
2008 CRM-Fields-PIMS Prize: Allan Borodin
Stephen Cook

Allan Borodin of the University of Toronto has been awarded the 2008 CRM-
Fields-PIMS prize. According to the citation “Professor Borodin is a world leader
in the mathematical foundations of computer science. His influence on theoretical
computer science has been enormous, and its scope very broad. Jon Kleinberg,
winner of the 2006 Nevanlinna Prize, writes of Borodin, ”he is one of the few
researchers for whom one can cite examples of impact on nearly every area of
theory, and his work is characterized by a profound taste in choice of problems,
and deep connections with broader issues in computer science.” Allan Borodin
has made fundamental contributions to many areas, including algebraic computa-
tions, resource tradeoffs, routing in interconnection networks, parallel algorithms,
online algorithms, and adversarial queuing theory.”

Borodin received his B.A. in Mathematics from Rutgers University in 1963,
his M.S. in Electrical Engineering & Computer Science in 1966 from Stevens In-
stitute of Technology, and his Ph.D. in Computer Science from Cornell University
in 1969. He was a systems programmer at Bell Laboratories in New Jersey from
1963-1966, and a Research Fellow at Cornell from 1966-1969. Since 1969 he has
taught with the computer science department at the University of Toronto, becom-
ing a full professor in 1977, and chair of the department from 1980-1985. He has
been the editor of many journals including the SIAM Journal of Computing, Al-
gorithmica, the Journal of Computer Algebra, the Journal of Computational Com-
plexity, and the Journal of Applicable Algebra in Engineering, Communication
and Computing. He has held positions on, or been active in, dozens of commit-
tees and organizations, both inside and outside the University, and has held several
visiting professorships internationally. In 1991 Borodin was elected a Fellow of
the Royal Society of Canada.

The discipline of computer science has been an exceptionally successful blend
of engineering and mathematical science with a healthy dose of human factor and
aesthetic issues. Allan Borodin has made significant contributions to many diverse
aspects of the discipline, with a major focus on the more mathematical areas.
A common theme in his research is that he explores fundamental questions that
should have well-understood explanations but seem to often defy answers to even
the most basic forms of these questions. As a result Borodin has often been at the
forefront of developing new models and problem formulations that have become
standard frameworks for studies in computer science.

Perhaps the most basic scientific aspect of computer science is to understand
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the intrinsic limitations of what can and what cannot be efficiently computed in
various models of computing with respect to various measures of complexity. This
study is the heart of complexity theory. The other side of the complexity theory
coin is the design and analysis of algorithms. Borodin has been involved in both
sides of this coin since his first publication in 1969. In his Cornell PHD thesis,
Borodin studied the time complexity classes introduced by Hartmanis and Stearns
and the more abstract complexity measures axiomatized by Blum. He showed that
“constructible” bounding functions as used by Hartmanis and Stearns to develop
complexity hierarchies are necessary in the sense that for any complexity measure
(be it time, space, etc.) there are arbitrarily large gaps (where no new functions
are being computed) created by non-constructible bounding functions [Bor72].
Another thesis result (with Constable and Hopcroft) showed that time complexity
classes are dense [BCH69].

Borodin soon became more focused on the complexity of specific functions
and, in particular, what we now call “algebraic complexity theory”. The complex-
ity world was basically unchartered territory at the end of the 1960s although many
surprising and widely applicable results (for example, the Fast Fourier Trans-
form and fast integer multiplication) were developed outside the the confines
of a formal theory. A number of results accelerated the development of com-
plexity theory. One such result was Cook’s formulation of the class NP and
the identification of NP complete problems which became and still remains the
main source of evidence that many common combinatorial problems cannot be
solved efficiently (i.e. within polynomial time). On the other side of the coin,
Strassen’s surprising result that matrix multiplication can be computed within
O(nlog2 7) ≈ O(n2.81) arithmetic operations showed that our common intuition
and beliefs cannot be trusted (the obvious method requires n3 multiplications).
Following Strassen’s dramatic result, Borodin proved a number of results help-
ing to establish the field of algebraic complexity. Resurrecting an old question
raised by Ostrovsky, Borodin showed that Horner’s rule for evaluating a poly-
nomial is uniquely optimal in being the only method that can achieve the opti-
mal 2n arithmetic operations. Since (even with preconditioning) n/2 multipli-
cations/divisions and n additions/subtractions are required for one polynomial
evaluation for most degree n polynomials, how many operations are needed to
evaluate a degree n polynomial at (say) n arbitrary points? When the evaluation
points are the powers of a suitable primitive root of unity, the FFT performs these
evaluations in O(n logn) operations rather than the O(n2) operations required if
one evaluates at each point individually. By reduction to Strassen’s fast matrix
multiplication, Borodin and Munro showed that O(n1.91) operations are sufficient
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[BM71]. Then Borodin and Moenck showed that Ω(n log n) non scalar multipli-
cations and O(n log2 n) total operations are sufficient [BM74], which remains the
best asymptotic bound for total operations (and matched by Strassen’s algebraic
geometry based Ω(n log n) lower bound for the number of non scalar multiplica-
tions). The Strassen bound uses the Bezout Theorem on the degree of an algebraic
variety to generalize the obvious fact that an nth degree polynomial requires log n
multiplications (since the degree can at most double following a multiplication).

