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• Inverse Problems in Geophysics

• Reflection Seismology

• Introduction to Inverse Problems

• Inverse Problems in Reflection Seismology
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Geophysics

• In Geophysics old and new physical theories

are used to understand processes that occur in

the Earth’s interior (i.e., mantle convection,

Geo-dynamo, fluid flow in porous media, etc)

and to estimate physical properties that

cannot be measured in situ (i.e., density,

velocity, conductivity, porosity, etc)
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What makes Geophysics different from other

geosciences?

• Physical properties in the Earth’s interior are

retrieved from indirect measurements

(observations)

• Physical properties are continuously

distributed in a 3D volume, observations are

sparsely distributed on the surface of the

earth.
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How do we convert indirect measurements

into material properties ?

• Brute force approach

• Inverse Theory

• A combination of Signal Processing and

Inversion Techniques
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Another aspect that makes Geophysics unique is

the problem of non-uniqueness

Toy Problem:

m1 + m2 = d

given one observation d find m1 and m2
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Dealing with non-uniqueness

Non-uniqueness can be diminished by

incorporating into the problem:

• Physical constraints

Velocities are positives

Causality

• Non-informative priors

Bayesian inference, MaxEnt priors

• Results from Lab experiments

• Common sense = Talk to the Geologists a

aThey can understand the complexity involved in defin-

ing an Earth model.
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Reflection Seismology involves solving problems

in the following research areas:

Wave Propagation Phenomena: we deal

with waves

Digital Signal Processing (DSP): large

amounts of data in digital format, Fast

Transforms are needed to map data to

different domains

Computational Physics/Applied Math:

large systems of equations, FDM, FEM,

Monte Carlo methods, etc

High Performance Computing (HPC):

large data sets (>Terabytes), large systems of

equations need to be solved again and again

and again

Inverse Problems: to estimate an Earth

model

Statistics: source estimation problems, to

deal with signals in low SNR environments,

risk analysis, etc
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The Seismic Experiment
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D(xr,xs, t): Data (acoustic waves)

v(x, z): Unknown media velocity

In general, our unknowns are the position

of the boundaries defining different

material properties.
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The Seismic Experiment :/eps: Command

not found.
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The Seismic Experiment

Interpretation
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Seismic data in x − t provide a distorted image of the

subsurface
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Seismic Data Processing

Correct irregularities in source-receiver

postioning

Compensate amplitude attenuation

Filter deterministic and stochatic noise

Guarantee source-receiver consistency

Reduce the data volume/improve the SNR

Enhance resolution

Provide an “interpretable” image of the

subsurface
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Reduce the data volume/improve the SNR

Redundancy in the data is exploited to improve

the SNR

Data(r, s, t) → Image(x, z)
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Forward and Inverse Problems

Forward Problem:

Fm = d

F : Mathematical description of the physical

process under study

m: Distribution of physical properties

d: Observations

In the forward problem m and F are given and

we want to compute d at discrete locations.

In general, m(x) is a continuous distribution of

some physical property (velocity is defined

everywhere), whereas d is a discrete vector of

observations di, i = 1 : N
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Inverse Problem: Given F and d, we want to

estimate the distribution of physical properties m.

In other words:

1 - Given the data

2 - Given the physical equations

3 - Details about the experiment →
What is the distribution of physical properties???
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In general, the forward problem can be indicated

as follows:

F : M → D

M : Model Space, a space whose elements consist

of all possible functions or vectors which are

permitted to serve as possible candidates for a

physical model

D: Data Space, a space whose elements consists

of vector of observations d = (d1, d2, d3, . . . , dN )T

Conversely, the inverse problem entails finding the

mapping F−1 such that

F−1 : D → M
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Linear and non-linear problems

The function F can be linear or non-linear.

If F is linear the following is true

given m1 ∈ M and m2 ∈ M , then

L(αm1 + βm2) = αLm1 + βLm2

for arbitrary constants α and β. Otherwise is

non-linear.
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Fredholm Integral equations of the first

kind

dj =

∫ b

a

gj(x) m(x) dx, j = 1, 2, 3, . . . , N

N : Number of observations

Example: Deconvolution problem

s(tj) =

∫

r(τ)w(tj − τ)dτ

s(tj): observed samples of the seismogram

r(t) : earth’s impulse response (reflectivity)

w(t) : seismic source wavelet
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Questions:

Is there a solution ?

How do we construct the solution ?

Is the solution unique ?

Can we characterize the degree

non-uniqueness?

To answer the above questions, we first need to

consider what kind of data we have at hand:

a- Infinite amount of accurate data

b- Finite number of accurate data

c- Finite number of inaccurate data (the real

life scenario!)
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Linear Inverse Problems: The Discrete case

We will consider the discrete linear inverse

problem with accurate data. Let us assume that

we have finite amount of data dj , j = 1, . . . N , the

unknown model after discretization using layers

or cells is given by the vector m with elements

mi, i = 1, . . .M . The data as a function of the

model parameters are given by

d = Gm

where G is a N × M matrix that arises after

discretizing the Kernel function of the Forward

problem.

If M > N many solution can solve the above

system of equations.
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Minimum norm solution

In this case we will try to retrieve a model with

minimum norm. The problem is posed a follows:

Find model m̂ that minimizes the following cost

function

J = mT m (1)

subject to data constraints

d = Gm (2)

Each observation provides one constraint,

therefore, we have N constraints. The

constrained minimization problem is solved using

Lagrange multipliers:

In this case we minimized the following objective

function

J ′ = mT m + λT (d − Gm) (3)

where λ is a vector of Lagrange multipliers λi,
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i = 1, . . . , N .

Setting the derivative of J ′ with respect to the

unknowns m and λ to zero gives rise to the

following system of equations:

2m + GT λ = 0 (4)

Gm − d = 0 . (5)

You can play for a while with the last two

equations to get the minimum norm solution:

m̂ = GT (GGT )−1d . (6)

Note that we have assume that GGT is

invertible. In other words GGT has a complete

set of positive eigenvalues.
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Example

Suppose that some data dj is the result of the

following experiment

dj = d(rj) =

∫ L

0

e−α(x−rj)
2

m(x)dx . (7)

Note that rj can indicate the position of an

observation point (receiver). We can discretize

the above expression using the trapezoidal rule:

d(rj) =

M−1
∑

k=0

∆x e−α(rj−xk)2 m(xk) , j = 0 . . . N−1

(8)

Suppose that rj are N observation distributed in

[0, L], then

rj = j . L/(N − 1) , j = 0 . . . N − 1 .

The above system can be written down as

d = Gm (9)
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In our example we will assume a true solution

given by the profile m portrayed in Figure 1a.

