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Abstract

Using the Monge-Kantorovich theory of mass transport, we establish an inequality for
the relative total energy – internal, potential and interactive – of two arbitrary probabil-
ity densities, their Wasserstein distance, their barycenters and their entropy production
functional. This inequality is remarkably encompassing as it implies most known geo-
metrical – Gaussian and Euclidean – inequalities as well as new ones, while allowing a
direct and unified way for computing best constants and extremals. As expected, such
inequalities also lead to exponential rates of convergence to equilibria for solutions of
Fokker-Planck and McKean-Vlasov type equations. The proposed inequality also leads
to a remarkable correspondence between ground state solutions of certain quasilinear
(or semi-linear) equations and stationary solutions of (non-linear) Fokker-Planck type
equations

The article is written in a self-contained fashion as it offers a streamlined, unified and
compact approach to a substantial number of inequalities originating in disparate areas
of analysis and geometry. Some of the ideas presented here are known to the experts and
may already be in the literature. They are included for the same pedagogical reasons
that motivated the survey style of the paper.
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1 Introduction

The recent advances in the Monge-Kantorovich theory of mass transport have – among
other things – led to new and quite natural proofs for a wide range of geometric inequal-
ities. Most notable are McCann’s generalization of the Brunn-Minkowski’s inequal-
ity [21], Otto-Villani’s [24] extension of the Log Sobolev inequality of Gross [18] and
Bakry-Emery [2], as well as Cordero-Nazaret-Villani’s proof of the Gagliardo-Nirenberg
inequalities [11].

While this paper continues in this spirit, we however propose here a basic framework
– already present in McCann’s thesis [20] – to which most geometric inequalities belong,
and a general inequality from which most of them follow. Besides the obvious peda-
gogical relevance of a streamlining approach, we find it interesting and intriguing that
most of these inequalities appear as different manifestations of one basic principle in
the theory of interacting gases that compares the different types of – internal, potential
and interactive – energies of two states of a system after one is transported “at minimal
cost” into another.

The main idea is to try to describe the evolution of a generalized energy functional
along an optimal transport that takes one configuration to another, taking into account
the – relative – entropy production functional, the transport cost (Wasserstein distance),
as well as their centres of mass. Once this general comparison principle is established,
then various – new and old – inequalities follow by simply considering different examples
of – admissible – internal energies, of confinement and interactive potentials. Here is
our framework:

Let F : [0,∞) → IR be a differentiable function on (0,∞), V and W be C2-real
valued functions on IRn and let Ω ⊂ IRn be open and convex. The set of probability
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densities over Ω is denoted by Pa(Ω) = {ρ : Ω → IR; ρ ≥ 0 and
∫

Ω ρ(x)dx = 1}. The
associated Free Energy Functional is then defined on Pa(Ω) as:

HF,W
V (ρ) :=

∫
Ω

[
F (ρ) + ρV +

1

2
(W ? ρ)ρ

]
dx,

which is the sum of the internal energy

HF(ρ) :=
∫

Ω
F (ρ)dx,

the potential energy

HV (ρ) :=
∫

Ω
ρV dx

and the interaction energy

HW (ρ) :=
1

2

∫
Ω
ρ(W ? ρ) dx.

Of importance is also the concept of relative energy of ρ0 with respect to ρ1 simply
defined as:

HF,W
V (ρ0|ρ1) := HF,W

V (ρ0)− HF,W
V (ρ1).

where ρ0 and ρ1 are two probability densities. The relative entropy production of ρ with
respect to ρV is normally defined as

I2(ρ|ρV ) =
∫

Ω
ρ
∣∣∣∇ (F ′(ρ) + V +W ? ρ))

∣∣∣2 dx

in such a way that if ρ
V

is a probability density that satisfies

∇ (F ′(ρ
V

) + V +W ? ρ
V

) = 0 a.e.

then
I2(ρ|ρ

V
) =

∫
Ω
ρ|∇ (F ′(ρ)− F ′(ρ

V
) +W ? (ρ− ρ

V
) |2 dx.

Our notation for the density ρ
V

reflects this paper’s emphasis on its dependence on the
confinement potential, though it obviously also depends on F and W .
We need the notion of Wasserstein distance W2 between two probability measures ρ0

and ρ1 on IRn, defined as:

W 2
2 (ρ0, ρ1) := inf

γ∈Γ(ρ0,ρ1)

∫
IRn×IRn

|x− y|2dγ(x, y),

where Γ(ρ0, ρ1) is the set of Borel probability measures on IRn × IRn with marginals ρ0

and ρ1, respectively.
The barycentre (or centre of mass) of a probability density ρ, denoted

b(ρ) :=
∫
IRn
xρ(x)dx
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will play a role in the presence of an interactive potential.
In this paper, we shall also deal with non-quadratic versions of the entropy. For that

we call Young function, any strictly convex C1-function c : IRn → IR such that c(0) = 0

and lim|x |→∞
c(x)
|x | =∞. We denote by c∗ its Legendre conjugate defined by

c∗(y) = sup
z∈IRn
{y · z − c(z)}.

For any probability density ρ on Ω, we define the generalized relative entropy production-
type function of ρ with respect to ρV measured against c∗ by

Ic∗(ρ|ρV ) :=
∫

Ω
ρc? (−∇ (F ′(ρ) + V +W ? ρ)) dx,

which is closely related to the generalized relative entropy production function of ρ with
respect to ρV measured against c∗ defined as:

Ic∗(ρ|ρV ) :=
∫

Ω
ρ∇ (F ′(ρ) + V +W ? ρ) · ∇c? (∇ (F ′(ρ) + V +W ? ρ)) dx.

Indeed, the convexity inequality c∗(z) ≤ z · ∇c∗(z) satisfied by any Young function c,

readily implies that Ic∗(ρ|ρV ) ≤ Ic∗(ρ|ρV ). Note that when c(x) = |x |2
2

, we have

Ic∗(ρ|ρV ) =: I2(ρ|ρV ) =
∫

Ω
ρ
∣∣∣∇ (F ′(ρ) + V +W ? ρ)

∣∣∣2 dx = 2Ic∗(ρ|ρV ),

and we denote Ic∗(ρ|ρV ) by I2(ρ|ρV ).
The following general inequality –established in section 2– is the main result of this

paper. It relates the free energies of two –almost– arbitrary probability densities, their
Wasserstein distance, their barycenters and their relative entropy production functional.
The fact that it yields many admittedly powerful geometric inequalities is remarkable.

Basic comparison principle for interactive gases:
Let Ω be open, bounded and convex subset of IRn, let F : [0,∞)→ IR be differentiable
function on (0,∞) with F (0) = 0 and x 7→ xnF (x−n) convex and non-increasing, and
let PF (x) := xF ′(x) − F (x) be its associated pressure function. Let V : IRn → IR
be a C2-confinement potential with D2V ≥ λI, and let W be an even C2-interaction
potential with D2W ≥ νI where λ, ν ∈ IR, and I denotes the identity map. Then, for
any Young function c : IRn → IR, we have for all probability densities ρ0 and ρ1 on Ω,
satisfying supp ρ0 ⊂ Ω and PF (ρ0) ∈ W 1,∞(Ω),

H
F,W

V+c
(ρ0|ρ1) +

λ+ ν

2
W 2

2 (ρ0, ρ1)− ν

2
|b(ρ0)− b(ρ1)|2 ≤ H

−nPF ,2x·∇W

c+∇V ·x (ρ0) + Ic∗(ρ0|ρV ). (1)

Furthermore, equality holds in (1) whenever ρ0 = ρ1 = ρV+c, where the latter satisfies

∇ (F ′(ρV+c) + V + c+W ? ρV+c) = 0 a.e. (2)
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Quadratic case of the comparison principle for interactive gases:
The above equation simplifies considerably when c is a quadratic Young functional of
the form c(x) := cσ(x) = 1

2σ
|x |2 for σ > 0, since then we have the identity:

Ic∗σ(ρ0|ρV ) +H−nPF ,2x·∇Wcσ+x·∇V (ρ0) = Ic∗σ(ρ0|ρV+cσ) =
σ

2
I2(ρ0|ρV+cσ).

Inequality (1) then yields: For all probability densities ρ0 and ρ1 on Ω, satisfying
supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω), we have for any σ > 0,

HF,W
V (ρ0|ρ1) +

1

2
(λ+ ν − 1

σ
)W 2

2 (ρ0, ρ1)− ν

2
|b(ρ0)− b(ρ1)|2 ≤ σ

2
I2(ρ0|ρV ). (3)

Minimizing the above inequality over σ > 0 then yields the HBWI inequality for inter-
active gases:

HF,W
V (ρ0|ρ1) ≤ W2(ρ0, ρ1)

√
I2(ρ0|ρV )− λ+ ν

2
W 2

2 (ρ0, ρ1) +
ν

2
|b(ρ0)− b(ρ1)|2. (4)

This extends the HWI inequality established in [24] and [9], with the additional “B”
referring to the new barycentric terms.

In the remainder of this introduction, we describe various particular cases of in-
equalities (1) and (3) and show how they easily yield various – new and old – geometric
inequalities.