Using the FFT, two nth degree polynomials can be multiplied in O(n) non
scalar multiplications and O(n logn) additions. Is there an analogue to the degree
bound so as to establish lower bounds on the number of additions to compute
polynomials? Borodin and Cook [BC76] show that the number of real roots of
a polynomial is bounded by the minimal number of additions used to compute
the polynomial. The Borodin and Cook lower bounds were improved by Risler
using results from real algebraic geometry. Beyond these research contributions,
Borodin and his first PHD student Ian Munro wrote the seminal text book [BM75]
in the area of algebraic complexity and it remained the most authoritative source
for approximately 20 years.

Another area of interest for Borodin concerns parallel computation and net-
work routing. How does parallel time complexity relate to the more standard
complexity measures of time and space? Following the known results relating
sequential time with uniform circuit size, Borodin showed that the space measure
is directly related to uniform circuit depth, a basic measure of parallel complex-
ity. Unlike the situation for classical sequential time studies, there are alternative
models of parallel computation, including various parallel RAM models and in-
terconnection network models. In order for an interconnection network to be able
to simulate a RAM, the network must be able to simply and efficiently rout simul-
taneous messages. Oblivious routing schemes are simple in the sense that the path
of each message is independent of the routes of other messages. Valiant showed
that by obliviously routing to a random intermediate node, any permutation could
be routed in time O(d) on a d-dimensional hypercube. This is asymptotically opti-
mal since d is the diameter of the network. Borodin and Hopcroft [BH85] showed
that this use of a random intermediate node is necessary in the following strong
sense: in any degree d network with n nodes, for any deterministic (i.e. non ran-
domized) oblivious routing algorithm, there exists a permutation that will have a
bottleneck node forcing the routing to take at least Ω

√
n/d3/2 time. Borodin was

also the co-designer of some surprising parallel algorithms, including (with von
zur Gathen and Hopcroft) [BvzGH82] a randomized parallel greedy algorithm to
derive a log2 n parallel time (i.e. depth of arithmetic circuit) algorithm for com-
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puting the rank of an n×n matrix, and a log log n algorithm for merging two lists
on a CREW (Concurrent Read Exclusive Write) RAM model.

The work on packet routing led to a new area of research. Packet routing can
be viewed as a queuing system in which the edges of the network become the pro-
cesses and one can study the queueing effects in terms the nature of the network
and/or the scheduling rules used by the nodes of the network. In this setting, in-
put requests (e.g. oblivious packet paths or requests for packet transmission along
any path from source to target) are characterized more by burstiness rather than by
any standard probabilistic distribution. Furthermore, the processing time (trans-
mission of a single or a bounded number of packets along an edge) is usually
considered to have a well-defined time. Borodin, Kleinberg, Raghavan, Sudan
and Williamson [BKR+01] modeled this burstiness by an adversarial model and
developed an area named “adversarial queuing theory”. There are some natural
queuing limitations on the stability (i.e. bounded queue sizes and time to complete
a transmission) with the main limitation (say in oblivious routing) being that the
rate of requests for an edge cannot exceed the processing rate of the edge. Borodin
et al began the study as to which networks are always stable at a given rate (in-
dependent of the scheduling rule) and which scheduling rules are always stable
(independent of the network). Adversarial studies of packet routing and other
queueing systems has led to a number of surprising results (e.g. the instability of
FIFO at any rate for certain networks as shown by Bhattacharjee and Goel).

While complexity theory has been very successful in many aspects (e.g. un-
derstanding the relation between complexity measures, establishing complexity
based cryptography, utilizing hardness to develop pseudo random generators, the
development of new notions of “proofs” including interactive proofs and proba-
bilistically checkable proofs), the major limitation of the field thus far is in the
inability to prove complexity impossibility results for “explicitly defined natural
problems” (for example, NP search and optimization problems). More specifi-
cally, non-linear time bounds (on a sufficiently general model of computation) or
space bounds greater than log n still elude us. Perhaps then the simplest barrier to
break is to exhibit a problem which cannot be simultaneously computed in small
time and space. Borodin lead a group of coauthors [BFK+81] to prove the first
time-space tradeoff result for comparison based sorting in what can be said to be
the most general model for such a result. They considered comparison branching
programs which are DAGS where nodes are labelled by comparisons “ai ≤ aj?”
between elements from a given “read-only” input set of n elements. In this model,
edges are labelled by sequences of input elements that are being output if this edge
is traversed. The complete sequence of outputs along any path defines the output
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of the program. In this non-uniform model (like circuits, a different program is
allowed for each n), time is the length of the longest path (or expected path length
if one were considering average case complexity), and space is the logarithm of
the number of nodes in the DAG (i.e. the information theoretic lower bound on
the memory being used). In contrast to list merging, which can be computed si-
multaneously in linear time and O(log n) space, Borodin et al show that the time
space product T · S = Ω(n2); that is, any small space method must require sig-
nificantly more time than the optimal n log n bound achievable by methods such
as merge-sort. (For all space bounds S(n) between log n and n, a corresponding
upper bound can be obtained.)