The corresponding data are displayed in Figure

1b. For this toy problem I have chosen the

following parameters:

α = 0.8, L = 100., N = 20, M = 50

The following script is used to compute the

Kernel G and generate the observations d:
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Script 1: toy1.m

M = 50; % Number of unknowns

m = zeros(M,1); % True model

m(10:14,1) = 1.;

m(15:26,1) = -.3;

m(27:34,1) = 2.1;

N = 20; % Observations

L = 100; % Kernel G

alpha = .8

x = (0:1:M-1)*L/(M-1);

dx = L/(M-1);

r = (0:1:N-1)*L/(N-1);

for j=1:M

for k=1:N

G(k,j) = dx*exp(-alpha*abs(r(k)-x(j))^2);

end

end

d = G*m; % Compute data
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Figure 1: a) Model. d) Data. c) Minimum norm solution. d)

Predicted data.
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The MATLAB solution for the minimum norm

solution is given by:

Script 2: mns.m

function [m_est,d_pred] = min_norm_sol(G,d);

%

% Given a discrete Kernel G and the data d, computes the

% minimum norm solution of the inverse problem d = Gm.

% m_est: estimates solution (minimum norm solution)

% d_pred: predicted data

m_est = G’*inv(G*G’)*d;

d_pred = G* m_est;
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Let’s see how I made Fig.1 using Matlab

Script 3: makefigs.m

% Make figure 1 - 4 figures in the same canvas.

figure(1); clf;

subplot(221);

plot(x,m) ;title(’(a) Model m’); xlabel(’x’);grid;

subplot(222);

plot(r,d,’*’);title(’(b) Data d=Gm’); xlabel(’r_j’);grid

subplot(223);

plot(x,m_est);title(’(c) Minimum Norm Model ’);xlabel(’x’);grid;

subplot(224);

plot(r,d,’*’);title(’(d) Predicted Data d=Gm’); xlabel(’r_j’);grid;
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Weighted Minimum norm solution

As we have observed the minimum norm solution

is too oscillatory. To alleviate this problem we

introduce a weighting function into the model

norm. Let us first define a weighted minimum

norm solution

J = ||Wm||2 = mT WT Wm , (10)

this new objective function is minimized subject

to data constraints Gm = d.

m̂ = QGT (GQGT )−1d (11)

where

Q = (WT W)−1 (12)

This solution is called the minimum weighted

norm solution.
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In Figs. 2 and 3, I computed the minimum norm

weighted solution using W = D1 and W = D2,

that is the first derivative operator and the

second derivative operator respectively.
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Figure 2: a) True model. b) Data (observations). c) Inver-

sion using minimum weighted norm solution. The smoothing

operator is D1 (First order derivative). d) Predicted data.
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Figure 3: a) True model. b) Data (observations). c) Inversion

using minimum weigher norm solution. The smoothing operator

is D2 (Second order derivative). d) Predicted data.
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This is the MATLAB script that I used to

compute the solution with 1D first order

derivative smoothing:

Script 3: toy1.m

W = convmtx([1,-1],M); % Trick to compute D1

D1 = W(1:M,1:M);

Q = inv(D1’*D1); % Matrix of weights

m_est = Q*G’*inv(G*Q*G’)*d; % Solution
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Similarly, you can use second order derivatives:

Script 4: toy1.m

W = convmtx([1,-2,1],M);

D2 = W(1:M,1:M);

Q = inv(D2’*D2);

m_est = Q*G’*inv(G*Q*G’)*d;
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The Derivative operators D1 and D2 behave like

high pass filters. If you are not convince compute

the amplitude spectrum of a signal/model after

and before applying one of these operators.

Question: We want to find smooth solutions then,

why are we using High Pass operators?
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Linear Inverse Problems: The Discrete

case with non-accurate data

In this section we will explore the solution of the

discrete inverse problem in situation where the

data are contaminated with errors.

Attempting to exactly fit the data is not a good

idea. In fact, rather than attempting an exact fit

for each observation we will try to fit the data

with certain degree of tolerance.

In the previous section we have worked with the

Exact Data Problem, and define the minimum

norm solution via the following problem:

Minimize J = mT m [This is the model norm]

Subject to Gm − d = 0

When data are contaminated with errors the

exact fitting goal is replaced by

Gm − d ≈ 0
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A model like the above can also be written as

Gm = d + e

where e is used to indicate the error or noise

vector. This quantity is unknown.
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The minimum norm solution in this case becomes

the solution of the following optimization

problem:

Minimize J = mT m

Subject to ||Gm − d||22 = ε

It is clear that now rather than having one

constraint per observation we have a single global

constraint for the complete set of observations.
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Please, notice that in the previous equation we

have used the l2 norm as a measure of distance

for the errors in the data; we will see that this

also implies that the errors are considered to be

distributed according to the normal law

(Gaussian errors). Before continuing with the

analysis, we recall that

||Gm − d||22 = ||e||22

which in matrix/vector notation can be also

expressed as

||e||22 = eT e .

Coming back to our optimization problem, we

now minimize the cost function J ′ given by

J ′ = µModel Norm + Misfit

= µmT m + eT e

= µmT m + (Gm − d)T (Gm − d)
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The solution is now obtained by minimizing J ′

with respect to the unknown m. This requires

some algebra and I will give you the final solution:

d J ′

dm = 0

= (GT G + µI)m − GT d = 0 .

The minimizer is then given by

m = (GT G + µI)−1GT d . (13)

This solution is often called the damped least

squares solution. Notice that the structure of the

solution looks like the solution we obtain when we

solve a least squares problem. A simple identity

permits one to make equation (13) look like a

minimum norm solution:
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Identity (GT G + I)−1GT = GT (GGT + I)−1 .

Therefore, equation (13) can be re-expressed as

m = GT (GGT + µI)−1d . (14)

It is important to note that the previous

expression reduces to the minimum norm solution

for exact data when µ = 0.
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About µ

The importance of µ can be seen from the cost

function J ′

J ′ = µModel Norm + Misfit

• Large µ means more weight (importance) is

given to minimizing the misfit over the model

norm.

• Small µ means that the model norm is the

main term entering in the minimization; the

misfit becomes less important.

• You can think that we are trying to

simultaneously achieve two goals:

Norm Reduction (Stability - we don’t

want higly oscillatory solutions)

Misfit Reduction (We want to honor our

observations)

We will explore the fact that these two goals

cannot be simultaneously achieved, and, this is

why we often call µ a trade-off parameter.
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The parameter µ receives different names

according to the scientific background of the user:

1. Statisticians: Hyper-parameter

2. Mathematicians: Regularization parameter,

Penalty parameter

3. Engineers: Damping term, Damping factor,

Stabilization parameter

4. Signal Processing: Ridge regression

parameter, Trade-off parameter
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Trade-off diagrams

A trade-off diagram is a display of the model

norm versus the misfit for different values of µ.