Systems with no potential nor interaction energy – Euclidean geometric in-
equalities:

We start with the most basic system – where no potential nor interaction energies are
involved– since it already contains many important features of the approach and their
applications. Assume that V = W = 0 and that F is differentiable on (0,∞), F (0) = 0
and that x 7→ xnF (x−n) is convex and non-increasing. Let PF (x) := xF ′(x)− F (x) be
its associated pressure function and let c : IRn → IR be any Young function. Inequality
(1) gives that for any probability density ρ0 ∈ W 1,∞(Ω) with support in Ω, and any
ρ1 ∈ Pa(Ω),

−HF
c (ρ1) ≤ −HF+nPF (ρ0) +

∫
Ω
ρ0c

? (−∇(F ′ ◦ ρ0)) dx, (5)

and subsequently,
−HF

c (ρ1) ≤ −HF+nPF (ρ0) + Ic∗(ρ0|ρ∞) (6)

where ρ∞ is a probability density such that ∇(F ′(ρ∞)) = 0 a.e.
Moreover, equality holds whenever ρ0 = ρ1 = ρc where ρc is a probability density on Ω
such that ∇(F ′(ρc) + c) = 0 a.e.

Applying the above inequality with any ρ0 = ρ and ρ1 = ρc, we obtain the remarkably
simple inequality:

HF+nPF (ρ) ≤
∫

Ω
ρc? (−∇(F ′ ◦ ρ)) dx−HPF (ρc) +Kc, (7)
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where Kc is the unique constant determined by the equation

F ′(ρc) + c = Kc and
∫

Ω
ρc = 1. (8)

Applied to various – displacement convex – functionals F , one recovers several known
inequalities.

For example, by taking F (x) = xγ

γ−1
, where 1 6= γ > 1− 1

n
, which satisfies the above

assumptions, and by letting c(x) = rγ
2
|x |2 where r ∈

(
0, 2n

n−2

)
we get that(

1

γ − 1
+ n

)∫
IRn
| f |rγ ≤ rγ

2

∫
IRn
|∇f |2 − HPF (ρc) +Kc (9)

for all f ∈ C∞c (IRn) such that ‖ f ‖r = 1. A standard scaling argument on f now yields
the Gagliardo-Nirenberg inequalities (See Corollary 3.3).

By taking F (x) = x ln(x) then PF (x) = x, and if c : IRn → IR is any Young function

such that c? is p-homogeneous for some p > 1, then ρc = e−c(x)

σc
where σc =

∫
IRn e

−c(x) dx.
Inequality (7) then yields for any ρ ∈ Pa(IRn)∫

IRn
ρ ln ρ dx ≤

∫
IRn
ρc?

(
−∇ρ

ρ

)
dx− n− ln

(∫
IRn
e−c(x) dx

)
, (10)

with equality when ρ = ρc. This time around, a scaling argument on the Young function
c (Corollary 3.1) yields the Euclidean p-Log Sobolev inequality for any p > 1∫

IRn
ρ ln ρ dx ≤ n

p
ln

(
p

nep−1σ
p/n
c

∫
IRn
ρc?

(
−∇ρ

ρ

)
dx

)
. (11)

Such inequalities were first established by Beckner in [3] for p = 1, and by Del-Pino
and Dolbeault [14] for 1 < p < n. The case where p > n was established recently
and independently by I. Gentil [17] who used the Prékopa-Leindler inequality and the
Hopf-Lax semi-group associated to the Hamilton-Jacobi equation.

Motivated by the recent work of [11], one can see that (5) yields a stronger statement
of the following type

sup{J(ρ);
∫

Ω
ρ(x)dx = 1} ≤ inf{I(f);

∫
Ω
ψ(f(x))dx = 1}, (12)

where
I(f) =

∫
Ω

[c∗(−∇f(x))−G (ψ ◦ f(x))] dx (13)

and
J(ρ) = −

∫
Ω

[F (ρ(y)) + c(y)ρ(y)]dy (14)

with G(x) = (1 − n)F (x) + nxF ′(x) and where ψ satisfies |ψ
1
p (F ′ ◦ ψ)′ | = 1. Here we

have assumed that c∗ is p-homogeneous. Moreover, we have equality in (12) whenever
there exists f̄ (and ρ̄ = ψ(f̄)) that satisfies the first order equation:

−(F ′ ◦ ψ)′(f̄)∇f̄(x) = ∇c(x) a.e. (15)
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In this case, the extrema are achieved at f̄ (resp. ρ̄ = ψ(f̄)). The latter is therefore a
solution for the quasilinear (or semi-linear) equation

div{∇c∗(−∇f)} − (G ◦ ψ)′(f) = ψ′(f) (16)

since it is essentially the L2-Euler-Lagrange equation of I on the manifold

{f ∈ C∞0 (Ω);
∫

Ω
ψ(f(x))dx = 1}.

Equally interesting is the fact that ψ(f̄) is also a stationary solution of the (non-linear)
Fokker-Planck equation:

∂u

∂t
= div{u∇(F ′(u) + c)} (17)

since J is nothing but the Free Energy functional on Pa(Ω), whose gradient flow with
respect to the Wasserstein distance is precisely the evolution equation (17).

In other words, this points to a remarkable correspondence between Fokker-Planck
evolution equations and certain quasilinear or semi-linear equations which appear as
Euler-Lagrange equations of the entropy production functionals. Behind this correspon-
dence lies a non-trivial “change of variable” that is given by the solution of the Monge
transport problem. It essentially maps the solutions of the evolution equation associ-
ated to (13) to those of the Fokker-Planck equations (17). A typical example is the
correspondence between the “Yamabe” equation

−∆f = |f |2∗−2f on IRn, (18)

where 2∗ = 2n
n−2

is the critical Sobolev exponent, and the non-linear Fokker-Planck
equation

∂u

∂t
= ∆u1− 1

n + div(x.u), (19)

which –after appropriate scaling– reduces to the fast diffusion equation:

∂u

∂t
= ∆u1− 1

n . (20)

The correspondence was motivated by the work of [11] where mass transport is used to
establish Sobolev-type inequalities. Solutions of (18) can be obtained by minimizing the
energy functional on the unit sphere of L2∗ , that is:

inf
{(n− 1

n− 2

)2 ∫
IRn
|∇f |2dx; f ∈ C∞0 (IRn),

∫
IRn
|f |2∗dx = 1

}
. (21)

Using mass transport, they show that the above infimum is equal to the supremum of
the functional

J(ρ) = n
∫
IRn
ρ(x)

n−1
n dx− 1

2

∫
IRn
|x|2ρ(x)dx (22)

over the space of probability densities.
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Cordero et al. also deal with the Gagliardo-Nirenberg inequalities and obtain best
constant results that Del Pino-Dolbeault had obtained earlier by carefully analyzing
porous media evolution equations [14]. The link between the two methods becomes
much clearer via the above correspondence. More details in section (6).

Systems with non-trivial potential but no interaction energy – Gaussian-type
inequalities:

Assume now that F is as above but that W = 0, while V : IRn → IR is a C2-
confinement potential with D2V ≥ λI, where λ ∈ IR, and that c : IRn → IR is again a
Young function. Our basic inequality then yields: for all probability densities ρ0 and ρ1

on Ω, satisfying supp ρ0 ⊂ Ω, ρ0 > 0 a.e. on Ω and PF (ρ0) ∈ W 1,∞(Ω),

−H
F

V+c
(ρ1) +

λ

2
W 2

2 (ρ0, ρ1) ≤ −H
F+nPF

V−x·∇V (ρ0) + Ic∗(ρ0|ρV ) (23)

where ρV is defined by ∇(F ′(ρV ) + V ) = 0 a.e. Furthermore, equality holds in (23)
whenever ρ0 = ρ1 = ρ

V+c
where the latter satisfies

∇
(
F ′(ρ

V+c
) + V + c

)
= 0 a.e. (24)

In particular, we have for any probability density ρ such that supp ρ ⊂ Ω and PF (ρ) ∈
W 1,∞(Ω),

H
F+nPF

V−x·∇V
(ρ) +

λ

2
W 2

2 (ρ, ρ
V+c

) ≤ Ic∗(ρ|ρV )− HPF (ρ
V+c

) +KV+c (25)

where KV+c is the unique constant such that

F ′(ρ
V+c

) + V + c = KV+c while
∫

Ω
ρ
V+c

= 1. (26)

If V is a convex potential (i.e., λ ≥ 0), then the term involving the Wasserstein distance
can be omitted, and if V is strictly convex, then we have the identity V (x)−x ·∇V (x) =
−V ∗(∇V (x) in such a way that a correcting “moment” appears in the inequality:

H
F+nPF

−V ∗(∇V )
(ρ) ≤ Ic∗(ρ|ρV )− HPF (ρ

V+c
) +KV+c. (27)

Again, the pressure PF is always positive and we obtain the inequality:

H
F+nPF

−V ∗(∇V )
(ρ) ≤ Ic∗(ρ|ρV ) +KV+c. (28)

If we now consider the quadratic case (i.e., inequality (3)), we then get for any σ > 0,

HF
V (ρ0|ρ1) +

1

2
(λ− 1

σ
)W 2

2 (ρ0, ρ1) ≤ σ

2
I2(ρ0|ρV ). (29)

By letting ρ0 = ρV , this already gives a generalized Talagrand’s inequality : If V is
uniformly convex (i.e., λ > 0), then for any probability density ρ on Ω,

W2(ρ, ρV ) ≤
√

2HF
V (ρ|ρV )

λ
, (30)
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which in the case where F (x) = x lnx gives

W2(fρV , ρV ) ≤
√

2

λ

∫
IRn
f ln(f)ρV dx. (31)

where here ρV is the normalized Gaussian e−V

σV
and σV =

∫
IRn e

−V dx.
Back to (29) and after minimization over σ > 0, one gets the HWI inequality:

HF
V (ρ0|ρ1) ≤ W2(ρ0, ρ1)