This paper [BFK+81] was seminal and started a long and continuing research
effort to derive time space bounds for natural problems in appropriate models.
The sorting tradeoff was soon followed by a similar comparison branching pro-
gram tradeoff for a decision problem, namely the element distinctness problem.
The initial element distinctness tradeoff was by Borodin et al [BFadH+87], and it
was then improved by Yao. These comparison branching programs (where the
algorithm does not have access to the encoding of the input elements) leaves
open the possibility that the corresponding Boolean problems (e.g. say encod-
ing integer inputs in binary) can be computed using simultaneously small time
and space. This consideration led Borodin and Cook [BC82] to introduce the R-
way branching program model, where now inputs are considered to be inputs in
some range [1, R], and branching program nodes are of the form “ai =?”, with
up to R branches corresponding to each of the possible values of ai. Time and
space are defined as before. Borodin and Cook showed that sorting n numbers in
the range [1, n2] required T · S = Ω(n2), proving a very strong tradeoff result,
since the total binary encoding length of the input is only O(n log n) bits. This
represents the first negative result for an explicit (polynomial time computable)
Boolean problem in a completely general model, albeit not a decision problem. It
took approximately 20 more years to establish negative results (of a much weaker
form) for a Boolean decision problem.

In the mid 1980s, Borodin began working on the topic of online approxima-
tion algorithms which became known as competitive analysis, whereby the per-
formance of an online algorithm (making decisions for each input as it arrives) is
compared to the performance of an optimal solution with complete knowledge of
the entire input. There had been a number of earlier important results concern-
ing online algorithms for specific problems that need not necessarily be consid-
ered as online problems (for example, Graham’s study of the makespan problem,
Kierstead and Trotters online interval colouring, and Yao’s study of online bin
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packing). Sleator and Tarjan proposed competitive analysis (in contrast to distri-
butional studies) for problems which were inherently online such as paging and
list accessing. Borodin, Linial and Saks [BLS92] then proposed an abstract online
problem framework called metrical task systems (MTS) which was soon followed
by the k-server model of Manasse, McGeouch and Sleator. The introduction of
competitive analysis for online problems and these abstract problem formulations
spawned a wealth of research activity that has had an impact well beyond online
problems. For example [BLS92] provides an optimal 2n − 1 competitive ratio
bound for deterministic algorithms for any n-state MTS. It also introduced ran-
domized algorithms in this context showing that the uniform metric system had
a 2Hn ≈ 2 ln n randomized competitive ratio. This led the way to a randomized
paging algorithm by Fiat et al and, moreover, led to interest in trying to derive ran-
domized algorithms for general MTS and k-server problems. In this context Bar-
tal introduced Hierarchically Separated Tree spaces (HSTs) for which O(logn)
randomized algorithms exist and furthermore arbitrary metric spaces can be effi-
ciently embedded into such HSTs. The use of HSTs has now become a standard
tool in combinatorial approximation.

Beyond the seminal MST work, Borodin was influential in a number of cen-
tral results concerning online competitive analysis. Borodin et al [BIRS95] intro-
duced a variant of competitive analysis so as to model the locality of reference
exhibited by (for example) paging requests. Another landmark paper introduces
“request-answer games”, which provide a framework for defining most known
online problems. In this very abstract setting (which, for example, includes the
MTS and k-server settings), Borodin and coauthors [BDBK+94] relate the power
of different adversarial models for randomized online algorithms; namely, they
identify the more standard oblivious adversary (as used in offline computation)
where the adversary generates the input request sequence without knowledge of
the algorithm’s coin tosses, and adaptive adversaries where the adversary adap-
tively creates the input sequence by observing the coin tosses and actions of the
online algorithm. For adaptive adversaries, the adversary (acting also as the “op-
timal benchmark”) can either play the game online or play the game in hindsight
as an offline player. A number of randomized algorithms were being studied rel-
ative to (not so precisely defined) adaptive adversaries. Ben David et al show that
algorithms competing against online adaptive adversaries can be simulated by al-
gorithms competing against offline adaptive adversaries which in turn can be sim-
ulated by deterministic algorithms thereby showing that randomization can only
yield significantly improved competitive ratios when formulated as algorithms
competing against oblivious adversaries.
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Finally one of Borodin’s most influential contributions to online analysis is
his text [BEY98] with former student Ran El-Yaniv. The text (published in 1998)
remains the authoritative reference for this area, although many significant results
have followed its publication, including a number of results addressing questions
raised in the book.