Say we have computed a solution for a value µ

this gives the model estimate:

m(µ) = (GT G + µI)−1GT d

This solution can be used to compute the model

norm and the misfit:

Model Norm J(µ) = m(µ)
T
m(µ)

Misfit(µ) = (Gm(µ) − d)T (Gm(µ) − d)

by varying µ, we get a curve of J(µ) versus

Misfit(µ).
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Example

We use the toy example given by Script 1 to

examine the influence of the trade-off parameter

in the solution of our inverse problem. But first, I

will add noise to the synthetic data generated by

script (toy.m). I basically add a couple of lines to

the code:

Script 5

% Add noise to synthetic data

%

dc = G*m; % Compute clean data

s = 0.1; % Standart error of the noise

d = dc + s*randn(size(dc)); % Add noise
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The Least Squares Minimum Norm solution is

obtained with the following script

Script 6

% LS Min Norm Solution

%

I = eye(N);

m_est = G’*((G*G’+mu*I)\d);

Don’t forget our identity; the solution can also be

written in the following form:

Script 6’

% Damped LS Solution

%

I = eye(M);

m_est = (G’*G+mu*I)\ (G’*d);

Q - Script 6 or Script 6’?? Which one would you

use??
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Inversion of the noisy data using the least squares

minimum norm solution for µ = 0.05 and µ = 5.

are portrayed in Figures 4 and 5, respectively.

Notice, that a small value of µ leads to data

over-fitting. In other words, we are attempting to

reproduce the noisy observations like if they were

accurate observations. This is not a good idea

since over-fitting can force the creation of

non-physical features in the solution (highly

oscillatory solutions).
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Figure 4: a) Model. d) Data. c) LS Minimum norm solution.

d) Predicted data and observed data. In this example I used a

small trade-off parameter µ = 0.005. Notice that the predicted

data reproduce quite well the noisy observations. Not a good

idea since you do not want to fit the noise.

M.D.Sacchi 49



0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2

2.5
(a) Model m

x
0 20 40 60 80 100

−2

−1

0

1

2

3

4

5
(b) Data

r
j

Observed data

0 20 40 60 80 100
−1

0

1

2

3
(c) LS Minimum Norm Model

x
0 20 40 60 80 100

−2

−1

0

1

2

3

4

5
(d) Data and Predicted Data d=Gm

r
j

Observed data
Predicted data

Figure 5: a) Model. d) Data. c) LS Minimum norm solution.

d) Predicted data and observed data. In this example I used

a small trade-off parameter µ = 5. Notice that the predicted

data does not try reproduce the noisy observations.
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Script 7: trade.m

% Compute trade-off curves

% mu is varied in log scale

%

mu_min= log10(0.5);

mu_max = log10(100);

Nmu = 11;

for k=1:Nmu;

mu(k) = mu_min + (mu_max-mu_min)*(k-1)/(Nmu-1);

mu(k) = 10^mu(k);

m_est = G’*((G*G’+mu(k)*I)\d); % Compute min norm LS solution

dp = G*m_est; % Compute estimated data

Misfit(k) = (dp-d)’*(dp-d);

Model_Norm(k) = m_est’*m_est;

end;

%Fancy plot

figure(1); clf;

plot(Model_Norm,Misfit,’*’); hold on;

plot(Model_Norm,Misfit );

for k=1:Nmu

say = strcat(’ \mu=’,num2str(mu(k)));

text(Model_Norm(k),Misfit(k),say);

end;

xlabel(’Model Norm’)

ylabel(’Misfit’); grid
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Figure 6: Trade-off diagram for our toy example. Which
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Smoothing in the presence of noise

In this case we minimize:

J ′ = µModel Norm + Misfit

= µ(Wm)T (Wm) + eT e

= µmWT Wm + (Gm − d)T (Gm − d)

where W can be a matrix of first or second order

derivatives as shown before. The minimization of

J ′ leads to a least squares weighted minimum

norm solution

d J ′

dm = 0

= (GT G + µWT W)m − GT d = 0 .

or,

m = (GT G + µWT W)−1GT d

Exercise: Try to rewrite last equation in a way that looks like

a minimum norm solution, this is a solution that contains the

operator GGT .
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Script 8: mwnls.m

% Trade-off parameter

%

mu = 5.;

%

% First derivative operator

%

W = convmtx([1,-1],M);

W1 = W(1:M,1:M);

m_est = (G’*G+mu*W1’*W1)\(G’*d);

dp = G*m_est;

Model_Norm = m_est’*m_est;

Misfit = (d-dp)’*(d-dp);
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Figure 7: a) Model. d) Data. c) LS Minimum Weighted

norm solution. d) Predicted data and observed data. In this

example I used a trade-off parameter µ = 5. Notice that the

predicted data does not try reproduce the noisy observations.

In this example the model norm is ||Wm||2
2

where W is the

first order derivative operator D1. This example was computed

with Script 8
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Edge Preserving Regularization (EPR)

Smoothing tends to blurr edges. How can we

preserve edges in our inverted models ???

Minimize

JEP = ||Gm − d||2 + µΦ(m)

where J is an edge preserving potential of the

form

Φ(m) =
∑

i

ln(1 + (D1m/δ)2i )

Notice that now the regularization term (Φ) is

non-quadratic.
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The EP solution involves an iterative solution of

the following system:

mk = (GT G + µQk−1)−1 GT d

where Q is a diagonal matrix that depends on m.

k indicates iteration number.

M.D.Sacchi 57



0 10 20 30 40 50
−0.5

0

0.5

1

1.5

2

2.5
(a) True Phantom

0 10 20 30
−2

0

2

4

6

8

10

12
(b) Data  d=Km

Figure 8: a) Model. d) Data.
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(a)      First order Smoothing 
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(b)     Second order Smoothing
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(c) Edge Preserving regularization

Figure 9: a) and b) Smooth solution obtained with quadratic

regularization (first and second order derivative smoothing) c)

Edge preserving solution.

Email me for the EPR scripts: sacchi@phys.ualberta.ca
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Large sparse system of equations

Sparse matrices

A sparse matrix is a matrix where most elements

are equal to zero.

G =





0 1 0 2

0 0 −1 0





It is clear that a more convenient way of storing

the matrix G is via the following scheme

G1,2 → i(1) = 1 j(1) = 2 g(1) = 1

G1,4 → i(2) = 1 j(2) = 4 g(2) = 2

G3,3 → i(3) = 2 j(3) = 3 g(3) = −1

Now instead of saving Gi,j , i = 1, 2 , j = 1, 4 we save the

non-zero elements of the matrix in sparse format

i(k), j(k), g(k), k = 1, K, where K is the number of non-zero

elements of the matrix G.
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Matrix-vector multiplication in sparse

format

We would like to evaluate the following

matrix-vector multiplication:

d = Gm

the last equation entails performing the following

sum

di =

M
∑

j=1

Gi,jmj , i = 1, N

As always, we need a computer code to perform

the sum:

fullmult.m

d = zeros(N,1) % Allocate a vector of zeros

for i=1:N

for j=1:M

d(i) = d(i) + G(i,j)*m(j)

end

end
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Let’s see how many operations have been used to

multiple G times m

Number of sums = M*N

Number of products = N*M
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If G is sparse and we use the sparse format

storage, the matrix-vector multiplication can be

written as:

sparsemult.m

d = zeros(N,1) % Allocate a vector of zeros

for k=1:K

d(i(k)) = d(i(k)) + g(k)*m(j(k))

end

Now the total number of operations is given by

Number of sums = K

Number of products = K

It is clear that only when sparsity of the matrix

K/(N × M) << 1 there is an important

computational saving.
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Conjugate Gradients

