
convex function with D2U ≥ µI, where µ > 0. Then, for any nonnegative function f

such that fρU ∈ W 1,∞(IRn) and
∫

IRn fρU dx = 1,

∫

IRn
f ln(f)ρU dx ≤ W2(ρU , fρU)

√

I(fρU |ρU) − µ

2
W 2

2 (fρU , ρU), (76)

where

I(fρU |ρU) =
∫

IRn

| ∇f |2
f

ρU dx.

Proof: It is similar to the proof of Theorem 4.2. Rewrite (72) as

∫

IRn
f ln(f)ρU dx+

µ

2
W 2

2 (fρU , ρU) ≤ µ

2σ
W 2

2 (fρU , ρU) +
σ

2
I(fρU |ρU),

and show that the minimum over σ > 0 of the right hand side is attained at σ̄ =
W2(fρU ,ρU )√

I(fρU |ρU )
.

Setting f := g2 and σ := 1
µ

in (76), one obtains the following extension of Gross’ [20]

Log-Sobolev inequality first established by Bakry and Emery in [4].
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Corollary 4.9 (Original Log Sobolev inequality [4], [20]) Let U : IRn → IR be a C2-
uniformly convex function with D2U ≥ µI where µ > 0. Then, for any function g such
that g2ρU ∈ W 1,∞(IRn) and

∫

IRn g2ρU dx = 1, we have

∫

IRn
g2 ln(g2) ρUdx ≤ 2

µ

∫

IRn
| ∇g |2 ρUdx. (77)

As pointed out by Rothaus in [28], the above Log-Sobolev inequality implies the Poincaré’s
inequality.

Corollary 4.10 (Poincaré’s inequality) Let U : IRn → IR be a C2-uniformly convex
function with D2U ≥ µI where µ > 0. Then, for any function f such that fρU ∈
W 1,∞(IRn) and

∫

IRn fρU dx = 0, we have

∫

IRn
f 2ρU dx ≤ 1

µ

∫

IRn
| ∇f |2ρU dx. (78)

Proof: From (77), we have that

∫

IRn
fε ln(fε) ρU dx ≤ 1

2µ

∫

IRn

| ∇fε |2
fε

ρU dx, (79)

where fε = 1 + εf for some ε > 0. Using that
∫

IRn fρU dx = 0, we have for small ε,

∫

Rn
fε ln(fε)ρU dx =

ε2

2

∫

IRn
f 2ρU dx + o(ε3), (80)

and
∫

IRn

| ∇fε |2
fε

ρU dx = ε2
∫

IRn
| ∇f |2ρU dx + o(ε3). (81)

We combine (79) - (81) to have that

∫

IRn
f 2ρU dx ≤ 1

µ

∫

IRn
| ∇f |2ρU dx + o(ε). (82)

We let ε go to 0 in (82) to conclude (78).

If we apply Corollary 4.6 to F (x) = x ln x whenW = 0, we obtain the following extension
of Talagrand’s inequality established by Otto and Villani in [27].

Corollary 4.11 (Original Talagrand’s inequality [29], [27]) Let U : IRn → IR be a C2-
uniformly convex function with D2U ≥ µI where µ > 0. Then, for any nonnegative
function f such that

∫

IRn fρU dx = 1, we have

W2(fρU , ρU) ≤
√

2

µ

∫

IRn
f ln(f)ρU dx. (83)
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In particular, if f = IIB

ρU (B)
for some measurable subset B of IRn, where dγ(x) = ρU(x)dx

and IIB is the characteristic function of B, one obtains the following inequality in the
concentration of measures in Gauss space, first proved by Talagrand building on an
argument by Marton (see details in Villani [30]).

Corollary 4.12 (Concentration of measure inequality) Let U : IRn → IR be a C2-
uniformly convex function with D2U ≥ µI where µ > 0. Then, for any ε-neighborhood
Bε of a measurable set B in IRn, we have

γ(Bε) ≥ 1 − e
−µ

2

(

ε−
√

2
µ

ln( 1
γ(B))

)2

, (84)

where ε ≥
√

2
µ

ln
(

1
γ(B)

)

.