Borodin has made significant contributions to a number of other aspects of
algorithm analysis. One paper with Ostrovsky and Rabani [BOR03] provides
the first memory-search time results for problems (e.g. nearest neighbour and
partial match search) in high dimensional spaces, proving that for deterministic
algorithms some form of exponential “curse of dimensionality” must exist for a
widely studied geometric search model.

Borodin’s most recent research area has been an area he has essentially been
creating, namely the attempt to study the power and limitations of “simple al-
gorithms”, especially (to date) for search and optimization problems. While we
equate efficient algorithms with time and/or memory efficiency, there are other
important aspects to algorithm design. It is a rather remarkable fact that for over
70 years we have a well-accepted formalization (i.e. the Church -Turing thesis)
for the intuitive concept of “computable function” and the associated concept of
an algorithm. And if we stay within classical computing models (in contrast to say
quantum computers) we have a reasonably well-accepted definition of “efficiently
computable”. But we often want simple understandable algorithms, at least as
starting points or benchmarks for developing more sophisticated, complex algo-
rithms. That is, we tend to use a small set of basic algorithmic paradigms as a
“toolbox” for an initial (and sometimes the best known or even optimal) method
for solving large classes of problems in many settings. These basic paradigms in-
clude greedy algorithms, divide and conquer, dynamic programming, local search,
primal dual algorithms and IP/LP rounding. Surprisingly, although we intuitively
understand what these concepts mean, rarely do we attempt any precise formula-
tion, and a precise formulation is necessary if one is to gain any insight into the
ultimate power and limitations of these methods.

The long standing and significant study and use of greedy algorithms provides
a great example of an algorithmic paradigm that seems so natural and obvious that
no definition seems necessary. It is hard to think of a computational area where
some concept of greediness does not appear. The elegant results of Edmonds, Ko-
rte, Lovasz connecting matroids and greedoids with the optimality of “the” natural
greedy algorithm for certain set systems was the starting point for a number of in-
sightful results concerning optimal greedy algorithms. But greedy algorithms are
mainly used as a heuristic or to obtain approximation results. Borodin, Nielson
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and Rackoff [BNR03] introduce the priority algorithm framework as a model for
“greedy-like” optimization algorithms in almost any setting. We can think of this
framework as an offline extension of online algorithms. An input to a problem
is a set of items (for example, jobs in a scheduling problem, vertices in a graph
problem, propositional variables in a SAT problem) and a priority algorithm con-
siders and makes decisions about items one by one but now in an order deter-
mined (in advance or adaptively) by the algorithm rather than the order given by
(adversarial) nature. Of course, the trick here is formulate what orderings a “rea-
sonable” algorithm can use. For example, it would make no sense to allow the
algorithm to compute an optimal solution and a corresponding optimal order that
allows the algorithm to produce the optimal solution. One approach would be to
resort to complexity considerations and say that each item is chosen within some
acceptable time. But that would bring us back to our current inability to prove
limitations based on time complexity. Instead the priority framework relies on a
simple to state concept of a local ordering. In fact, the allowable orderings are
(at each iteration in the case of adaptive priority algorithms) those satisfying Ar-
row’s IIA (independence of irrelevant attributes) axiom. Whereas in social choice
theory this axiom is controversial, for greedy-like algorithms the concept allows
great generality while still being amenable to analysis. And what does this have
to do with greediness? In the priority framework it is not the ordering decisions
that are greedy but rather (for greedy priority) it is the decisions being made for
each input item that can be construed as greedy (say in the sense of “living for
today”) with respect to the given objective function. There are a number of results
showing the limitations of such priority algorithms in different domains, starting
with the initial scheduling results of Borodin, Nielson and Rackoff.

The priority framework is also the starting point for more powerful paradigms,
such as some simple forms of primal dual algorithms using a reverse delete step,
simple dynamic programming and backtracking. For example, the work of Borodin
and coauthors [ABBO+05] shows why DPLL style backtracking algorithms can-
not solve 3SAT search and has limits to approximating Max2Sat but can solve
2SAT. They also show that the form of dynamic programming used for interval
scheduling and knapsack algorithms have limitations. In particular, optimal dy-
namic programming algorithms for weighted interval scheduling on m machines
must suffer a curse of dimensionality with respect m.

This recent algorithmic design work reflects the style of an extraordinarily
productive and creative career.
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