The CG method is used to find the minimum of

the system

J ′ = ||Ax − y||
where A is an N × M matrix. CG used the

following iterative scheme:

Choose an initial solution x0 and compute

s0 = y − Ax0, r0 = p0 = AT (y − Ax0), and

q0 = Ap0
. Then

αk+1 = rT
k rk/qT

k q

xk+1 = xk + αk+1pk

sk+1 = sk − αk+1qk

rk+1 = AT sk+1 (∗)
βk+1 = rT

k rk/rT
k r

pk+1 = rk+1 + βk+1pk

qk+1 = Apk+1 (∗∗)

where k = 0, 1, 2, .. is the iteration number.
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Theoretically, the minimum is found after M

iterations (steps). In general, we will stop in a

number of iterations M ′ < M an be happy with

an approximate solution. It is clear that all the

computational cost of minimizing J ′ using CG is

in the lines I marked ∗ and ∗∗.
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How do we use the CG algorithm to minimize the

cost function J = ||Gm − d||2 + µ||m||2?. If we

choose A and y as follows

A =





G
√

µIM



 (15)

y =





d

0M



 (16)

then, J and J ′ have the same minimizer a.

Therefore, when minimizing the cost J we replace

A and y by eqs (15) and (16) and use CG to

minimize the cost J ′.
aPlease, prove it!
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testcg.m

% Make an Example (y = Ax)

N = 20;

M = 10;

A=randn(N,M);

x = ones(M,1);

y = A*x;

% Try to get back x from y

% Initialization

x =zeros(M,1);

s=y-A*x;

p=A’*s;

r=p;

q=A*p;

old = r’*r;

max_iter = 10

% CG loop

for k=1:max_iter

alpha = (r’*r)/(q’*q);

x= x +alpha*p;

s = s-alpha*q;

r= A’*s;

new = r’*r;

beta = new/old;

old = new;

p = r + beta*p;

q = A*p;

end
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An excellent tutorial for CG methods:

Jonathan Richard Shewchuk, An Introduction to the

Conjugate Gradient Method Without the Agonizing Pain,

1994. [http://www-2.cs.cmu.edu/~ jrs/jrspapers.html]
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Imaging vs. inversion

Imaging - Where?

Inversion - Where and What ?
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Imaging and Inversion using the distorted

Born appoximation

Start with the acoustic wave equation (Helmholtz

equation)

∇2u(x, s, ω) +
ω2

c(x)
u(x, s, ω) = −δ(x − s)W (ω)

1

c(x)2
=

1

c0(x)2
+ f(x)

c(x): Velocity of the medium (Unknown)

c0(x): Known background velocity model (Macro

Model)

f(x): Acostic potential (Unknown)
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∇2u(x, s, ω) + ω2

c0(x)u(x, s, ω) =

−δ(x − s)W (ω)− f(x)ω
c0(x) u(x, s)

∇2G(x, s, ω) +
ω2

c0(x)
G(x, s, ω) = −δ(x − s)W (ω)

G(x,y, ω): Green function for the background

medium

Lippman-Schwinger equation:

u(r, s, ω) = W (ω)G(r, s, ω)

+ ω2
∫

G(r,x, ω) f(x) u(x, s, ω) d3x
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u(r, s, ω) = W (ω)G(r, s, ω)

+ ω2
∫

G(r,x, ω) f(x) u(x, s, ω) d3x

u(r, s, ω) = uinc(r, s, ω) + usc(r, s, ω)

If usc(r, s, ω) ≈ uinc(r, s, ω) = W (ω)G(r, s, ω)

→
Single scattering approximation about the

background medium

usc(r, s, ω) =

ω2W (ω)
∫

G(r,x, ω) f(x) G(x, s, ω) d3x

or, in compact notation:

u = Bf
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• c0 = constant - First Born Approximation

• c0 = c0(x) - Distorted Born Approximation

• Validity of the approximation requires

c(x) ≈ c0(x)

• G(x,y, ω) can be written explicitly only for

very simple models

• In arbirtrary backgrounds we can use the

First Order Asymtotic approximation

(Geometrical Optics)

G(x,y, ω) = A(x,y)eiω τ(x,y)
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Forward/Adjoint pairs:

u = Bf

f̃ = B′u

where

〈u,Bf〉 = 〈B′ u, f〉

f̃(x) =
∫ ∫ ∫

W (ω)∗ ω2 G∗(x, r, ω) u(r, s, ω) G∗(s,x, ω)dω d2r d2s
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Imaging with the adjoint operator:

f̃(x) = distorted version of f(x)

Alternative: Try to invert f(x),

u = Bf , f̂ = B′u

f̃ = B′ B f

f̃(x) =

∫

K(x,x′)f(x′)d3x′

Try to adjust the adjoint and forward pairs to

obtain:

K(x,x′) ≈ δ(x − x′)
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Forward-adjoint operators with WKBJ

Green functions

(Solution in wavenumber domain)

C0 = C0(z)

u(ky,kh, ω) =

∫

ω2

4

f(ky, z)e
i
∫

z

0
kz(z′)dz′

(krz(0)ksz(0)krz(z)ksz(z))1/2
dz,

f̃(ky, z) =

∫ ∫

ω2

4

u(ky,kh, ω)e
−i

∫

z

0
kz(z′)dz′

(krz(0)ksz(0)krz(z)ksz(z))1/2
dωd2kh,

with

kz(z) =
ω

c(z)

√

1 − |ky + kh|2c2(z)

4ω2
+

ω

c(z)

√

1 − |ky − kh|2c2(z)

4ω2
.
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Recursive implementation (Downward

continuation)

u(ky,kh, z, ω) = u(ky,kh, ω)e
−i

∫

z

0
kz(z′)dz′

≈ u(ky,kh, ω)e−i
∑

z

z′=0
kz(z′)∆z

u(ky,kh, z + ∆z, ω) = u(ky,kh, z, ω)e−ikz(z)∆z
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Lateral variant background velocity c0 = c0(x, z)

(Splittinga)

e−ikz(x,z)∆z ≈ e−ikz(z)∆z × e−iω∆S∆z

∆S =
2

c0(z)
− 1

c0(y + h, z)
− 1

c0(y − h, z)

c0(z): mean velocity at depth z

c0(x, z): background velocity

The algorithm recursively downward

continues the data with c0(z) in kh, ky

The split-step correction is applied in y ,h.