√
I2(ρ0|ρV )− λ

2
W2(ρ0, ρ1)2. (32)

This inequality, first established by Otto-Villani [24] contains many Gaussian inequali-
ties. For example, it yields:
The generalized Log-Sobolev inequality : If V is uniformly convex (i.e., λ > 0), then for
all probability densities ρ0 and ρ1 on Ω with supp ρ0 ⊂ Ω and PF (ρ0) ∈ W 1,∞(Ω),

HF
V (ρ0|ρ1) ≤ 1

2λ
I2(ρ0|ρV )2. (33)

which in the case where F (x) = x lnx yields the Log-Sobolev inequality of Gross [18] and
Bakry-Emery [2]: for any function g such that g2ρV ∈ W 1,∞(IRn) and

∫
IRn g

2ρV dx = 1,
we have ∫

IRn
g2 ln(g2) ρV dx ≤ 2

λ

∫
IRn
|∇g |2 ρV dx. (34)

The general case of non-trivial confinement and interaction potentials:
Let F be as above, let again V : IRn → IR be a C2-confinement potential with D2V ≥

λI, but let now W be an even C2-interaction potential with D2W ≥ νI where λ, ν ∈ IR
(not necessarily positive). In this case, the general inequality (1) applied with ρ1 = ρV+c

yields for any probability density ρ such that supp ρ ⊂ Ω and PF (ρ) ∈ W 1,∞(Ω),

H
F+nPF ,W−2x·∇W

V−x·∇V
(ρ) +

λ+ ν

2
W 2

2 (ρ, ρ
V+c

)− ν

2
|b(ρ)− b(ρ

V+c
)|2

≤ Ic∗(ρ|ρV )− HPF ,W (ρV+c) +KV+c (35)

where KV+c is such that

F ′(ρ
V+c

) + V + c+W ? ρ
V+c

= KV+c and
∫

Ω
ρ
V+c

= 1. (36)

If λ+ ν ≥ 0, then the term involving the Wasserstein distance can be omitted from the
equation. If W is convex, then the barycentric term can also be omitted, and if V is
strictly convex, then we have

H
F+nPF ,W−2x·∇W

−V ∗(∇V )
(ρ) ≤ Ic∗(ρ|ρV ) +KV+c. (37)

On the other hand, the HWBI inequalities (4) obtained in the quadratic case have many
interesting consequences. For example,
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The generalized Log-Sobolev inequality with interaction potentials: If V +W is uniformly
convex (i.e., λ + ν > 0), then for all probability density functions ρ0 and ρ1 on Ω with
supp ρ0 ⊂ Ω and PF (ρ0) ∈ W 1,∞(Ω),

HF,W
V (ρ0|ρ1)− ν

2
|b(ρ0)− b(ρ1)|2 ≤ 1

2(λ+ ν)
I2(ρ0|ρV ), (38)

The generalized Talagrand’s inequality with interaction potentials: If V +W is uniformly
convex (i.e., λ+ ν > 0), then for any probability density function ρ on Ω,

ν + λ

2
W 2

2 (ρ, ρV )− ν

2
|b(ρ)− b(ρV )|2 ≤ HF,W

V (ρ|ρV ). (39)

In addition, if W is convex (i.e., ν ≥ 0), we obtain in particular:

HF,W
V (ρ0|ρ1) ≤ 1

2λ
I2(ρ0|ρV ). (40)

and

W2(ρ, ρV ) ≤

√
2HF,W

V (ρ|ρV )

λ
. (41)

Finally, these inequalities combined with the following energy dissipation equation

d

dt
HF,W
V (ρ(t)|ρV ) = −I2 (ρ(t)|ρV ) , (42)

provide rates of convergence to equilibria for solutions to the McKean-Vlasov type equa-
tion 

∂ρ
∂t

= div {ρ∇ (F ′(ρ) + V +W ? ρ)} in (0,∞)× IRn

ρ(t = 0) = ρ0 in {0} × IRn.
(43)

One can then recover the recent results of Carillo, McCann and Villani in [9], which
state that if V +W is uniformly convex and if W is also convex then

HF,W
V (ρ(t)|ρV ) ≤ e−2λtHF,W

V (ρ0|ρV ), (44)

and

W2 (ρ(t), ρV ) ≤ e−λt

√
2HF,W

V (ρ0|ρV )

λ
. (45)

If on the other hand, V + W is uniformly convex, while the barycenter b (ρ(t)) of any
solution ρ(t, x) of (43) is invariant in t, then

HF,W
V (ρ(t)|ρV ) ≤ e−2(λ+ν)tHF,W

V (ρ0|ρV ), (46)

and

W2 (ρ(t), ρV ) ≤ e−2(λ+ν)t

√√√√2HF,W
V (ρ0|ρV )

λ+ ν
. (47)

Throughout this paper, supp ρ denotes the support of ρ ∈ Pa(Ω), that is, the closure of
{x ∈ Ω : ρ 6= 0}, |Ω| is the Lebesgue measure of Ω ⊂ IRn, and q > 1 stands for the
conjugate index of some p < 1, 1

p
+ 1

q
= 1.
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2 Main inequality between two configurations of in-

teracting gases

Theorem 2.1 Let Ω be open, bounded and convex subset of IRn, let F : [0,∞) → IR
be differentiable function on (0,∞) with F (0) = 0 and x 7→ xnF (x−n) convex and non-
increasing, and let PF (x) := xF ′(x) − F (x) be its associated pressure function. Let
V : IRn → IR be a C2-confinement potential with D2V ≥ λI, and let W be an even
C2-interaction potential with D2W ≥ νI where λ, ν ∈ IR, and I denotes the identity
map. Then, for any Young function c : IRn → IR, we have for all probability densities
ρ0 and ρ1 on Ω, satisfying supp ρ0 ⊂ Ω and PF (ρ0) ∈ W 1,∞(Ω),

H
F,W

V+c
(ρ0|ρ1) +

λ+ ν

2
W 2

2 (ρ0, ρ1)− ν

2
|b(ρ0)− b(ρ1)|2

≤ H
−nPF ,2x·∇W

c+∇V ·x (ρ0) +
∫

Ω
ρ0c
∗ (−∇ (F ′(ρ0) + V +W ? ρ0)) dx. (48)

Furthermore, equality holds in (48) whenever ρ0 = ρ1 = ρV+c, where the latter satisfies

∇ (F ′(ρV+c) + V + c+W ? ρV+c) = 0 a.e. (49)

In particular, we have for any probability density ρ on Ω with supp ρ ⊂ Ω and PF (ρ) ∈
W 1,∞(Ω),

H
F+nPF ,W−2x·∇W

V−x·∇V
(ρ) +

λ+ ν

2
W 2

2 (ρ, ρV+c)−
ν

2
|b(ρ0)− b(ρV+c)|2

≤
∫

Ω
ρc? (−∇ (F ′(ρ) + V +W ? ρ)) dx− HPF ,W (ρV+c) +KV+c, (50)

where KV+c is such that

F ′(ρV+c) + V + c+W ? ρV+c = KV+c while
∫

Ω
ρV+c = 1. (51)

The proof is based on the recent advances in the theory of mass transport as devel-
oped by Brenier [7], Gangbo-McCann [15], [16], Caffarelli [8] and many others. For a
survey, see Villani [27]. Here is a brief summary of the needed results.

Fix a non-negative C1, strictly convex function d : IRn → IR such that d(0) = 0.
Given two probability measures µ and ν on IRn, the minimum cost for transporting µ
onto ν is given by

Wd(µ, ν) := inf
γ∈Γ(µ,ν)

∫
IRn×IRn

d(x− y)dγ(x, y), (52)

where Γ(µ, ν) is the set of Borel probability measures with marginals µ and ν, respec-
tively. When d(x) = |x |2, we have that Wd = W 2

2 , where W2 is the Wasserstein distance.
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We say that a Borel map T : IRn → IRn pushes µ forward to ν, if µ(T−1(B)) = ν(B) for
any Borel set B ⊂ IRn. The map T is then said to be d-optimal if

Wd(µ, ν) =
∫
IRn
d(x− Tx)dµ(x) = inf

S

∫
IRn
d(x− Sx)dµ(x), (53)

where the infimum is taken over all Borel maps S : IRn → IRn that push µ forward to ν.
For quadratic cost functions d(z) = 1

2
|z|2, Brenier [7] characterized the optimal

transport map T as the gradient of a convex function. An analogous result holds for
general cost functions d, provided convexity is replaced by an appropriate notion of
d-concavity. See [15], [8] for details.

Here is the lemma which leads to our main inequality (48). It is essentially a com-
pendium of various observations by several authors. It describes the evolution of a
generalized energy functional along optimal transport. The key idea lying behind it, is
the concept of displacement convexity introduced by McCann [21]. For generalized cost
functions, and when V = 0, it was first obtained by Otto [23] for the Tsallis entropy
functionals and by Agueh [1] in general. The case of a nonzero confinement potential
V and an interaction potential W was included in [13], [9]. Here, we state the results
when the cost function is quadratic, d(x) = |x |2.

