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By Nassif Ghoussoub, Scientific Director of the Banff International Research Station, and Professor of Mathematics at the University of British

Columbia

Nicole Tomczak-Jaegermann, of the University of Alberta, has been

awarded the 2006 CRM–Fields–PIMS prize. According to the citation,

“She has made outstanding contributions to infinite dimensional Banach

space theory, asymptotic geometric analysis, and the interaction between

these two streams of modern functional analysis. She is one of the few

mathematicians who have contributed important results to both areas. In

particular, her work constitutes an essential ingredient in a solution by the

1998 Fields Medallist W. T. Gowers of the homogeneous space problem

raised by Banach in 1932.”

Tomczak-Jaegermann received her Master’s (1968) and Ph.D. (1974)

degrees from Warsaw University, where she held a position until mov-

ing to the University of Alberta in 1983. There she holds a Canada Re-

search Chair in Geometric Analysis. She is a Fellow of the Royal Society

of Canada, lectured at the 1998 ICM, and has won the CMS’s Krieger-

Nelson Prize Lectureship. She has served the Canadian and international

research community in many ways, including her current position on the

BIRS Scientific Advisory Board and previously as a Site Director of PIMS

in Alberta.

What is this area of mathematics which has produced two recent Fields

medallists (J. Bourgain and T. Gowers) among many other modern promi-

nent mathematical figures, and yet is still so misunderstood by even the

most seasoned of mathematicians? The story starts with the 1932 book

of Stefan Banach where he laid the foundation of—infinite dimensional—

Banach space theory. It was to be a unifying framework for many problems

arising in differential equations and applied fields, but the intellectual cu-

riosity of the customers of the “Scottish cafe” in L’vov took over, and the

quest for a “classification theory” for infinite dimensional Banach spaces

started soon after. Most problems turned out to be deep and hard and way

beyond the reach of the mathematicians of the 30s and 40s. All these ques-

tions have now been answered and many solutions had to wait till the end

of the century. But while the questions look like mere mathematical cu-

riosities, the techniques developed to answer them turned out to be rich

and far reaching: from convex analysis to combinatorics, and from infinite

dimensional Ramsey theory, to the refined asymptotics of finite dimen-

sional convex bodies, via the theories of random matrices and of Gaussian

processes.

Undoubtedly motivated by the structural rigidity of the classical Ba-

nach spaces (Hilbert space, Lp-spaces and spaces of continuous func-

tions), S. Banach posed in his book, several intriguing problems about

the structure of general infinite dimensional spaces. Are they isomorphic

to their own hyperplanes? to their squares or to their cubes? But the most

well-known of the lot were undoubtedly the Schauder basis problem and

the homogeneous space problem. Among Nicole Tomczak-Jaegermann’s

numerous defining contributions to this field, I shall only describe her con-

tributions to these two problems. I will also discuss briefly her more recent

work on the metric entropy. I will unfortunately not be able to describe her

other equally important contributions to Banach-Mazur distances between

Banach spaces—in particular between the Schatten classes of operators,

to her multiple results with H. Koenig [5] of the best projection constants

problem, her introduction of the seminal concept of complex convexity in

infinite dimensional complex spaces, her influential paper with A. Pajor

[9] on an important strengthening of the so-called Sudakov’s minoration

theorem in the theory of Gaussian processes, as well as her most recent

results with S. Szarek discovering the phenomenon of finite-dimensional

saturation and solving a number of open problems from the early 1980s.

For all that, I refer the interested reader to her encyclopedic 1989 mono-

graph [10] and of course to her published work.

Before going into more specifics, it is worth emphasizing that the quest

to solve these classical problems has led to a whole new field of study now

known as Asymptotic Geometric Analysis. Initiated and developed by V.

Milman and eventually by many others, this new area of research calls for

a deeper understanding of infinite dimensional phenomena via the analysis

of various functions of an arbitrarily large number of free variables, as well

as certain geometric objects that are determined by an infinitely growing

number of parameters. This in turn led to spectacular developments in the

so-called asymptotic theory of convex bodies, which is roughly concerned

with geometric and linear properties of finite-dimensional objects, and the

asymptotics of their various quantitative parameters as the dimension tends

to infinity.

Results developed in two opposite—yet equally striking—directions.