Proof: Using f = fB = IIB

γ(B)
in (83), we have that

W2(fBρU , ρU) ≤
√

√

√

√

2

µ
ln

(

1

γ(B)

)

,

and then, we obtain from the triangle inequality that

W2(fBρU , fIRn\Bε
ρU) ≤

√

√

√

√

2

µ
ln

(

1

γ(B)

)

+

√

√

√

√

2

µ
ln

(

1

1 − γ(Bε)

)

. (85)

But since | x− y | ≥ ε for all (x, y) ∈ B × (IRn\Bε), we have that

W2(fBρU , ρU) ≥ ε. (86)

We combine (85) and (86) to deduce that

ln

(

1

1 − γ(IRn\Bε)

)

≥ µ

2



ε−
√

√

√

√

2

µ
ln

(

1

γ(B)

)





2

,

which leads to (84).

5 Trends to equilibrium

We use Corollary 4.5 and Corollary 4.6 to recover rates of convergence for solutions to
equation











∂ρ
∂t

= div {ρ∇ (F ′(ρ) + V +W ? ρ)} in (0,∞) × IRn

ρ(t = 0) = ρ0 in {0} × IRn,

(87)
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recently shown by Carillo, McCann and Villani in [10]. Here we consider the case where
V +W is uniformly convex and W convex, and the case when only V +W is uniformly
convex but the barycenter b (ρ(t)) of any solution ρ(t, x) of (87) is invariant in t. For a
background and other cases of convergence to equilibrium for this equation, we refer to
[10] and the references therein.

Corollary 5.1 (Trend to equilibrium) Let F : [0,∞) → IR be strictly convex, differ-

entiable on (0,∞) and satisfies F (0) = 0, limx→∞
F (x)

x
= ∞, and x 7→ xnF (x−n) is

convex and non-increasing. Let V, W : IRn → [0,∞) be respectively C2-confinement and
interaction potentials with D2V ≥ λI and D2W ≥ νI, where λ, ν ∈ IR. Assume that
the initial probability density ρ0 has finite total energy. Then

1. If V +W is uniformly convex (i.e., λ+ν > 0) and W is convex (i.e. ν ≥ 0), then,
for any solution ρ of (87), such that HF,W

V (ρ(t)) <∞, we have:

HF,W
V (ρ(t)|ρV ) ≤ e−2λtHF,W

V (ρ0|ρV ), (88)

and

W2 (ρ(t), ρV ) ≤ e−λt

√

2HF,W
V (ρ0|ρV )

λ
. (89)

2. If V +W is uniformly convex (i.e., λ+ν > 0) and if we assume that the barycenter
b (ρ(t)) of any solution ρ(t, x) of (87) is invariant in t, then, for any solution ρ of
(87) such that HF,W

V (ρ(t)) <∞, we have:

HF,W
V (ρ(t)|ρV ) ≤ e−2(λ+ν)tHF,W

V (ρ0|ρV ), (90)

and

W2 (ρ(t), ρV ) ≤ e−2(λ+ν)t

√

√

√

√

2HF,W
V (ρ0|ρV )

λ+ ν
. (91)

Proof: Under the assumptions on F , V and W in Corollary 5.1, it is known (see [10],
and references therein) that the total energy HF,W

V – which is a Lyapunov functional
associated with (87) – has a unique minimizer ρV defined by

ρV ∇ (F ′(ρ
V
) + V +W ? ρ

V
) = 0 a.e.

Now, let ρ be a – smooth – solution of (87). We have the following energy dissipation
equation

d

dt
HF,W

V (ρ(t)|ρV ) = −I2 (ρ(t)|ρV ) . (92)

Combining (92) with (67), we have that

d

dt
HF,W

V (ρ(t)|ρV ) ≤ −2λHF,W
V (ρ(t)|ρV ) . (93)
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We integrate (93) over [0, t] to conclude (88). (89) follows directly from (71) and (88).
To prove (90), we use (92) and (66) to have that

d

dt
HF,W

V (ρ(t)|ρV ) ≤ −2(λ + ν)HF,W
V (ρ(t)|ρV ) . (94)

We integrate (94) over [0, t] to conclude (90). As before, (91) is a consequence of (90)
and (70).