Lemma 2.2 Let Ω ⊂ IRn be open, bounded and convex, and let ρ0 and ρ1 be probability
densities on Ω, with supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω). Let T be the optimal map
that pushes ρ0 ∈ Pa(Ω) forward to ρ1 ∈ Pa(Ω) for the quadratic cost d(x) = |x |2. Then

• Assume F : [0,∞)→ IR is differentiable on (0,∞), F (0) = 0 and x 7→ xnF (x−n)
is convex and non-increasing, then the following inequality holds for the internal
energy:

HF (ρ1)− HF (ρ0) ≥
∫

Ω
ρ0(T − I) · ∇ (F ′(ρ0)) dx. (54)

• Assume V : IRn → IR is such that D2V ≥ λI for some λ ∈ IR, then the potential
energy satisfies

HV (ρ1)− HV (ρ0) ≥
∫

Ω
ρ0(T − I) · ∇V dx+

λ

2
W 2

2 (ρ0, ρ1). (55)

• Assume W : IRn → IR is even, and D2W ≥ νI for some ν ∈ IR, then the
interaction energy satisfies

HW (ρ1)− HW (ρ0) ≥
∫

Ω
ρ0(T − I) · ∇(W ? ρ0)dx (56)

+
ν

2

(
W 2

2 (ρ0, ρ1)− |b(ρ0)− b(ρ1)|2
)
.

Proof: If T is the optimal map that pushes ρ0 ∈ Pa(Ω) forward to ρ1 ∈ Pa(Ω) for
the quadratic cost d(x) = |x |2, define a path of probability densities joining them, by
letting ρt be the push-forward measure of ρ0 by the map Tt = (1− t)I + tT . It is known

12



from the correspondence between Lagrangian and Eulerian coordinates that – at least
for smooth ρt – the trajectory Tt satisfies{

∂Tt
∂t

= Uρt(t, Tt)
T0 = IΩ,

where the velocity Uρt is such that{
∂ρt
∂t

+ div (ρtUρt) = 0
ρt=0 = ρ0.

(1) Under the above assumptions on F , it turns out (see McCann [21]) that the
function t 7→ HF (ρt) is convex on [0, 1], which essentially leads to (54) via the following
inequality for the internal energy:

HF (ρ1)− HF (ρ0) ≥ [
d

dt
HF (ρt)]t=0 = −

∫
Ω
F ′(ρ0) div (ρ0(T − I)) dx. (57)

(2) As noted in [13], the fact that D2V ≥ λI, which means that

V (b)− V (a) ≥ ∇V (a) · (b− a) +
λ

2
| a− b |2

for all a, b ∈ IRn, easily implies (55) via the following inequality for the corresponding
potential energy:

HV (ρ1)− HV (ρ0) ≥ [
d

dt
HV (ρt)]t=0 +

λ

2

∫
Ω
|(T − I)(x)|2ρ0(x)dx

= −
∫

Ω
V div (ρ0(T − I)) dx+

λ

2
W 2

2 (ρ0, ρ1). (58)

(3) The proof of (56) can be found in Cordero-Gangbo-Houdré [13]. But for com-
pleteness, we repeat the argument of these authors here. Indeed, following [13], we write
the interaction energy as follows:

HW (ρ1) =
1

2

∫
Ω×Ω

W (x− y)ρ1(x)ρ1(y) dxdy

=
1

2

∫
Ω×Ω

W (T (x)− T (y))ρ0(x)ρ0(y) dxdy

=
1

2

∫
Ω×Ω

W (x− y + (T − I)(x)− (T − I)(y)) ρ0(x)ρ0(y) dxdy

≥ 1

2

∫
Ω×Ω

[W (x− y) +∇W (x− y) · ((T − I)(x)− (T − I)(y)) ρ0(x)ρ0(y)] dxdy

+
ν

4

∫
Ω×Ω
|(T − I)(x)− (T − I)(y)|2ρ0(x)ρ0(y) dxdy

= HW (ρ0) +
1

2

∫
Ω×Ω
∇W (x− y) · ((T − I)(x)− (T − I)(y)) ρ0(x)ρ0(y) dxdy

+
ν

4

∫
Ω×Ω
|(T − I)(x)− (T − I)(y)|2ρ0(x)ρ0(y) dxdy, (59)

13



where we used above that D2W ≥ νI. The last term of the subsequent inequality can
be written as:∫

Ω×Ω
|(T − I)(x)− (T − I)(y)|2ρ0(x)ρ0(y) dxdy

= 2
∫

Ω
|(T − I)(x)|2ρ0(x) dx− 2

∣∣∣ ∫
IRn

(T − I)(x)ρ0(x) dx
∣∣∣2

= 2
∫

Ω
|(T − I)(x)|2ρ0(x) dx− 2|b(ρ1)− b(ρ0)|2. (60)

And since ∇W is odd (because W is even), we get for the second term of (59)∫
Ω×Ω

[∇W (x− y) · ((T − I)(x)− (T − I)(y))] ρ0(x)ρ0(y) dxdy

= 2
∫

Ω×Ω
∇W (x− y) · (T − I)(x)ρ0(x)ρ0(y) dxdy

= 2
∫

Ω×Ω
ρ0(T − I) · ∇(W ? ρ0) dx. (61)

Combining (59) - (61), we obtain that

HW (ρ1)− HW (ρ0)

≥
∫

Ω×Ω
ρ0(T − I) · ∇(W ? ρ0) dx+

ν

2

(∫
Ω
|(T − I)(x)|2ρ0dx− |b(ρ0)− b(ρ1)|2

)
.

This proves (56).
Proof of Theorem 2.1: Adding (54), (55) and (56), one gets

HF,W
V (ρ0)− HF,W

V (ρ1) +
λ+ ν

2
W 2

2 (ρ0, ρ1)− ν

2
|b(ρ0)− b(ρ1)|2 (62)

≤
∫

Ω
(x− Tx) · ρ0∇ (F ′(ρ0) + V +W ? ρ0) dx.

Since ρ0∇(F ′(ρ0)) = ∇ (PF (ρ0)), we integrate by part
∫

Ω ρ0∇ (F ′(ρ0)) · x dx, and obtain
that ∫

Ω
x · ∇(F ′(ρ0) + V +W ? ρ0)ρ0 = H

−nPF , 2x·∇W

x·∇V (ρ0).

This leads to

H
F,W

V (ρ0)− HF,W
V (ρ1) +

λ+ ν

2
W 2

2 (ρ0, ρ1)− ν

2
|b(ρ0)− b(ρ1)|2 (63)

≤ H
−nPF , 2x·∇W

x·∇V (ρ0)−
∫

Ω
ρ0∇ (F ′(ρ0) + V +W ? ρ0) · T (x) dx.

Now, use Young’s inequality to get

−∇ (F ′ (ρ0(x)) + V (x) + (W ? ρ0)(x)) · T (x) (64)

≤ c (T (x)) + c? (−∇ (F ′(ρ0(x)) + V (x) + (W ? ρ0)(x))) ,
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and deduce that

HF,W
V (ρ0)− HF,W

V (ρ1) +
λ+ µ

2
W 2

2 (ρ0, ρ1)− ν

2
|b(ρ0)− b(ρ1)|2 (65)

≤ H−nPF ,2x·∇Wx·∇V (ρ0) +
∫

Ω
ρ0c

? (−∇ (F ′(ρ0) + V +W ? ρ0))) +
∫

Ω
c(Tx)ρ0 dx.

Finally, use again that T pushes ρ0 forward to ρ1, to rewrite the last integral on the
right hand side of (65) as

∫
Ω c(y)ρ1(y)dy to obtain (48).

Now, set ρ0 = ρ1 := ρV+c in (63). We have that T = I, and equality then holds in (63).
Therefore, equality holds in (48) whenever equality holds in (64), where T (x) = x. This
occurs when (49) is satisfied.
(50) is straightforward when choosing ρ0 := ρ and ρ1 := ρV+c in (48).

3 Optimal Euclidean Sobolev inequalities

3.1 Euclidean Log-Sobolev inequalities

The following optimal Euclidean p-Log Sobolev inequality was established by Beckner
[3] in the case where p = 1, by Del Pino- Dolbeault [14] for 1 < p < n, and independently
by Gentil for all p > 1.

Corollary 3.1 (General Euclidean Log-Sobolev inequality)
Let Ω ⊂ IRn be open bounded and convex, and let c : IRn → IR be a Young functional

such that its conjugate c? is p-homogeneous for some p > 1. Then,∫
IRn
ρ ln ρ dx ≤ n

p
ln

(
p

nep−1σ
p/n
c

∫
IRn
ρc?

(
−∇ρ

ρ

)
dx

)
, (66)

for all probability densities ρ on IRn, such that supp ρ ⊂ Ω and ρ ∈ W 1,∞(IRn). Here,
σc :=

∫
IRn e

−c dx. Moreover, equality holds in (66) if ρ(x) = Kλe
−λqc(x) for some λ > 0,

where Kλ =
(∫
IRn e

−λqc(x) dx
)−1

and q is the conjugate of p (1
p

+ 1
q

= 1).

Proof: Use F (x) = x ln(x) and V = W = 0 in (50). Note that PF (x) = x, and

then, HPF (ρ) = 1 for any ρ ∈ Pa(IRn). So, ρc(x) = e−c(x)

σc
. We then have for ρ ∈

Pa(IRn) ∩W 1,∞(IRn) such that supp ρ ⊂ Ω,∫
Ω
ρ ln ρ dx ≤

∫
IRn
ρc?

(
−∇ρ

ρ

)
dx− n− ln

(∫
IRn
e−c(x) dx

)
, (67)

with equality when ρ = ρc.
Now assume that c? is p-homogeneous and set Γcρ =

∫
IRn ρc

?
(
−∇ρ

ρ

)
dx. Using

cλ(x) := c(λx) in (67), we get for λ > 0 that∫
IRn
ρ ln ρ dx ≤

∫
IRn
ρc?