aFeit and Fleck’78, Light Propagation in graded-index

fibers, Appl. Opt. 17
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The Algorithm

u(ky,kh, z+∆z, ω) = F [e−iω∆S∆z×F−1[u(ky,kh, z, ω)×e−ikz(z)∆z]]

• F is a 2D or 4D Fourier transform

• Algorithm complexity ≈ two FFTs per depth

step
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Imaging and Inversion

Imaging:

f̃ = B′u

Inversion (analytical solutions): Modify the

adjoint operator to collapse the PSF into a delta

function

finv = B†u

Inversion (numerical solution)

Minimize

Φ = ||u − Bf ||2 + µ ||f ||2
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Inversion (numerical solution) - CG

Method

• CG: Conjugate Gradients to solve large linear

systems of equation (in this case linear

operators)

• Easy to implement if you have B and B′

• Don’t need to iterate forever
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CG Scheme

To solve the problem ||Bx − y||2, with initial

solution x0

Set initial values: r = y − B x0 , g = B′ r , s = g

For i = 1:imax

v = Bs ! Modeling

δ = ||v||2
α = γ/δ

x = x + α s

r = r − α v

g = B′ r ! Imaging

s = g + β s

Enddo
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A note for code developers: Operators

= subroutines/functions

B = A1A2 . . .An

B′ = A′
n . . .A′

2A′
1

Definition of forward/adjoint pairs:

〈u,Bf〉 = 〈B′ u, f〉

The latter can be numerically tested.
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SEG/EAGE Sub Salt Model - Velocity
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SEG/EAGE Sub Salt Model - Zero offset

data
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SEG/EAGE Sub Salt Model -

Born+Split-step Imaging / adjoint

operator
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Edge Preserving Regularization

J = ||usc−Bf ||2+βx

∑

k

R[(Dxf)k]+βz

∑

k

R[(Dzf)k] .

R(x) = ln(1 + x2)

with spatial derivative operators:

(Dxf)i,j = (fi,j+1 − fi,j)/δx

(Dzf)i,j = (fi+1,1 − fi,j)/δz
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Figure 10: (A) true model. (B) Seismic waveforms

(4 sources). (C) Damped least-squares solution.

(D) EPR.

M.D.Sacchi 88



From Inverse Filters toFrom Inverse Filters to LS LS 
MigrationMigration

Mauricio Sacchi

Institute for Geophysical Research & Department of Physics

University of Alberta, Edmonton, AB, Canada

Review 1

• Impulse response (hitting the system with an impulse) 

y(t) = ∫ h(t −τ )x(τ )dτ = h(t) * x(t)

h(t)

x(t) = δ (t)

x(t) y(t)

h(t)h(t)

Linear systems and Invariance

Input Inputh(t)δ (t)



Review 2

• Convolution Sum

• Signals are time series or vectors 

yn =
k

∑ hk−n xk = hn * xn

x = [1,0,0,0,0,0...]

Linear systems and Invariance - Discrete case

h = [h0,h1,h2,...]

x = [ x0, x1, x2,...] y = [ y0, y1, y2,...]

h

h

Review 3

Discrete convolution

• Formula

• Finite length signals

• How do we do the convolution with finite length signals?
– Computer code
– Matrix times vector
– Polinomial multiplication
– DFT

yn =
k

∑ hn−k xk = hn * xn

xk , k = 0,NX −1

yk , k = 0,NY −1

hk , k = 0,NH −1



Review 4

Discrete convolution

  

% Initialize output

  y(1: NX + HH-1) = 0

% Do convolution sum
 
  for i = 1: NX
    for j =  1: NH
     y(i+ j -1) =  y(i+ j -1) + x(i)h(j)
    end
  end

Review 5

Discrete convolution

x = [ x0, x1, x2, x3, x4 ] , NX = 5

h = [h0,h1,h2 ] , NH = 3

y0 = x0h0

y1 = x1h0 + x0h1

y2 = x2h0 + x1h1 + x0h2

y3 = x3h0 + x2h1 + x1h2

y4 = x4h0 + x3h1 + x2h2

y5 = x4h1 + x3h2

y6 = x4h2

yn =
k

∑ hk−n xk = hn * xn

Example:

 

y0
y1
y2
y3
y4
y5
y6

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

x0 0   0
x1 x0 0
x2 x1  x0
x3 x2 x1
x4 x3 x2
0 x4 x3
0 0   x4

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

h0
h1
h2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 



Review 6

An finally: the LS filter design method…

• Inverse filtering using series expansion results in long filters with low convergence in some 
cases (a=0.99)

• Truncation errors could deteriorate the performance of the filter

• An alternative way of designing filter involves using the method of LS (inversion):

• We have posed the problem of designing and inverse filter as an inverse problem.

x = (1,a)

h = (h0,h1,h2,"hN )

h * x ≈ (1,0,0,0..)

Given

find

Such that

Review 7

 

1 0  0
a 1 0
0 a  1
0   0    a

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

h0
h1
h2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ≈

1
0
0
0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

W h ≈ g

e =|| W h − g ||2
2

∇e = 0 = WT Wh − WT g

h = (WT W)−1WT g

ˆ g = W h, ( ˆ g k = wk * hh )

Inversion of a dipole

Find a filter of length 3 that inverts the dipole:

In matrix form:

We form an error function to minimize
Minimize the error function by taking derivatives with respect 

to the unknowns

LS filter

Actual output

Dipole

Desire 
output



Review 8

Inversion of a wavelet
w0 0 0

w1 w0 0

w2 w1 w0

w3 w2 w1

w4 w3 w2

0 w4 w3

0 0 w4

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

h0
h1
h2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ≈

1
0
0
0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

W h ≈ g

e =|| W h − g ||2
2

∇e = 0 = WT Wh − WT g

h = (WT W)−1WT g

ˆ g = W h, ( ˆ g k = wk * hh )

Find a filter of length 3 that inverts the wavelet:

In matrix form:

Wavelet

Desire 
output

Review 9

Ideal and Achievable Inversion of a Wavelet:
Pre-whitening

• Trade-off curves and Pre-whitening

W h ≈ g

e =|| W h − g ||2
2 + µ || h ||2

2

∇e = 0 = WT Wh − WT g + µg

h = (WT W + µ I)−1WT g

ˆ g = W h, (gk = wk * hh )

Trade-off parameter

 