We now apply Corollary 5.1 to obtain rates of convergence to equilibrium for some
equations of the form (87) studied in the literature by many authors.

• If W = 0 and F (x) = x ln x in which case (87) is the linear Fokker-Planck equation
∂ρ
∂t

= ∆ρ + div(ρ∇V ), Corollary 5.1 gives an exponential decay in relative entropy of

solutions of this equation to the Gaussian density ρV = e−V

σV
, σV =

∫

IRn e−V dx, at the

rate 2λ when D2V ≥ λI for some λ > 0, and an exponential decay in the Wasserstein
distance, at the rate λ.

• If W = 0, F (x) = xm

m−1
where 1 6= m ≥ 1 − 1

n
, and V (x) = λ

| x |2
2

for some λ > 0,
in which case (87) is the rescaled porous medium equation (m > 1), or fast diffusion
equation (1 − 1

n
≤ m < 1), that is ∂ρ

∂t
= ∆ρm + div(λxρ), Corollary 5.1 gives an

exponential decay in relative entropy of solutions of this equation to the Barenblatt-

Prattle profile ρV (x) =
[

(

C + λ(1−m)
2m

| x |2
)

1
m−1

]+

(where C > 0 is such that
∫

IRn ρ(x) dx =

1) at the rate 2λ, and an exponential decay in the Wasserstein distance at the rate λ.

6 The Energy-Entropy Duality Formula

In this section, we apply Theorem 2.1 with V = W = 0, to obtain the following intriguing
duality formula.

Proposition 6.1 (The Energy-Entropy Duality Formula) Under the hypothesis of The-
orem 2.1, we have for any ρ0, ρ1 ∈ Pc(Ω) satisfying supp ρ0 ⊂ Ω and PF (ρ0) ∈ W 1,∞(Ω),
and any Young function c : IRn → IR:

−HF
c (ρ1) ≤ −HF+nPF (ρ0) +

∫

Ω
ρ0c

? (−∇(F ′ ◦ ρ0)) dx. (95)

Moreover, equality holds whenever ρ0 = ρ1 = ρc where ρc is a probability density on Ω
such that ∇(F ′(ρc) + c) = 0 a.e.

Motivated by the recent work of Cordero-Nazaret-Villani [12], we show that this in-
equality points to a remarkable correspondence between ground state solutions of some
quasilinear PDEs or semi-linear equations which appear as Euler-Lagrange equations
of the entropy production functionals and stationary solutions of Fokker-Planck type
equations.
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Corollary 6.1 Under the hypothesis of Theorem 2.1, let ψ : IR → [0,∞) differentiable

be chosen in such a way that ψ(0) = 0 and |ψ 1
p (F ′ ◦ ψ)′ | = K where p > 1, and K

is chosen to be 1 for simplicity. Then, for any Young function c with p-homogeneous
Legendre transform c∗, we have the following inequality:

sup{−
∫

Ω
F (ρ)+cρ; ρ ∈ Pa(Ω)} ≤ inf{

∫

Ω
c∗(−∇f)−GF ◦ψ(f); f ∈ C∞

0 (Ω),
∫

Ω
ψ(f) = 1}

(96)
where GF (x) := (1 − n)F (x) + nxF ′(x).
Furthermore, equality holds in (96) if there exists f̄ (and ρ̄ = ψ(f̄)) that satisfies

−(F ′ ◦ ψ)′(f̄)∇f̄(x) = ∇c(x) a.e. (97)

Moreover, f̄ solves

div{∇c∗(−∇f)} − (GF ◦ ψ)′(f) = λψ′(f) in Ω
∇c∗(−∇f) · ν = 0 on ∂Ω,

(98)

for some λ ∈ IR, while ρ̄ is a stationary solution of

∂ρ
∂t

= div{ρ∇ (F ′(ρ) + V )} in (0,∞) × Ω
ρ∇ (F ′(ρ) + V ) · ν = 0 on (0,∞) × ∂Ω.

(99)

Proof: Assume that c∗ is p-homogeneous, and let Q′′(x) = x
1
qF ′′(x) where q is the

conjugate of p. Let

J(ρ) := −
∫

Ω
[F (ρ(y)) + c(y)ρ(y)]dy

and
J̃(ρ) := −

∫

Ω
(F + nPF )(ρ(x))dx +

∫

Ω
c∗(−∇(Q′(ρ(x)))dx.