(
−∇ρ
λρ

)
dx+ n lnλ− n− lnσc, (68)
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for all ρ ∈ Pa(IRn) satisfying supp ρ ⊂ Ω and ρ ∈ W 1,∞(Ω). Equality holds in (68) if

ρλ(x) =
(∫
IRn e

−λqc(x) dx
)−1

e−λ
qc(x). Hence∫

IRn
ρ ln ρ dx ≤ −n− lnσc + inf

λ>0
(Gρ(λ)) ,

where

Gρ(λ) = n ln(λ) +
1

λp

∫
IRn
ρc?

(
−∇ρ

ρ

)
= n ln(λ) +

Γcρ
λp
.

The infimum of Gρ(λ) over λ > 0 is attained at λ̄ρ =
(
p
n
Γcρ
)1/p

. Hence∫
IRn
ρ ln ρ dx ≤ Gρ(λ̄ρ)− n− ln(σc)

=
n

p
ln
(
p

n
Γcρ

)
+
n

p
− n− ln(σc)

=
n

p
ln

(
p

nep−1σ
p/n
c

Γcρ

)
,

for all probability densities ρ on IRn, such that supp ρ ⊂ Ω, and ρ ∈ W 1,∞(IRn).

Corollary 3.2 (Optimal Euclidean p-Log Sobolev inequality)∫
IRn
| f |p ln(| f |p) dx ≤ n

p
ln
(
Cp

∫
IRn
|∇f |p dx

)
, (69)

holds for all p ≥ 1, and for all f ∈ W 1,p(IRn) such that ‖ f ‖p = 1, where

Cp :=


(
p
n

) (
p−1
e

)p−1
π−

p
2

[
Γ(n

2
+1)

Γ(n
q

+1)

] p
n

if p > 1,

1
n
√
π

[
Γ(n

2
+ 1)

] 1
n if p = 1,

(70)

and q is the conjugate of p (1
p

+ 1
q

= 1).

For p > 1, equality holds in (69) for f(x) = Ke−λ
q | x−x̄ |q

q for some λ > 0 and x̄ ∈ IRn,

where K =
(∫
IRn e

−(p−1)|λx |q dx
)−1/p

.

Proof: First assume that p > 1, and set c(x) = (p− 1)|x |q and ρ = | f |p in (66), where

f ∈ C∞c (IRn) and ‖ f ‖p = 1. We have that c?(x) = |x |p
pp

, and then,
∫
IRn ρc

∗
(
−∇ρ

ρ

)
dx =∫

IRn |∇f |p dx. Therefore, (66) reads as∫
IRn
| f |p ln(| f |p) dx ≤ n

p
ln

(
p

nep−1σ
p/n
c

∫
IRn
|∇f |p dx

)
. (71)

Now, it suffices to note that

σc :=
∫
IRn
e−(p−1)|x |q dx =

π
n
2 Γ
(
n
q

+ 1
)

(p− 1)
n
q Γ
(
n
2

+ 1
) . (72)
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To prove the case where p = 1, it is sufficient to apply the above to pε = 1 + ε for
some arbitrary ε > 0. Note that

Cpε =
(

1 + ε

n

)(
ε

e

)ε
π−

1+ε
2

[
Γ(n

2
+ 1)

Γ( nε
1+ε

+ 1)

] 1+ε
n

,

so that when ε go to 0, we have

lim
ε→0

Cpε =
1

n
√
π

[
Γ
(
n

2
+ 1

)] 1
n

= C1.

3.2 Sobolev and Gagliardo-Nirenberg inequalities

Corollary 3.3 (Gagliardo-Nirenberg inequalities)

Let 1 < p < n and r ∈
(
0, np

n−p

)
such that r 6= p. Set γ := 1

r
+ 1

q
, where 1

p
+ 1

q
= 1.

Then, for any f ∈ W 1,p(IRn) we have

‖f‖r ≤ C(p, r)‖∇f‖θp ‖f‖1−θ
rγ , (73)

where θ is given by
1

r
=

θ

p∗
+

1− θ
rγ

, (74)

p∗ = np
n−p and where the best constant C(p, r) > 0 can be obtained by scaling.

Proof: Let F (x) = xγ

γ−1
, where 1 6= γ > 1 − 1

n
, which follows from the fact that

p 6= r ∈
(
0, np

n−p

)
. For this value of γ, the function F satisfies the conditions of Theorem

2.1. Let c(x) = rγ
q
|x |q so that c∗(x) = 1

p(rγ)p−1 |x |p, and set V = W = 0. Inequality (50)

then gives for all f ∈ C∞c (IRn) such that ‖ f ‖r = 1,(
1

γ − 1
+ n

)∫
IRn
| f |rγ ≤ rγ

p

∫
IRn
|∇f |p −HPF (ρ∞) + C∞. (75)

where ρ∞ = hr∞ satisfies

−∇h∞(x) = x|x |q−2h
r
p (x) a.e., (76)

and where C∞ insures that
∫
hr∞ = 1. The constants on the right hand side of (75) are

not easy to calculate, so one can obtain θ and the best constant by a standard scaling
procedure. Namely, write (75) as

rγ

p

‖∇f‖pp
‖f‖p

r

−
(

1

γ − 1
+ n

)
‖f‖rγrγ
‖f‖rγ

r

≥ HPF (ρ∞)− C∞ =: C, (77)

for some constant C. Then apply (77) to fλ(x) = f(λx) for λ > 0. A minimization over
λ gives the required constant.

The limiting case where r is the critical Sobolev exponent r = p∗ = np
n−p (and then

γ = 1− 1
n
) leads to the Sobolev inequalities:
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Corollary 3.4 (Sobolev inequalities)
If 1 < p < n, then for any f ∈ W 1,p(IRn),

‖ f ‖p∗ ≤ C(p, n)‖∇f ‖p (78)

for some constant C(p, n) > 0.

Proof: It follows directly from (75), by using γ = 1− 1
n

and r = p∗.

Note that the scaling argument cannot be used here to compute the best constant
C(p, n) in (78), since ‖∇fλ ‖pp = λp−n‖∇f ‖pp and ‖ fλ ‖pr = λp−n‖ f ‖pr scale the same
way in (77). Instead, one can proceed directly from (75) to have that

‖ f ‖p∗ = 1 ≤
(

rγ

p [HPF (ρ∞)− C∞]

)1/p

‖∇f ‖p =

(
p∗(n− 1)

np [HPF (ρ∞)− C∞]

)1/p

‖∇f ‖p,

which shows that

C(p, n) =

(
p∗(n− 1)

np [HPF (ρ∞)− C∞]

)1/p

, (79)

where ρ∞ = hp
∗
∞ =

(
p∗

nq
|x |q − C∞

n−1

)−n
is obtained from (76), and C∞ can be found using

that ρ∞ is a probability density,

C∞ = (1− n)

∫
IRn

(
p∗

nq
|x |q + 1

)−n
dx

p/n . (80)

4 Optimal geometric inequalities

4.1 HWBI inequalities

We now establish HWBI inequalities relating the total energy of two arbitrary probabil-
ity densities, their Wasserstein distance, their barycenters and their entropy production
functional, and we deduce extensions of various powerful inequalities by Gross [18],
Bakry-Emery[2], Talagrand [26], Otto-Villani [24], Cordero[12] and others.

Theorem 4.1 (HWBI inequality)
Let Ω be an open, bounded and convex subset of IRn. Let F : [0,∞)→ IR be a differen-
tiable function on (0,∞) with F (0) = 0 and x 7→ xnF (x−n) convex and non-increasing,
and let PF (x) := xF ′(x) − F (x) be its associated pressure function. Let U : IRn → IR
be a C2-confinement potential with D2U ≥ µI, and let W be an even C2-interaction
potential with D2W ≥ νI where µ, ν ∈ IR. Then we have for all probability densities ρ0

and ρ1 on Ω satisfying supp ρ0 ⊂ Ω and PF (ρ0) ∈ W 1,∞(Ω),

HF,W
U (ρ0|ρ1) ≤ W2(ρ0, ρ1)

√
I2(ρ0|ρU)− µ+ ν

2
W 2

2 (ρ0, ρ1) +
ν

2
|b(ρ0)− b(ρ1)|2. (81)
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The proof of Theorem 4.1 relies on the following proposition.

Proposition 4.1 Under the above hypothesis on Ω and F , let U,W : IRn → IR be C2-
functions with D2U ≥ µI and D2W ≥ νI, where µ, ν ∈ IR, and W is even. Then for
any σ > 0, we have for all probability densities ρ0 and ρ1 on Ω, satisfying supp ρ0 ⊂ Ω,
and PF (ρ0) ∈ W 1,∞(Ω),

HF,W
U (ρ0|ρ1) +

1

2
(µ+ ν − 1

σ
)W 2

2 (ρ0, ρ1)− ν

2
|b(ρ0)− b(ρ1)|2 ≤ σ

2
I2(ρ0|ρU), (82)

Proof: Use (48) with c(x) = 1
2σ
|x |2, V = U − c and λ = µ− 1

σ
to obtain

HF,W
U (ρ0|ρ1) +

1

2
(µ+ ν − 1

σ
)W 2

2 (ρ0, ρ1) +
ν

2
|b(ρ0)− b(ρ1)|2 (83)

≤ H−nPF ,2x·∇Wc+∇(U−c)·x (ρ0) +
∫

Ω
ρ0c
∗ (−∇ (F ′(ρ0) + U − c+W ? ρ0)) dx.