R = WT W =
R0 R1 R2

R1 R0 R1

R2 R1 R0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

Rk : Autocorrelation coefficient

µ = R0.P /100, P :%of pre − whitening



Review 10

Ideal and Achievable Inversion of a Wavelet:
Pre-whitening

• Pre-whitening P=0%

Time Domain

Frequency Domain

Normalized Amplitude Spectrum

  wk :  Wavelet   hk :  Filter   ̂  g k :  Actual Output

High Gain at High Frequencies - Noise will be amplified

Review 11

Ideal and Achievable Inversion of a Wavelet:
Pre-whitening

• P=10%
 wk :  Wavelet   hk :  Filter   ̂  g k :  Actual Output

With Pre-whitening we can control the  gain of the inverse filter 



Review 12

Ideal and Achievable Inversion of a Wavelet:
Pre-whitening

• P=20%
  wk :  Wavelet   hk :  Filter   ̂  g k :  Actual Output

With Pre-whitening we can control the  gain of the inverse filter 

Review 13

Ideal and Achievable Inversion of a Wavelet:
Pre-whitening & Trade-off curve

  

e =|| W h − g ||2
2 + µ || h ||2

2

= Misfit + µ Model Norm

  Misfit

  Model Norm

µ = 0.01
µ = 0.1

µ = 1.
*

* *

Resolution +
Stability      -

Resolution -
Stability +



Review 14

How good is the output ?
SIR

• Signal-to-interference ratio (SIR)

  

SIR =
max(| ˆ g k |)

| ˆ g k |
k

∑

  ̂  g k :  Actual Output
  ̂  g k :  Actual Output

P=0%
P=20%

Review 15

LS Inversion of non-minimum phase wavelets

• Previous analysis was OK for minimum phase wavelets - we tried to convert a front 
loaded signal into anther front loaded signal (spike)

• For non-minimum phase wavelets we introduce an extra degree of freedom (Lag)

• Try different lags until you get a nice “spiky” output  

w0 0 0

w1 w0 0

w2 w1 w0

w3 w2 w1

w4 w3 w2

0 w4 w3

0 0 w4

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

h0
h1
h2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ≈

0
0
1
0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

In this example Lag=3



Review 16

LS Inversion of non-minimum phase wavelets

• P=1%, Lag=1, SIR=0.23
  wk :  Wavelet   hk :  Filter   ̂  g k :  Actual Output

The phase of the actual output is wrong

Review 17

LS Inversion of non-minimum phase wavelets

• P=1%, Lag=10, SIR=0.97
 wk :  Wavelet   hk :  Filter   ̂  g k :  Actual Output

The phase of the actual output is correct



Review 18

LS Inversion of non-minimum phase wavelets

• P=20%, Lag=1, SIR=0.22
  wk :  Wavelet   hk :  Filter   ̂  g k :  Actual Output

The phase of the actual output is wrong

Review 19

LS Inversion of non-minimum phase wavelets

• P=20%, Lag=10, SIR=0.56
 wk :  Wavelet   hk :  Filter   ̂  g k :  Actual Output

The phase of the actual output is correct



Review 20

Where does the wavelet come from?

R = WT W =
R0 R1 R2

R1 R0 R1

R2 R1 R0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

• Observations

• Finding the inverse filter requires the 
matrix R. This is the autocorrelation 
matrix of the wavelet.

• If the reflectivity is assumed to be 
white then the autocorrelation of the 
trace is equal (within a scale factor) to 
the autocorrelation of the wavelet

• In Short: Since you cannot measure 
the wavelet or its autocorrelation, we 
replace the autocorrelation coefficients 
of the wavelet by those of the trace and 
then, we hope that the validity of the
white reflectivity assumption holds!!

RTrace = c RWavelet
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Why is that ?

 

Rk
s = st +ksk

t
∑

sk = wk * rk

Rk
s = Rk

r * Rk
w

Rk
r = c if        k = 0

0 every where else
⎧ 
⎨ 
⎩ 

Rk
s = cRk

w

Autocorrelation of the trace s

Convolution model

We can show this one

If reflectivity is white (Geology does not have 

memory?)

Then……
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Color ?

Rk
s = st +ksk

t
∑

sk = wk * rk

Rk
s = Rk

r * Rk
w

Rk
w = (Rk

r )−1 * Rk
s

Autocorrelation of the trace s

Convolution model

We can show this one

If the reflectivity is non-white (Geology does 

have memory)

Rosa, A. L. R., and T. J. Ulrych, 1991, Processing via spectral modeling: Geophysics, 56, 1244-1251.

Haffner, S., and S. Cheadle, 1999, Colored reflectivity compensation for increased vertical resolution: 69th Annual 
International Meeting, SEG, Expanded Abstracts, 1307-1310.

Saggaf, M.M., and E. A. Robinson, 2000, A unified framework for the deconvolution of traces of nonwhite reflectivity: 
Geophysics, 65, 1660-1676. 
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Practical aspects of deconvolution

• We often compute deconvolution operators from the data (we by-pass the wavelet)

• This is what we called Wiener filter or spiking filter

• Inversion is done with a fast algorithm that exploits the fact that the autocorrelation 
matrix has a special structure (Toeplitz Matrix, Levinson Recursion)

h = (WT W + µ I)−1WT g

ˆ g = W h, ( ˆ g k = wk * hh )

h = (RTrace + µ I)−1v

v = WT g = WT

1

0

0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

=

w0

0

0

0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

, v =

1

0

0

0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

ˆ r k = hk * sk

I started with a wavelet

I started with the trace
Filter will not have the right
scale factor… not a problem!!

Estimate 
reflectivity
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Practical aspects of deconvolution:
Noise

• How to control the noise?

– Pre-whitening

sk = wk * rk + nk

ˆ r k = hk * sk = hk * (wk * rk + nk )

= hk * wk * rk + hk * nk

1 - This is the actual output 2- This is filtered/amplified 
noise (Noise after filtering)

•1- should become a 
spike

•2- should go to zero

•1-2 cannot be 
simultaneously 
achieved

•The pre-whitening is 
included in the design 
of h and is the 
parameter that controls
1-2

ˆ g k bk
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Practical aspects of deconvolution:
Noise

 wk :  Wavelet   hk :  Filter   ̂  g k :  Actual Output
Filter Design 

P=0%

Noise = 1%

The filter will amplify high-frequency
noise components

•Noise variance is 1% of the 
max amplitude of the noise-
free signal

•Spectra are normalized
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Filter Application

P=0%

Noise = 1%

Practical aspects of deconvolution:
Noise

  rk :  True reflectivity  sk :  Seismogram   ̂ r k :  Estimated reflectivity

Noise amplified by the inverse filter
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Practical aspects of deconvolution:
Noise

 wk :  Wavelet   hk :  Filter   ̂  g k :  Actual Output
Filter design

P=10%

Noise = 1%

Low gain at high frequencies - no 
noise amplification
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Practical aspects of deconvolution:
Noise

  rk :  True reflectivity  sk :  Seismogram   ̂ r k :  Estimated reflectivity
Filter Application 

P=10%

Noise = 1%
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Practical aspects of deconvolution:
Noise 

sk = wk * rk + nk

ˆ r k = hk * sk = hk * (wk * rk + nk )

= hk * wk * rk + hk * nk

S(ω) = W (ω).R(ω) + N (ω)

ˆ R (ω) = H (ω).S(ω) = H (ω).[W (ω).R(ω)]+ N (ω))