Equation (16) (where we use V = W = 0, and then λ = ν = 0) then becomes

J(ρ1) ≤ J̃(ρ0) (100)

for all probability densities ρ0, ρ1 on Ω such that supp ρ0 ⊂ Ω and PF (ρ0) ∈ W 1,∞(Ω).
If ρ̄ satisfies

−∇(F ′(ρ̄(x))) = ∇c(x) a.e.,

then equality holds in (100), and ρ̄ is an extremal of the variational problems

sup{J(ρ); ρ ∈ Pa(Ω)} = inf{J̃(ρ); ρ ∈ Pa(Ω), supp ρ ⊂ Ω, PF (ρ) ∈ W 1,∞(Ω)}.

In particular, ρ̄ is a solution of

div{ρ∇(F ′(ρ) + c)} = 0 in Ω
ρ∇(F ′(ρ) + c) · ν = 0 on ∂Ω.

(101)
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Suppose now ψ : IR → [0,∞) differentiable, ψ(0) = 0 and that f̄ ∈ C∞
0 (Ω) satisfies

−(F ′ ◦ψ)′(f̄)∇f̄(x) = ∇c(x) a.e. Then equality holds in (100), and f̄ and ρ̄ = ψ(f̄) are
extremals of the following variational problems

inf{I(f); f ∈ C∞
0 (Ω),

∫

Ω
ψ(f) = 1} = sup{J(ρ); ρ ∈ Pa(Ω)}

where

I(f) = J̃(ψ(f)) = −
∫

Ω
[F ◦ ψ + nPF ◦ ψ](f) +

∫

Ω
c∗(−∇(Q′ ◦ ψ(f))).

If now ψ is such that |ψ 1
p (F ′ ◦ ψ)′ | = 1, then | (Q′ ◦ ψ)′ | = 1 and

I(f) = −
∫

Ω
[F ◦ ψ + nPF ◦ ψ](f) +

∫

Ω
c∗(−∇f)),

because c∗ is p-homogeneous. This proves (96). The Euler-Lagrange equation of the
variational problem

inf
{

∫

Ω
c∗(−∇(f)) − [F ◦ ψ + nPF ◦ ψ](f);

∫

Ω
ψ(f) = 1

}

reads as
div{∇c∗(−∇f)} − (GF ◦ ψ)′(f) = λψ′(f) in Ω
∇c∗(−∇f) · ν = 0 on ∂Ω

(102)

where λ ∈ IR is a Lagrange multiplier, and G(x) = (1− n)F (x) + nxF ′(x). This proves
(98). To prove that the maximizer ρ̄ of

sup{−
∫

Ω
(F (ρ) + cρ) dx; ρ ∈ Pa(Ω)}

is a stationary solution of (99), we refer to [21] and [25].
Now, we apply Corollary 6.1 to the functions F (x) = x ln x, ψ(x) = | x |p and c(x) =

(p− 1)|µx |q, with µ > 0 and c∗(x) = 1
p

∣

∣

∣

x
µ

∣

∣

∣

p
and 1

p
+ 1

q
= 1, to derive a duality between

stationary solutions of Fokker-Planck equations, and ground state solutions of some

semi-linear equations. We note here that the condition |ψ 1
p (F ′ ◦ ψ) | = K holds for

K = p. We obtain the following:

Corollary 6.2 Let p > 1 and let q be its conjugate ( 1
p
+ 1

q
= 1). For all f ∈ W 1,p(IRn),

such that ‖ f ‖p = 1, any probability density ρ such that
∫

IRn ρ(x)|x|qdx < ∞, and any
µ > 0, we have

Jµ(ρ) ≤ Iµ(f), (103)

where
Jµ(ρ) := −

∫

IRn
ρ ln (ρ) dy − (p− 1)

∫

IRn
|µy |qρ(y) dy,

and

Iµ(f) := −
∫

IRn
| f |p ln (| f |p) +

∫

IRn

∣

∣

∣

∇f
µ

∣

∣

∣

p − n.
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Furthermore, if h ∈ W 1,p(IRn) is such that h ≥ 0, ‖ h ‖p = 1, and

∇h(x) = −µqx| x |q−2h(x) a.e.,

then
Jµ(h

p) = Iµ(h).