By elementary computations, we have∫
Ω
ρ0c
∗ (−∇ (F ′ ◦ ρ0 + U − c+W ? ρ0)) dx

=
σ

2

∫
Ω
ρ0

∣∣∣∇ (F ′(ρ0) + U +W ? ρ0)
∣∣∣2 dx+

1

2σ

∫
Ω
ρ0|x |2 dx−

∫
Ω
ρ0x · ∇ (F ′(ρ0)) dx

−
∫

Ω
ρ0x · ∇U dx−

∫
Ω
ρ0x · ∇(W ? ρ0) dx,

and

H−nPF ,2x·∇Wc+∇(U−c)·x (ρ0) = −HnPF (ρ0)+
∫

Ω
ρ0x ·∇(W ?ρ0) dx+

∫
Ω
ρ0x ·∇U dx− 1

2σ

∫
Ω
|x |2ρ0 dx.

By combining the last 2 identities, we can rewrite the right hand side of (83) as

H−nPF ,2x·∇Wc+∇(U−c)·x (ρ0) +
∫

Ω
ρ0c
∗ (−∇(F ′ ◦ ρ0 + U − c+W ? ρ0)) dx

=
σ

2

∫
Ω
ρ0|∇ (F ′(ρ0) + U +W ? ρ0) |2 dx−

∫
Ω
ρ0x · ∇ (F ′ ◦ ρ0) dx−

∫
Ω
nPF (ρ0) dx

=
σ

2

∫
Ω
ρ0|∇ (F ′(ρ0) + U +W ? ρ0) |2dx+

∫
Ω

div (ρ0x)F ′(ρ0) dx−
∫

Ω
nPF (ρ0) dx

=
σ

2

∫
Ω
ρ0

∣∣∣∇ (F ′(ρ0) + U +W ? ρ0)
∣∣∣2 dx+ n

∫
Ω
ρ0F

′(ρ0) dx+
∫

Ω
x · ∇F (ρ0) dx

−
∫

Ω
nPF (ρ0) dx

=
σ

2

∫
Ω
ρ0

∣∣∣∇ (F ′(ρ0) + U +W ? ρ0)
∣∣∣2dx+

∫
Ω
x · ∇F (ρ0) dx+ n

∫
Ω
F ◦ ρ0 dx

=
σ

2

∫
Ω
ρ0

∣∣∣∇ (F ′(ρ0) + U +W ? ρ0)
∣∣∣2 dx. (84)

Inserting (84) into (83), we conclude (82).
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Proof of Theorem 4.1: To establish the HWBI inequality (81), we rewrite (82) as

HF,W
U (ρ0|ρ1) +

µ+ ν

2
W 2

2 (ρ0, ρ1)− ν

2
|b(ρ0)− b(ρ1)|2

≤ 1

2σ
W 2

2 (ρ0, ρ1) +
σ

2
I2(ρ0|ρU), (85)

then minimize the right hand side of (85) over σ > 0. The minimum is obviously

achieved at σ̄ = W2(ρ0,ρ1)√
I2(ρ0|ρU )

. This yields (81).

Setting W = 0 (and then ν = 0) in Theorem 4.1, we obtain in particular, the
following HWI inequality first established by Otto-Villani [24] in the case of the classical
entropy F (x) = x lnx, and extended later on, for generalized entropy functions F by
Carillo, McCann and Villani in [9].

Corollary 4.2 (HWI inequalities [9])
Under the hypothesis on Ω and F in Theorem 4.1, let U : IRn → IR be a C2-function
with D2U ≥ µI, where µ ∈ IR. Then we have for all probability densities ρ0 and ρ1 on
Ω, satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω),

HF
U(ρ0|ρ1) ≤ W2(ρ0, ρ1)

√
I(ρ0|ρU)− µ

2
W 2

2 (ρ0, ρ1). (86)

If U + W is uniformly convex (i.e., µ + ν > 0) inequality (82) yields the following
extensions of the Log-Sobolev inequality:

Corollary 4.3 (Log-Sobolev inequalities with interaction potentials)
In addition to the hypothesis on Ω, F , U and W in Theorem 4.1, assume µ + ν > 0.
Then for all probability densities ρ0 and ρ1 on Ω, satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈
W 1,∞(Ω), we have

HF,W
U (ρ0|ρ1)− ν

2
|b(ρ0)− b(ρ1)|2 ≤ 1

2(µ+ ν)
I2(ρ0|ρU). (87)

In particular, if b(ρ0) = b(ρ1), we have that

HF,W
U (ρ0|ρ1) ≤ 1

2(µ+ ν)
I2(ρ0|ρU). (88)

Furthermore, if W is convex, then we have the following inequality, established in [9]

HF,W
U (ρ0|ρ1) ≤ 1

2µ
I2(ρ0|ρU). (89)

Proof: (87) follows easily from (82) by choosing σ = 1
µ+ν

, and (89) follows from (87),
using ν = 0 because W is convex.

In particular, setting W = 0 in Corollary 4.3, one obtains the following generalized
Log-Sobolev inequality obtained in [10], and in [13] for generalized cost functions.
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Corollary 4.4 (Generalized Log-Sobolev inequalities [10], [13])
Assume that Ω and F satisfy the assumptions in Theorem 4.1, and that U : IRn → IR is
a C2- uniformly convex function with D2U ≥ µI, where µ > 0. Then for all probability
densities ρ0 and ρ1 on Ω, satisfying supp ρ0 ⊂ Ω, and PF (ρ0) ∈ W 1,∞(Ω), we have

HF
U(ρ0|ρ1) ≤ 1

2µ
I2(ρ0|ρU). (90)

One can also deduce the following generalization of Talagrand’s inequality. We note
in particular that when W = 0, the result below is obtained previously by Blower [4],
Otto-Villani [24] and Bobkov-Ledoux [5] for the Tsallis entropy F (x) = x lnx, and by
Carillo-McCann-Villani [9] for generalized entropy functions F .

Corollary 4.5 (Generalized Talagrand Inequality with interaction potentials)
In addition to the hypothesis on Ω, F , U and W in Theorem 4.1, assume µ + ν > 0.
Then for all probability densities ρ on Ω, we have

ν + µ

2
W 2

2 (ρ, ρU)− ν

2
|b(ρ)− b(ρU)|2 ≤ HF,W

U (ρ|ρU). (91)

In particular, if b(ρ) = b(ρU), we have that

W2(ρ, ρU) ≤

√√√√2HF,W
U (ρ|ρU)

µ+ ν
. (92)

Furthermore, if W is convex, then the following inequality established in [9] holds:

W2(ρ, ρU) ≤

√√√√2HF,W
U (ρ|ρU)

µ
. (93)

Proof: (91) follows from (82) if we use ρ0 := ρU , ρ1 := ρ, notice that I2(ρU |ρU) = 0, and
then let σ go to ∞. (93) follows from (91), where we use ν = 0 because W is convex.

4.2 Gaussian inequalities

Proposition 4.1 applied to F (x) = x lnx when W = 0, yields the following extension of
Gross’ Log-Sobolev inequality established by Bakry and Emery in [2]. First, we state
the following HWI-type inequality from which we deduce Otto-Villani’s HWI inequality
[24], and the Log-Sobolev inequality of Gross [18] and Bakry-Emery [2].

Corollary 4.6 Let U : IRn → IR be a C2-function with D2U ≥ µI where µ ∈ IR,
and denote by ρU the normalized Gaussian e−U

σU
, where σU =

∫
IRn e

−U dx. Then for any

σ > 0, the following holds for any nonnegative function f such that fρU ∈ W 1,∞(IRn)
and

∫
IRn fρU dx = 1:

∫
IRn
f ln(f) ρUdx+

1

2
(µ− 1

σ
)W 2

2 (fρU , ρU) ≤ σ

2

∫
IRn

|∇f |2

f
ρUdx. (94)
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Proof: First assume that f has compact support, and set F (x) = x lnx, ρ0 = fρU , ρ1 =
ρU and W = 0 in (82). We have that

HF
U (fρU |ρU) +

1

2
(µ− 1

σ
)W 2

2 (fρU , ρU) ≤ σ

2

∫
IRn

∣∣∣ ∇(fρU)

fρU
+ U

∣∣∣2fρU dx. (95)

By direct computations,
∇(fρU)

fρU
=
∇f
f
−∇U, (96)

and

HF,W
U (fρU |ρU) ≤

∫
IRn

[fρU ln(fρU) + UfρU − ρU ln ρU − UρU ] dx (97)

=
∫
IRn

(fρU ln f) dx+ lnσU

∫
IRn

(ρU − fρU) dx

=
∫
IRn
f ln(f)ρU dx.

Combining (95) - (97), we get (94). We finish the proof using a standard approximation
argument.

Corollary 4.7 (Otto-Villani’s HWI inequality [24])
Let U : IRn → IR be a C2-uniformly convex function with D2U ≥ µI, where µ > 0,
and denote by ρU the normalized Gaussian e−U

σU
, where σU =

∫
IRn e

−U dx. Then, for any

nonnegative function f such that fρU ∈ W 1,∞(IRn) and
∫
IRn fρU dx = 1,∫

IRn
f ln(f)ρU dx ≤ W2(ρU , fρU)

√
I(fρU |ρU)− µ

2
W 2

2 (fρU , ρU), (98)

where

I(fρU |ρU) =
∫
IRn

|∇f |2

f
ρU dx.

Proof: It is similar to the proof of Theorem 4.1. Rewrite (94) as∫
IRn
f ln(f)ρU dx+

µ

2
W 2

2 (fρU , ρU) ≤ µ

2σ
W 2

2 (fρU , ρU) +
σ

2
I(fρU |ρU),

and show that the minimum over σ > 0 of the right hand side is attained at σ̄ =
W2(fρU ,ρU )√
I(fρU |ρU )

.

Now, setting f := g2 and σ := 1
µ

in (98), one obtains the following extension of

Gross’ [18] Log-Sobolev inequality first established by Bakry and Emery in [2].