= H (ω).W (ω).R(ω) + H (ω).N (ω)

| ˆ R (ω) |=| H (ω) | . |W (ω) | . | R(ω) | + | H (ω) | . | N (ω) |

The previous results can be interpreted in the freq. 
domain

Time

Frequency
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To Reproduce the examples

• http://www-geo.phys.ualberta.ca/saig/SeismicLab/SeismicLab/

function [f,o] = spiking(d,NF,mu); 

%SPIKING: Spiking deconvolution using Levinson recursion

function [f,o] = ls_inv_filter(w,NF,Lag,mu); 

%LS_INV_FILTER: Given a wavelet compute the LS inverse filter

function [K] = kurtosis(x)
%KURTOSIS: Compute the kurtosis of a time series or
% of a multichannel series
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Non-Uniqueness 

- A simple problem
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m1 + a m2 ≈ d
m2

m1

Simple example

Review 33

m1 + a m2 ≈ d
m2

m1
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  m1
2 + m1

2 = min, subject m1 + a m2 ≈ d

m2

m1

m2m1

Smallest Solution
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m2

m1

  (m2 − m1 )2 = min, subject m1 + a m2 ≈ d

m1 m2

Flattest Solution
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m2

m1

 S(m2,m1 ) = min, subject m1 + am2 ≈ d

m2m1

Sparse Solution
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Deconvolution

- debluring

- equalization

Increase resolution - ability to 
“see” thin layers
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Seismic Deconvolution 

•Assume wavelet is know and we want to estimate a high 
resolution volume of the variability of the reflectivity or 
impedance

•In conventional deconvolution we attempt to equalize 
sources/receivers

•In seismic inversion we go after images of the reflectivity or 
impedance parameters or attributes  with high frequency 
content

High Frequency Imaging

High Frequency Restoration

BW extrapolation

All names used to indicate we are trying to squeeze high 
frequencies out of the seismic data
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S r

Depth

or Time

1

2

3

4

  
d(t) =  w(τ - t)r(τ )dτ∫

Seismic Deconvolution
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d(t) =  w(τ - t)r(τ )dτ∫
w(t) = δ (t) ⇒ d (t) = r(r)

r(t)

w(t)

d(t)

Time

1 2 3 4

Reflectivity

Wavelet

Seismogram

Seismic Deconvolution

d = Wr
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Seismic Deconvolution

d = W r + n

J =||Wr − d ||2
2

∇J = W 'W r −W ' d = 0

ˆ r = (W 'W )−1W ' d

Small perturbations on d produce large perturbations on r

Naïve Solution (Just try to fit the data…)
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Seismic Deconvolution

d = W r + n

J =||Wr − d ||2
2

∇J = W 'W r −W ' d = 0

c I ≈ W 'W

ˆ r ≈ c−1W ' d

Some sort of “backprojection”

Low Resolution Solution:
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Seismic Deconvolution

d = W r + n

J =||Wr − d ||2
2 +µ || Lr ||2

2

∇J = W 'W r −W ' d + µL' L r = 0

ˆ r = (W 'W + µL' L)−1W ' d

L = I ⇒

ˆ r = (W 'W + µI)−1W ' d

Quadratic Regularization
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Seismic Deconvolution

J =||Wr − d ||2
2 +µ || Lr ||2

2

Quadratic 
Regularization/Interpretation

Misfit: Measure of Data Fidelity

Model Norm: Measure of 
“bad” features

Trade-off parameter

Minimize
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Seismic Deconvolution

J =||Wr − d ||2
2 +µ || Lr ||2

2
Quadratic 
Regularization/Interpretation

|| Lr ||2
2

||Wr − d ||2
2

µ = 104

µ = 10−6

∗
∗

∗
∗ ∗ ∗

Unstable / overfitting

Low resolution / underfitting

Trade-off curve / L-curve
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Seismic Deconvolution

L = I

L = D1

L = D2

D1, D2

zero order quadratic regularization (smallest model)

First order quadratic regularization (flattest model)

Second order quadratic regularization (smoothest model)

Are high pass operators (First and Second order Derivatives)

Quadratic Regularization

Typical regularizers J =||Wr − d ||2
2 +µ || Lr ||2

2
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Seismic Deconvolution: Trying to squeeze resolution
via mathematical tricks..

When in Doubt, Smooth

Sir Harold Jeffreys (Quoted by Moritz, 1980; Taken from Tarantola, 1987) 

But…, I don’t want to smooth!

A geophysicist trying to resolve thin layers

Let’s see how one can avoid smoothing and 
resolution degradation..
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Seismic Deconvolution: Trying to squeeze resolution
via mathematical tricks..

Super-resolution via non-
quadratic regularization

J =||Wr − d ||2
2 +µR(r)

R(r)= | ri |
i

∑

R(r)= | ri |
i

∑ 2

R(r) = ln(1+
ri

2

σ c
2

)
i

∑

L1 norm

Cauchy regularizer

Let’s study the Cauchy norm invrsion

L2 norm Quadratic Norm

Non Quadratic Norm

Non Quadratic Norm

Review 49

Seismic Deconvolution: Non-quadratic norms and 
sparse deconvolution

•Non-quadratic norms can be used to retrieve 
sparse models

•Sparse models area associated to broad-band 
solution

•A sparse-spike solution can be used to retrieved
sparse reflectivity series which is equivalent to 
finding blocky impedance profiles

•Historically the problems arose in the context of 
impedance inversion (80’s)

- Claerbout, J. F., and F. Muir, 1973, Robust modeling with erratic data: Geophysics, 38, 826-844.

- Taylor, H. L., S. C. Banks, and J. F. McCoy, 1979, Deconvolution with the L-one norm: Geophysics, 44, 39-52.

- Oldenburg, D. W., T. Scheuer, and S. Levy, 1983, Recovery of the acoustic impedance from reflection 

seismograms: Geophysics, 48, 1318-1337.
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Cauchy Norm Deconvolution 

Super-resolution via non-quadratic regularization

J =||W r − d ||2
2 +µS(r)

S(r) = ln(1+
ri

2

σ 2
)

i
∑

∇J = W 'W r −W ' d + µ Q(r) r = 0

r = (W 'W + µQ(r) )−1W ' d
IRLS
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r = (W 'W + µQ(r) )−1W ' d

Qii =
1

σ 2 (1+ ri
2 /σ c

2)

Cauchy Norm Deconvolution 

The problem is non-linear, the reflectivity 
depends on the reflectivity…

 

iter = 0
r iter = 0

For iter = 1: iter_max

Qiter
ii =

1

σ c
2 (1+ (ri

iter )2 /σ c
2)

r iter+1 = (W 'W + µQiter )−1W ' d

End

Iterative Re-weighted Least Squares
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Cauchy Norm Deconvolution 

Fror large inverse problems, IRLS require 
some changes. The inversion can be
performed by an semi-iterative solver :

• Conjugate Gradients (CG)