The “optimistic” side was triggered by an early spectacular result of A.

Dvoretsky: every Banach space of sufficiently large dimension contains a

subspace that is almost isometric to Hilbert space (�k�) of a given dimen-

sion k. In other words, one can find in any n-dimensional convex body

a central section of dimension log�n� which is arbitrarily close to a Eu-

clidean ball. This eventually led to a large number of surprising results,

the spirit of which being that certain structures get better and better as the

dimension grows to infinity. The fact that most of these results can be ex-

plained by the concentration of measure phenomenon started with the ex-

ceptional insight of V. Milman, who subsequently developed the concept

further in collaboration with M. Gromov and others (e.g., see [7]) leading

to equally remarkable results in geometry and combinatorics. This effort

was taken up by M. Talagrand and others in the 90s with great results and

striking applications to probability and information theory.

The pessimistic side was mostly triggered by Gluskin’s result who

used probabilistic methods to randomly select certain “pathological” pro-

jections of the n-dimensional octahedron (the unit ball in �n� ). These new

objects were then superposed by extremely clever techniques for gluing fi-

nite dimensional spaces—initiated by J. Bourgain, S. Szarek, N. Tomczak-

Jaegermann and many others—to construct exotic infinite dimensional

counterexamples to several long standing problems, some of which are

described below.

I. The Schauder basis problem: Does every Banach
space have a basis?

This problem was of course solved negatively by P. Enflo in the 1970s

when he constructed a Banach space without the approximation property,

and therefore computations in such a space cannot be summarily reduced

to manipulating finite dimensional objects, or finite rank operators. In the
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1990s, Nicole Tomczak-Jaegermann and her collaborator P. Mankiewicz

went way beyond that particular construction, as they developed an ingen-

uous method to build such counterexamples in a generic way starting from

any non-Hilbertian space. They proved the following

Theorem 1 (N. Tomczak-Jaegermann, P. Mankiewicz [6]) If X is a Ba-

nach space not isomorphic to Hilbert space, then ���X� has necessarily a

quotient space which itself contains a subspace with no Schauder basis.

Recall that if �Xn�n is a sequence of Banach spaces, their ��-sum,

�
L

Xn��� , is then the Banach space of all sequences of vectors z � �zn�,

with zn � Xn for all n, such that kzk�Xn � �
P

n kznk
�

Xn�
��� ��. If

Xn � X for all n, we then write ���X� instead of �
L

X��� .

In other words, spaces without a Schauder basis can now be con-

structed in just three canonical operations starting from an arbitrary Ba-

nach space X not isomorphic to Hilbert space. Such spaces are of the

form Z � �
L

Zn��� , where Zn are finite-dimensional quotients of sub-

spaces of ���X�. It should be noted that this theorem is amazingly sharp,

in the sense that starting with ���X�—as opposed to X itself— is neces-

sary, since W. J. Johnson had constructed earlier a Banach space X not

isomorphic to Hilbert space, all of whose quotients of subspaces do have

a basis.

More remarkable are the techniques used for such a construction.

They consist of building infinite-dimensional spaces by properly gluing

finite-dimensional ones which are themselves obtained by probabilistic

methods for selecting appropriate “random quotients”. This line of study

was initiated by Gluskin who considered random projections of the n-

dimensional octahedron (the unit ball in �n� ) and proved that the diameter

of the Banach-Mazur compactum of n-dimensional normed spaces is of

order n. The first one to use finite-dimensional random quotients of �n� in

an infinite-dimensional construction is J. Bourgain who used it to construct

a real Banach space that admits two non-isomorphic complex structures.

II. Banach’s homogeneous space problem: Is Hilbert
space the only homogeneous Banach space? i.e., is it
the only one that can be isomorphic to all of its infinite
dimensional subspaces1?

Now we know that the answer to this question of Banach is affirmative,

thanks to independent and remarkably complementary contributions by

T. Gowers on one hand, and by N. Tomczak-Jaegerman and her student

R. Komorowski on the other. The first obvious difficulty in attacking the

homogeneous space problem is the lack of information on the uniform

boundedness of norms of the isomorphisms. Even up to this day no direct

proof is known of the fact that X being homogeneous, must imply that X

is uniformly isomorphic to all of its infinite-dimensional subspaces, as is

the case for Hilbert space which X is supposed to be after all. However,

the breakthrough came when N. Tomczak-Jaegerman and R. Komorowski

proved that much can be said if the space has an unconditional basis: that

is a basis fzig such that for some C � � we have for any scalars faig,

and any choice of signs, f�ig, that k
P

i �iaizik � Ck
P

i aizik.