Corollary 4.8 (Original Log Sobolev inequality [2], [18])
Let U : IRn → IR be a C2-uniformly convex function with D2U ≥ µI where µ > 0,

and denote by ρU the normalized Gaussian e−U

σU
, where σU =

∫
IRn e

−U dx. Then, for any

function g such that g2ρU ∈ W 1,∞(IRn) and
∫
IRn g

2ρU dx = 1, we have∫
IRn
g2 ln(g2) ρUdx ≤ 2

µ

∫
IRn
|∇g |2 ρUdx. (99)
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As pointed out by Rothaus in [25], the above Log-Sobolev inequality implies the
Poincaré’s inequality.

Corollary 4.9 (Poincaré’s inequality)
Let U : IRn → IR be a C2-uniformly convex function with D2U ≥ µI where µ > 0,
and denote by ρU the normalized Gaussian e−U

σU
, where σU =

∫
IRn e

−U dx. Then, for any

function f such that fρU ∈ W 1,∞(IRn) and
∫
IRn fρU dx = 0, we have∫

IRn
f 2ρU dx ≤ 1

µ

∫
IRn
|∇f |2ρU dx. (100)

Proof: From (99), we have that

∫
IRn
fε ln(fε) ρU dx ≤ 1

2µ

∫
IRn

|∇fε |2

fε
ρU dx, (101)

where fε = 1 + εf for some ε > 0. Using that
∫
IRn fρU dx = 0, we have for small ε,

∫
Rn
fε ln(fε)ρU dx =

ε2

2

∫
IRn
f 2ρU dx+ o(ε3), (102)

and ∫
IRn

|∇fε |2

fε
ρU dx = ε2

∫
IRn
|∇f |2ρU dx+ o(ε3). (103)

We combine (101) - (103) to have that∫
IRn
f 2ρU dx ≤ 1

µ

∫
IRn
|∇f |2ρU dx+ o(ε). (104)

We let ε go to 0 in (104) to conclude (100).

If we apply Corollary 4.5 to F (x) = x lnx when W = 0, we obtain the following
extension of Talagrand’s inequality established by Otto and Villani in [24].

Corollary 4.10 (Original Talagrand’s inequality [26], [24])
Let U : IRn → IR be a C2-uniformly convex function with D2U ≥ µI where µ > 0,
and denote by ρU the normalized Gaussian e−U

σU
, where σU =

∫
IRn e

−U dx. Then, for any
nonnegative function f such that

∫
IRn fρU dx = 1, we have

W2(fρU , ρU) ≤
√

2

µ

∫
IRn
f ln(f)ρU dx. (105)

In particular, if f = IIB
γ(B)

for some measurable subset B of IRn, where dγ(x) =

ρU(x)dx and IIB is the characteristic function of B, we obtain the following inequality
in the concentration of measures in Gauss space, first proved by Bobkov and Götze in
[6].
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Corollary 4.11 (Concentration of measure inequality [6])
Let U : IRn → IR be a C2-uniformly convex function with D2U ≥ µI where µ > 0,

and denote by γ the normalized Gaussian measure with density ρU = e−U

σU
, where σU =∫

IRn e
−U dx. Then, for any ε-neighborhood Bε of a measurable set B in IRn, we have

γ(Bε) ≥ 1− e
−µ

2

(
ε−
√

2
µ

ln( 1
γ(B))

)2

, (106)

where ε ≥
√

2
µ

ln
(

1
γ(B)

)
.

Proof: Using f = fB = IIB
γ(B)

in (105), we have that

W2(fBρU , ρU) ≤

√√√√ 2

µ
ln

(
1

γ(B)

)
,

and then, we obtain from the triangle inequality that

W2(fBρU , fIRn\BερU) ≤

√√√√ 2

µ
ln

(
1

γ(B)

)
+

√√√√ 2

µ
ln

(
1

1− γ(Bε)

)
. (107)

But since |x− y | ≥ ε for all (x, y) ∈ B × (IRn\Bε), we have that

W2(fBρU , ρU) ≥ ε. (108)

We combine (107) and (108) to deduce that

ln

(
1

1− γ(IRn\Bε)

)
≥ µ

2

ε−
√√√√ 2

µ
ln

(
1

γ(B)

)2

,

which leads to (106).

5 Trends to equilibrium

We use Corollary 4.4 and Corollary 4.5 to recover rates of convergence for solutions to
equation 

∂ρ
∂t

= div {ρ∇ (F ′(ρ) + V +W ? ρ)} in (0,∞)× IRn

ρ(t = 0) = ρ0 in {0} × IRn,
(109)

recently shown by Carillo, McCann and Villani in [9]. Here we consider the case where
V +W is uniformly convex and W convex, and the case when only V +W is uniformly
convex but the barycenter b (ρ(t)) of any solution ρ(t, x) of (109) is invariant in t. For
a background and other cases of convergence to equilibrium for this equation, we refer
to [9] and the references therein.
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Corollary 5.1 (Trend to equilibrium)
Let F : [0,∞) → IR be strictly convex, differentiable on (0,∞) and satisfies F (0) = 0,

limx→∞
F (x)
x

=∞, and x 7→ xnF (x−n) is convex and non-increasing. Let V, W : IRn →
[0,∞) be respectively C2-confinement and interaction potentials with D2V ≥ λI and
D2W ≥ νI, where λ, ν ∈ IR. Assume that the initial probability density ρ0 has finite
total energy. Then

(i). If V +W is uniformly convex (i.e., λ+ν > 0) and W is convex (i.e. ν ≥ 0), then,
for any solution ρ of (109), such that HF,W

V (ρ(t)) <∞, we have:

HF,W
V (ρ(t)|ρV ) ≤ e−2λtHF,W

V (ρ0|ρV ), (110)

and

W2 (ρ(t), ρV ) ≤ e−λt

√
2HF,W

V (ρ0|ρV )

λ
. (111)

(ii). If V +W is uniformly convex (i.e., λ+ν > 0) and if we assume that the barycenter
b (ρ(t)) of any solution ρ(t, x) of (109) is invariant in t, then, for any solution ρ
of (109) such that HF,W

V (ρ(t)) <∞, we have:

HF,W
V (ρ(t)|ρV ) ≤ e−2(λ+ν)tHF,W

V (ρ0|ρV ), (112)

and

W2 (ρ(t), ρV ) ≤ e−2(λ+ν)t

√√√√2HF,W
V (ρ0|ρV )

λ+ ν
. (113)

Proof: Under the assumptions on F , V and W in Corollary 5.1, it is known (see [9],
and references therein) that the total energy HF,W

V – which is a Lyapunov functional
associated with (109) – has a unique minimizer ρV defined by

ρV∇ (F ′(ρ
V

) + V +W ? ρ
V

) = 0 a.e.

Now, let ρ be a – smooth – solution of (109). We have the following energy dissipation
equation

d

dt
HF,W
V (ρ(t)|ρV ) = −I2 (ρ(t)|ρV ) . (114)

Combining (114) with (89), we have that

d

dt
HF,W
V (ρ(t)|ρV ) ≤ −2λHF,W

V (ρ(t)|ρV ) . (115)

We integrate (115) over [0, t] to conclude (110). (111) follows directly from (93) and
(110).
To prove (112), we use (114) and (88) to have that

d

dt
HF,W
V (ρ(t)|ρV ) ≤ −2(λ+ ν)HF,W

V (ρ(t)|ρV ) . (116)
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We integrate (116) over [0, t] to conclude (112). As before, (113) is a consequence of
(112) and (92).

Below, we apply Corollary 5.1 to obtain rates of convergence to equilibrium for some
equations of the form (109) studied in the literature by many authors.

Examples:

• If W = 0 and F (x) = x lnx in which case (109) is the linear Fokker-Planck
equation ∂ρ

∂t
= ∆ρ+div(ρ∇V ), Corollary 5.1 gives an exponential decay in relative

entropy of solutions of this equation to the Gaussian density ρV = e−V

σV
, σV =∫

IRn e
−V dx, at the rate 2λ when D2V ≥ λI for some λ > 0, and an exponential

decay in the Wasserstein distance, at the rate λ.

• If W = 0, F (x) = xm

m−1
where 1 6= m ≥ 1 − 1

n
, and V (x) = λ |x |

2

2
for some λ > 0,

in which case (109) is the rescaled porous medium equation (m > 1), or fast
diffusion equation (1 − 1

n
≤ m < 1), that is ∂ρ

∂t
= ∆ρm + div(λxρ), Corollary 5.1

gives an exponential decay in relative entropy of solutions of this equation to the

Barenblatt-Prattle profile ρV (x) =
[(
C + λ(1−m)

2m
|x |2

) 1
m−1

]+

(where C > 0 is such

that
∫
IRn ρ(x) dx = 1) at the rate 2λ, and an exponential decay in the Wasserstein

distance at the rate λ.

6 A remarkable duality

In this section, we apply Theorem 2.1 when V = W = 0, to obtain an intriguing duality
between ground state solutions of some quasilinear PDEs and stationary solutions of
Fokker-Planck type equations.