• Gauss-Seidel

• Pre-conditioned CG

• LSQR

Iterative solvers permit one to compute an 
approximation to the solution of the linear 
system 

 

iter = 1
r iter = 0

For iter = 1: iter_max

Qiter
ii =

1

σ c
2 (1+ (ri

iter )2 /σ c
2)

r iter+1 = (W 'W + µQiter )−1W ' d

End

Iterative Re-weighted Least Squares
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R(r)= | ri |
i

∑

R(r)= | ri |
i

∑ 2

R(r) = ln(1+
ri

2

σ c
2

)
i

∑

R(r) = F (ri)
i

∑

General Form
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d(t) =  w(τ - t)r(τ )dτ∫

r(t)

w(t)

d(t)

Time

1 2 3 4

Reflectivity

Wavelet

Seismogram

Seismic Deconvolution
Back to the original problem: estimation of r(t)
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Back Projection

QR  L=I

NQR Cauchy

Seismic Deconvolution

Time
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Back Projection

QR  L=I

NQR Cauchy

Seismic Deconvolution

Time

True
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Conventional Deconv High Res. Deconv

3D Seismic Section from somewhere 
(HFR - High Freq. Restoration)



Review 58

High Res. Deconv

Conventional Deconv

Review 59

High Res. DeconvConventional Deconv

Amplitude spectrum

Ongoing Research: High Freq recovery and  scaling problem

?
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Cauchy Norm Deconvolution:
Algorithm

r = zeros(N,1);
sc=0.01; 
mu =0.01
iter_max = 10;

R = W'*W;
iter_max;

for k=1:iter_max;

Q = diag(1./(sc^2+r.^2));
Matrix = R + mu*Q;
r = inv(Matrix) * W'*s;

end;

True reflectivity Trace

Estimated  reflectivity
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Cauchy Norm Deconvolution:
Algorithm

r = zeros(N,1);
sc=0.01;
mu = .01
iter_max = 10;
R = W'*W;

for k=1:iter_max;

Q =diag(1./(sc^2+r.^2));
Matrix = R + mu*Q;
r = inv(Matrix) * W'*s;

sc = 0.01*max(abs(r));

end;
Adaptive 
version

True reflectivity Trace

Estimated  reflectivity
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High frequency imaging methods…. 

Other methods exits - they all attempt to retrieve a sparse reflectivity sequence:

Atomic Decompostion/Matching Pursuit / Basic Pursuit (like an L1)

Chopra, S., J. Castagna, and O. Portniaguine, 2006, Seismic Resolution and Thin-Bed Reflectivity
Inversion: Recorder, 31, 19-25. (www.cseg.ca)

Portniaguine, O., and J. P. Castagna, 2004, Inverse spectral decomposition: 74th Annual
International Meeting, SEG, Expanded Abstracts, 1786-1789. 
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rk =
Ik +1 − Ik

Ik +1 + Ik

ξk =
1

2
log(Ik / I0) ≈ rk

j= 0

k

∑

J =||W r − d ||2
2 +µS(r) + β || Cr −ξ ||2

2

Cauchy Norm Deconvolution:
with impedance constraints

Reflectivity as a function of P-impedance

Approximation

Fit the data
Solution must be sparse (High freq)

Fit impedance constraints
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Cauchy Norm Deconvolution:
with impedance constraints

β = 0
Constraints are not 
honored

True reflectivity Trace

Inverted impedance &

true impedance (red)
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Cauchy Norm Deconvolution:
with impedance constraints

β = 0.25

Constraints are 
honored

True reflectivity Trace

Inverted impedance &

true impedance (red)
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beta=0.25
iter_max=10
R = W'*W+beta*C'*C;
r = zeros(N,1);

for k=1:iter_max;
Q = diag(1./(sc^2+r.^2));
Matrix = R + mu*Q;
r = inv(Matrix) * (W'*s+beta*C'*psi)
sc = 0.01*max(abs(r));
end;

Cauchy Norm Deconvolution:
with impedance constraints - Algorithm
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AVO: Amplitude versus offset 

AVA: Amplitude versus angle

AVP: Amplitude versus Ray Parameter

Estimation of rock 
properties & HCI

AVO
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α α

r(t,α, x) = f (x,α,v− ,v+ ,ρ− ,ρ+) = A(t, x) + B(t, x) × F (α)

d (t,α, x) = ∫ r(τ ,α, x) w(τ − t)dτ

v− ,ρ−

v+ ,ρ+

Example: Multi-channel Seismic Deconvolution

x

w(t) d (t,α, x)

Sensing a reflector

Now we consider a suite of seismograms
as a function of angle of incidence
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Goal: Estimation of AVO classes

Models for clay/sand interfaces 
for consolidated and 

unconsolidated sands
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ˆ A (t, x) ˆ B (t, x)

Quadratic regularization

L=I

ˆ A (t, x) ˆ B (t, x)

Cauchy Solution



ˆ A (t, x) ˆ B (t, x)

III
III

Identify gas
bearing sand lens

Interpretation/

AVA Analysis

  

r(t,α, x) = f (x,α,v− ,v+ ,ρ− ,ρ+)

            = A(t, x) + B(t, x) × F (α)

A

B
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Large inverse problems: Pre-stack depth 
Imaging

Structural Imaging -- Where ?Where ?

Imaging Angle Dependent Reflectivity  -- Where and What ?Where and What ?

Wang J., Kuehl H. and Sacchi M.D., 2005, High-resolution wave-equation AVA imaging: Algorithm 
and tests with a data set from the Western Canadian Sedimentary Basin: Geophysics, 70, 891-899
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Imaging - Large scale problems

r(α, x,z)

x

z

SOURCE (s)

RECEIVER/GEOPHONE (g)

h

m

m: midpoint
h: offset

Wang, Kuehl and Sacchi, Geophysics 2005

α

We want the variation of the 
reflectivity at each subsurface 
position:

A 2D image is in fact a 3D volume

A 3D Image is a 5D Volume
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Imaging in Operator Form..

  

                 A m = d + n

m = m(x, y,z, p), p =
sin(α)

v (x, y,z)

d = d (
G 
g ,

G 
s , t)  

G 
g = [gx ,gy ],

G 
s = [sx ,sy ]

r(α, x,z)

d: is now pre-processed seismic data
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 A r = d

rmig = A' d

rinv = A−1d

Modeling

Migration

Inversion

Migration/Inversion Hierarchy..
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Regularized Imaging 

• We don’t have A, we only have a code that knows how to apply A to m 
and, another, that knows how to apply A’ to d

• A and A’ are built to pass the dot product test

• Importance of sampling Matrix W for reducing footprints (Kuehl, 2002, 
PhD Dissertation)

Remarks:

J=||W (Ar − d) ||2
2 +µR(r)



Migration

Migration
Inversion
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r = r(x = x' ,y = y' ,z, p),

Migration QR NQR
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Synthetic trace
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A:synthetic B: inverted

Red: synthetic
Blue: inverted