Therefore, h (resp., ρ = hp) is an extremum of the variational problem:

sup{ Jµ(ρ) : ρ ∈ W 1,1(IRn), ‖ ρ ‖1 = 1} = inf{ Iµ(f) : f ∈ W 1,p(IRn), ‖ f ‖p = 1}.

It follows that h satisfies the Euler-Lagrange equation corresponding to the constraint
minimization problem, i.e., h is a solution of

µ−p∆pf + pf | f |p−2 ln(| f |) = λf | f |p−2, (104)

where λ is a Lagrange multiplier. On the other hand, ρ = hp is a stationary solution of
the Fokker-Planck equation:

∂u

∂t
= ∆u+ div(pµq|x|q−2xu). (105)

We can also apply Corollary 6.1 to recover the duality associated to the Gagliardo-
Nirenberg inequalities obtained recently in [12].

Corollary 6.3 Let 1 < p < n, and r ∈
(

0, np
n−p

]

such that r 6= p. Set γ := 1
r

+ 1
q
, where

1
p

+ 1
q

= 1. Then, for f ∈ W 1,p(IRn) such that ‖ f ‖r = 1, for any probability density ρ
and for all µ > 0, we have

Jµ(ρ) ≤ Iµ(f) (106)

where

Jµ(ρ) := − 1

γ − 1

∫

IRn
ργ − rγµq

q

∫

IRn
| y |qρ(y)(y) dy,

and

Iµ(f) := −
(

1

γ − 1
+ n

)

∫

IRn
| f |rγ +

rγ

pµp

∫

IRn
| ∇f |p.

Furthermore, if h ∈ W 1,p(IRn) is such that h ≥ 0, ‖ h ‖r = 1, and

∇h(x) = −µqx| x |q−2h
r
p (x) a.e.,

then
Jµ(hr) = Iµ(h).

Therefore, h (resp., ρ = hr) is an extremum of the variational problems

sup{ Jµ(ρ) : ρ ∈ W 1,1(IRn), ‖ ρ ‖1 = 1} = inf{ Iµ(f) : f ∈ W 1,p(IRn), ‖ f ‖r = 1}.
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Proof: Again, the proof follows from Corollary 6.1, by using now ψ(x) = | x |r and

F (x) = xγ

γ−1
, where 1 6= γ ≥ 1 − 1

n
, which follows from the fact that p 6= r ∈

(

0, np
n−p

]

.
Indeed, for this value of γ, the function F satisfies the conditions of Corollary 6.1. The

Young function is now c(x) = rγ
q
|µx |q, that is, c∗(x) = 1

p(rγ)p−1

∣

∣

∣

x
µ

∣

∣

∣

p
, and the condition

|ψ 1
p (F ′ ◦ ψ)′ | = K holds with K = rγ.

Moreover, if h ≥ 0 satisfies (97), which is here,

−∇h(x) = µqx| x |q−2h
r
p (x) a.e.,

then h is extremal in the minimization problem defined in Corollary 6.3.
As above, we also note that h satisfies the Euler-Lagrange equation corresponding to
the constraint minimization problem, that is, h is a solution of

µ−p∆pf +

(

1

γ − 1
+ n

)

f | f |rγ−2 = λf | f |r−2, (107)

where λ is a Lagrange multiplier. On the other hand, ρ = hr is a stationary solution of
the evolution equation:

∂u

∂t
= ∆uγ + div(rγµq|x|q−2xu). (108)

Example: In particular, when µ = 1, p = 2, γ = 1 − 1
n

and then r = 2∗ = 2n
n−2

is the
critical Sobolev exponent, then Corollary 6.3 yields a duality between solutions of (107),
which here the Yamabe equation:

−∆f = λf | f |2∗−2,

(where λ is the Lagrange multiplier due to the constraint ‖ f ‖2∗ = 1), and stationary
solutions of (108), which is here the rescaled fast diffusion equation:

∂u

∂t
= ∆u1− 1

n + div
(

2n− 2

n− 2
xu

)

.
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