Theorem 2 (N. Tomczak-Jaegermann & R. Komorowski [4]) Let X be

a Banach space with an unconditional basis, then either X contains a

Hilbertian subspace or otherwise it must contain a subspace without an

unconditional basis.

An immediate corollary is the following curious conditional result: If X

is a homogeneous Banach space not isomorphic to a Hilbert space, then X

cannot have an infinite-dimensional subspace with an unconditional basis.

This curiously made a connection with another famous question coming

from the 1950s:

Does every infinite-dimensional Banach space has an infinite-dimensional

subspace with an unconditional basis?

This question had however received—around the same time—a negative

answer by T. Gowers and B. Maurey, via a breakthrough construction

that opened a whole new understanding of infinite-dimensional phenom-

ena. This new understanding very fast led to negative solutions for several

other problems open for decades, such as the hyperplane problem of Ba-

nach mentioned above, the distortion problem solved by E. Odell and Th.

Schlumprecht in [8], as well as many other longstanding open problems.

Actually, the Gowers-Maurey space X� has a stronger property: no sub-

space ofX� is a topological direct sum of two infinite-dimensional Banach

spaces. Equivalently, given any two infinite-dimensional subspaces Z and

W of X�, we necessarily have

inffkz � wk� z � Z� w �W� kzk � kwk � �g � ��

That is, the unit spheres of any two infinite dimensional subspaces almost

intersect. Such a space X� is called hereditarily indecomposable (an H.I.

space). Moreover, they proved the following.

Theorem 3 (Gowers-Maurey [3]) A hereditarily indecomposable Banach

space is not isomorphic to any proper subspace of itself.

In other words, these spaces are essentially the counterpart of homo-

geneous spaces. Note also that an H.I. space cannot have an infinite-

dimensional subspace with an unconditional basis, since otherwise, such

a subspace would be a direct sum of the span of the even elements of the

basis and the span of the odd elements. However, the opposite implication

is clearly false since there exist spaces which can be decomposed but still

have no subspace with an unconditional basis. Many interesting examples

of spaces having these and related properties were eventually constructed

by Gowers-Maurey, Odell-Schlumprecht, and Argyros and his co-authors,

but the precise connection between subspaces with unconditional basis and

H.I. subspaces was finally clarified by the spectacular structural dichotomy

proved by Gowers in 1993. In particular, it provided the last missing piece

in the solution of the homogeneous space problem.

Theorem 4 (T. Gowers [2]) Every infinite-dimensional Banach space ei-

ther has an infinite dimensional subspace with an unconditional basis or

has a hereditarily indecomposable subspace.

The theorem is actually a consequence of a general combinatorial result,

which is, in a sense, a vector space analogue of infinite versions of Ramsey

theorem.

Once all these results were proved, the solution to the homogeneous

space problem is now simple. By the theorem of Tomczak-Jaegermann

1Here and throughout, all subspaces are assumed to be closed
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and R. Komorowsky (Theorem 2), a homogeneous space X not isomor-

phic to Hilbert space cannot have an infinite-dimensional subspace with

an unconditional basis. By Gowers dichotomy theorem, it must contain

an H.I. subspace, and hence X itself must be H.I. since it is homoge-

neous. But then, Theorem 3 of Gowers-Maurey says that it cannot then

be isomorphic to any proper subspace of itself, which means that X is not

homogeneous after all.

III. The finite-dimensional isomorphic version of the
homogeneous space problem

It is well known that all finite dimensional Banach spaces of the same

dimension (say n) are isomorphic to Euclidean space �n� . However, the

isomorphism constants can vary wildly, and so one can ask the following

finite-dimensional version of the homogeneous space problem:

For � � � � � and K � � does there exist f���K� � � such that

an n-dimensional space X is necessarily f���K�-isomorphic to Eu-

clidean space �n� , whenever all of its ��n�-dimensional subspaces are

K-isomorphic?