Corollary 6.1 Let Ω ⊂ IRn be open, bounded and convex, let F : [0,∞) → IR be
differentiable on (0,∞) such that F (0) = 0 and x 7→ xnF (x−n) be convex and non-
increasing. Let ψ : IR → [0,∞) differentiable be chosen in such a way that ψ(0) = 0

and |ψ
1
p (F ′ ◦ ψ)′ | = K where p > 1, and K is chosen to be 1 for simplicity. Then, for

any Young function c with p-homogeneous Legendre transform c∗, we have the following
inequality:

sup{−
∫

Ω
F (ρ)+cρ; ρ ∈ Pa(Ω)} ≤ inf{

∫
Ω
c∗(−∇f)−GF ◦ψ(f); f ∈ C∞0 (Ω),

∫
Ω
ψ(f) = 1}

(117)
where GF (x) := (1− n)F (x) + nxF ′(x).
Furthermore, equality holds in (117) if there exists f̄ (and ρ̄ = ψ(f̄)) that satisfies

−(F ′ ◦ ψ)′(f̄)∇f̄(x) = ∇c(x) a.e. (118)
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Moreover, f̄ solves

div{∇c∗(−∇f)} − (GF ◦ ψ)′(f) = λψ′(f) in Ω
∇c∗(−∇f) · ν = 0 on ∂Ω,

(119)

for some λ ∈ IR, while ρ̄ is a stationary solution of

∂ρ
∂t

= div{ρ∇ (F ′(ρ) + V )} in (0,∞)× Ω
ρ∇ (F ′(ρ) + V ) · ν = 0 on (0,∞)× ∂Ω.

(120)

Proof: Assume that c∗ is p-homogeneous, and let Q′′(x) = x
1
qF ′′(x). Let

J(ρ) := −
∫

Ω
[F (ρ(y)) + c(y)ρ(y)]dy

and
J̃(ρ) := −

∫
Ω

(F + nPF )(ρ(x))dx+
∫

Ω
c∗(−∇(Q′(ρ(x)))dx.

Equation (48) (where we use V = W = 0, and then λ = ν = 0) then becomes

J(ρ1) ≤ J̃(ρ0) (121)

for all probability densities ρ0, ρ1 on Ω such that supp ρ0 ⊂ Ω and PF (ρ0) ∈ W 1,∞(Ω).
If ρ̄ satisfies

−∇(F ′(ρ̄(x))) = ∇c(x) a.e.,

then equality holds in (121), and ρ̄ is an extremal of the variational problems

sup{J(ρ); ρ ∈ Pa(Ω)} = inf{J̃(ρ); ρ ∈ Pa(Ω), supp ρ ⊂ Ω, PF (ρ) ∈ W 1,∞(Ω)}.

In particular, ρ̄ is a solution of

div{ρ∇(F ′(ρ) + c)} = 0 in Ω
ρ∇(F ′(ρ) + c) · ν = 0 on ∂Ω.

(122)

Suppose now ψ : IR → [0,∞) differentiable, ψ(0) = 0 and that f̄ ∈ C∞0 (Ω) satisfies
−(F ′ ◦ψ)′(f̄)∇f̄(x) = ∇c(x) a.e. Then equality holds in (121), and f̄ and ρ̄ = ψ(f̄) are
extremals of the following variational problems

inf{I(f); f ∈ C∞0 (Ω),
∫

Ω
ψ(f) = 1} = sup{J(ρ); ρ ∈ Pa(Ω)}

where

I(f) = J̃(ψ(f)) = −
∫

Ω
[F ◦ ψ + nPF ◦ ψ](f) +

∫
Ω
c∗(−∇(Q′ ◦ ψ(f))).

If now ψ is such that |ψ
1
p (F ′ ◦ ψ)′ | = 1, then | (Q′ ◦ ψ)′ | = 1 and

I(f) = −
∫

Ω
[F ◦ ψ + nPF ◦ ψ](f) +

∫
Ω
c∗(−∇f)),
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because c∗ is p-homogeneous. This proves (117). The Euler-Lagrange equation of the
variational problem

inf
{ ∫

Ω
c∗(−∇(f))− [F ◦ ψ + nPF ◦ ψ](f);

∫
Ω
ψ(f) = 1

}
reads as

div{∇c∗(−∇f)} − (GF ◦ ψ)′(f) = λψ′(f) in Ω
∇c∗(−∇f) · ν = 0 on ∂Ω

(123)

where λ ∈ IR is a Lagrange multiplier, and G(x) = (1− n)F (x) + nxF ′(x). This proves
(119). To prove that the maximizer ρ̄ of

sup{−
∫

Ω
(F (ρ) + cρ) dx; ρ ∈ Pa(Ω)}

is a stationary solution of (120), we refer to [19] and [22].
Now, we apply Corollary 6.1 to the functions F (x) = x lnx, ψ(x) = |x |p and c(x) =

(p− 1)|µx |q, with µ > 0 and c∗(x) = 1
p

∣∣∣ x
µ

∣∣∣p and 1
p

+ 1
q

= 1, to derive a duality between
stationary solutions of Fokker-Planck equations, and ground state solutions of some

semi-linear equations. We note here that the condition |ψ
1
p (F ′ ◦ ψ) | = K holds for

K = p. We obtain the following:

Corollary 6.2 Let p > 1 and let q be its conjugate (1
p

+ 1
q

= 1). For all f ∈ W 1,p(IRn),

such that ‖ f ‖p = 1, any probability density ρ such that
∫
IRn ρ(x)|x|qdx < ∞, and any

µ > 0, we have
Jµ(ρ) ≤ Iµ(f), (124)

where
Jµ(ρ) := −

∫
IRn
ρ ln (ρ) dy − (p− 1)

∫
IRn
|µy |qρ(y) dy,

and

Iµ(f) := −
∫
IRn
| f |p ln (| f |p) +

∫
IRn

∣∣∣ ∇f
µ

∣∣∣p − n.
Furthermore, if h ∈ W 1,p(IRn) is such that h ≥ 0, ‖h ‖p = 1, and

∇h(x) = −µqx|x |q−2h(x) a.e.,

then
Jµ(hp) = Iµ(h).

Therefore, h (resp., ρ = hp) is an extremum of the variational problem:

sup{ Jµ(ρ) : ρ ∈ W 1,1(IRn), ‖ ρ ‖1 = 1} = inf{ Iµ(f) : f ∈ W 1,p(IRn), ‖ f ‖p = 1}.
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It follows that h satisfies the Euler-Lagrange equation corresponding to the constraint
minimization problem, i.e., h is a solution of

µ−p∆pf + pf | f |p−2 ln(| f |) = λf | f |p−2, (125)

where λ is a Lagrange multiplier. On the other hand, ρ = hp is a stationary solution of
the Fokker-Planck equation:

∂u

∂t
= ∆u+ div(pµq|x|q−2xu). (126)

We can also apply Corollary 6.1 to recover the duality associated to the Gagliardo-
Nirenberg inequalities obtained recently in [11].

Corollary 6.3 Let 1 < p < n, and r ∈
(
0, np

n−p

]
such that r 6= p. Set γ := 1

r
+ 1

q
, where

1
p

+ 1
q

= 1. Then, for f ∈ W 1,p(IRn) such that ‖ f ‖r = 1, for any probability density ρ
and for all µ > 0, we have

Jµ(ρ) ≤ Iµ(f) (127)

where

Jµ(ρ) := − 1

γ − 1

∫
IRn
ργ − rγµq

q

∫
IRn
| y |qρ(y)(y) dy,

and

Iµ(f) := −
(

1

γ − 1
+ n

)∫
IRn
| f |rγ +

rγ

pµp

∫
IRn
|∇f |p.

Furthermore, if h ∈ W 1,p(IRn) is such that h ≥ 0, ‖h ‖r = 1, and

∇h(x) = −µqx|x |q−2h
r
p (x) a.e.,

then
Jµ(hr) = Iµ(h).

Therefore, h (resp., ρ = hr) is an extremum of the variational problems

sup{ Jµ(ρ) : ρ ∈ W 1,1(IRn), ‖ ρ ‖1 = 1} = inf{ Iµ(f) : f ∈ W 1,p(IRn), ‖ f ‖r = 1}.

Proof: Again, the proof follows from Corollary 6.1, by using now ψ(x) = |x |r and

F (x) = xγ

γ−1
, where 1 6= γ ≥ 1 − 1

n
, which follows from the fact that p 6= r ∈

(
0, np

n−p

]
.

Indeed, for this value of γ, the function F satisfies the conditions of Corollary 6.1. The

Young function is now c(x) = rγ
q
|µx |q, that is, c∗(x) = 1

p(rγ)p−1

∣∣∣ x
µ

∣∣∣p, and the condition

|ψ
1
p (F ′ ◦ ψ)′ | = K holds with K = rγ.

Moreover, if h ≥ 0 satisfies (118), which is here,

−∇h(x) = µqx|x |q−2h
r
p (x) a.e.,

then h is extremal in the minimization problem defined in Corollary 6.3.
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As above, we also note that h satisfies the Euler-Lagrange equation corresponding
to the constraint minimization problem, that is, h is a solution of

µ−p∆pf +

(
1

γ − 1
+ n

)
f | f |rγ−2 = λf | f |r−2, (128)

where λ is a Lagrange multiplier. On the other hand, ρ = hr is a stationary solution of
the evolution equation:

∂u

∂t
= ∆uγ + div(rγµq|x|q−2xu). (129)

Example: In particular, when µ = 1, p = 2, γ = 1 − 1
n

and then r = 2∗ = 2n
n−2

is the
critical Sobolev exponent, then Corollary 6.3 yields a duality between solutions of (128),
which here the Yamabe equation:

−∆f = λf | f |2∗−2,

(where λ is the Lagrange multiplier due to the constraint ‖ f ‖2∗ = 1), and stationary
solutions of (129), which is here the rescaled fast diffusion equation:

∂u

∂t
= ∆u1− 1

n + div
(

2n− 2

n− 2
xu
)
.
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