This question is an isomorphic finite-dimensional version of two questions

from Banach’s book. The first one regards an n-dimensional symmetric

convex body all of whose k-dimensional sections are affinely equivalent

which was almost completely solved by Gromov in his doctoral thesis

(K � � in the above question). The second one was the homogeneous

space problem discussed above.

A positive answer to the above question was proved for sufficiently

small � in 1987 by J. Bourgain. In 1989, N. Tomczak-Jaegermann and

P. Mankiewicz managed to prove the result for all �, with a “reasonable”

function f���K�. Actually, f���K� � cK��� for � � � � ��	, and

cK�, for ��	 � � � �, where c is a constant only depending on �.

Both solutions rely again on the study of random quotients of normed

spaces already mentioned above. We note that even though the method

for constructing specific convex bodies from random projections of poly-

tops, were initiated by Gluskin in 1981, the consideration of random quo-

tients in a general form started with the above results of J. Bourgain and P.

Mankiewicz-N. Tomczak-Jaegermann, and its study was eventually devel-

oped jointly by the last two authors in a series of papers over the years.

IV. The metric entropy problem

If K and B are two subsets of a vector space (or just a group, or even a

homogeneous space), the covering number of K by B, denoted N�K�B�,

is the minimal number of translates of B needed to cover K. Similarly, the

packing number M�K�B� is the maximal number of disjoint translates of

B by elements of K. The two concepts are closely related and we have

N�K�B �B� �M�K�B� � N�K� �B �B�����

If now B is the unit ball of a normed space and K a subset of that space

(the setting and the point of view functional analysts usually employ),

these notions reduce to considerations involving the smallest 	-nets or the

largest 	-separated subsets of K.

Besides the obvious geometric framework, packing and covering num-

bers appear naturally in several fields of mathematics, ranging from classi-

cal and functional analysis, through probability theory and operator theory

to computer science and information theory (where a code is typically a

packing, while covering numbers quantify the complexity of a set). As

with other notions related to convexity, an important role is often played

by considerations involving duality.

In an operator-theoretic context, one considers the so-called entropy

numbers of an operator u 
 X � Y where X and Y are Banach spaces.

They are defined as

en�u� � inff
� such that N�uBX � 
BY � � �n��g�

These numbers are used to quantify compactness properties of the

operator and one can easily see that u is a compact operator if and only if

limn en�u� � �. Now a classical theorem of Schauder states that u is a

compact operator if and only if its adjoint u� is compact, which readily

means that the limiting behaviours of the sequences en�u� and en�u
��

are similar. In 1972, Pietsch asked several specific questions regarding

entropy numbers and duality. Roughly speaking, do these dual entropy

numbers always obey similar asymptotic behaviours? For example, is it

true that fen�u�g belongs to the space �p (for some � � p � �) if and

only if fen�u��g does? The strongest version of Pietsch’s conjectures can

also be formulated in the language of covering numbers in the following

way:

There exist numerical constants a� b � � such that for any dimension n

and for any two centrally symmetric convex bodies K�B in Rn one has

b�� log
�
N�B�� aK�� � log

�
N�K�B� � b log

�
N�B�� a��K���

Here A� 
� fu � Rn 
 supx�Ahx� ui � �g denotes the polar body of A.

This conjecture is still open in its full generality. However, the ques-

tion about the “global” behaviour of entropy numbers was settled posi-

tively in 1987 by N. Tomczak-Jaegermann in the special but central case,

when either the domain or target space is a Hilbert space, and more gen-

erally by J. Bourgain, A. Pajor, S. Szarek and N. Tomczak-Jaegermann in

1989, in the much more general situation where one of the spaces is of

type p, for some p � �. Such spaces also comprise all �p and Lp-spaces

(whether classical or non-commutative) for � � p � �, as well as all

uniformly convex and all uniformly smooth spaces. In this case, the con-

stants a� b depend only on p and they are uniformly bounded if p stays

away from 1 and�. More recently, the strongest version of Pietsch’s con-

jecture stated above, was established by Artstein, Milman and Szarek in

2003, again in the case when one of the spaces is a Hilbert space (equiv-

alently, when the convex body is an ellipsoid). N. Tomczak-Jaegermann

joined effort with them in 2004 (see [1]) to establish the conjecture when

one of the spaces is of type p � �, and to develop the theory still further.
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