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Seismic Data

Kirchhoff Imaging

Wavefield Extrapolation Imaging

Outline

A 2-D Seismic Image

Distance

Traveltime (related to depth)

The image is essentially a 
matrix with each sample 

being an estimate of 
reflectivity. Each column is 
a reflectivity time series.

reflectivity : R(t) is a time 
series of estimated 
reflectivity samples 

[ ]1,1R∈ −
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3D Seismic Data Volume
x

y

z

-amplitude variation
along reflectors indicates

3D volume

(WesternGeco)

=> change in impedance contrast
=> rock and fluid propertiesPage 3 of 121
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3D Seismic Volume

CREWES Blackfoot Survey
Compressional Impedance, Bottom of Glauconitic channel

P-P (1C) Simultaneous P-P and P-S 
(3C)

3 km
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Marmousi Model
Industry Standard Test

Environmental Difficulties

1) Complex, layered environments

2) Multidimensional environments

3) Inhomogeneous background

4) Large scale (many wavelengths)

5) Strongly inhomogeneous environments

6) Focusing and defocusing regimes

Velocity

Marmousi Movie
Finite Difference Simulation
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Marmousi Data
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Marmousi Data

240 shots

96 receivers/shot

726 samples/receiver

8 bytes/samples

Dataset size= 240*96*726*8 ~ 134 Mbytes

Real datasets have 1000’s of 
shots, 1000’s of receivers/shot, 
and 1000’s of samples/receiver.
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The Basic Seismic Experiment

A hydrocarbon target.
A regular array of detectors (1-C or 3-C).

A seismic source.
The target scatters energy to all receivers.

Seismic 
Imaging

Data space 5⊂\

Image space 3 4 or ⊂\ \
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Typical Land Sampling Lattices

Source (red) spacing 10m --- Source line spacing 100m
Receiver (blue) spacing 10m --- Receiver line spacing 100m

Wave and Helmholtz Equations

( )
( )

2
2

2 2

1
, , 0 scalar wave equation

⎫⎡ ⎤ ⎪∂ ⎪⎪⎢ ⎥∇ − Ψ = ⎬⎢ ⎥ ⎪∂⎢ ⎥ ⎪⎣ ⎦ ⎪⎭
x x

x
s t

v t

( ) ( )

Inverse Fourier Transform

1
, , , ,

2
ωψ ω ω

π
Ψ = ∫x x x x

\�����	����

i t

s st e d

( )
( )

2
2

2
, , 0 Helmholtz equation

ω
ψ ω

⎫⎡ ⎤ ⎪⎪⎪⎢ ⎥∇ + = ⎬⎢ ⎥ ⎪⎢ ⎥ ⎪⎣ ⎦ ⎪⎭
x x

x
s

v

There are many variations on the scalar wave equation but 
the canonical form is 

If the wavefield obeys the wave equation, then its 
temporal Fourier transform 

( ) ( )
Wavefield

Spectrum Forward Fourier Transform

, , , , ωψ ω ω−= Ψ∫x x x x
\


����

��	�
 ����	���

i t

s s t e d

obeys the Helmholtz equation
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Exercise: The Helmholtz equation

( )
( ) ( )

2
2

2 2

1
, , 0. 1

⎡ ⎤∂⎢ ⎥∇ − Ψ =⎢ ⎥∂⎢ ⎥⎣ ⎦
x x

x
s t

v t

Consider the time-domain scalar wave equation

Express the wavefield as the inverse Fourier transform of it’s 
temporal frequency spectrum as

Show that equation (1) is then equivalent to

( ) ( ) ( )1
, , , , . 2

2
ωψ ω ω

π
Ψ = ∫x x x x

\
i t

s st e d

( )
( ) ( )

2
2

2
, , 0. 3

ω
ψ ω

⎡ ⎤
⎢ ⎥∇ + =⎢ ⎥
⎢ ⎥⎣ ⎦

x x
x

s
v

This is the source-free Helmholtz equation.

( )!

The Helmholtz equation
solution

Substitution of equation (2) into (1) requires calculating the 
second time derivative

( ) ( )

( ) ( ) ( )( )

( ) ( )

2 2

2 2

2
2

2

2

1
, , , ,

2

1 1
, , , ,

2 2
1

, , .
2

ω

ω ω

ω

ψ ω ω
π

ψ ω ω ψ ω ω ω
π π

ω ψ ω ω
π

∂ ∂
Ψ =

∂ ∂
∂

= =
∂

= −

∫

∫ ∫

∫

x x x x

x x x x

x x

\

\ \

\

i t
s s

i t i t
s s

i t
s

t e d
t t

e d i e d
t

e d

( )!

The spatial derivatives are not simplified in this case so 
equation (1) becomes

( )
( ) ( )

2
2

2

1
, , 0. 4

2
ωω

ψ ω ω
π

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜∇ + =⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ x x

x\
i t

s e d
v
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The Helmholtz equation
solution

( )!

This says that the inverse Fourier transform of the term in 
square brackets must vanish. The completeness of the Fourier 
transform means that the only way this can happen is if the 
term in square brackets must also vanish. That is, the zero 
signal has a zero spectrum and vice-versa. So we conclude

( )
( ) ( )

2
2

2

1
, , 0. 4

2
ωω

ψ ω ω
π

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜∇ + =⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ x x

x\
i t

s e d
v

( )
( )

2
2

2
, , 0.

ω
ψ ω

⎛ ⎞⎟⎜ ⎟⎜∇ + =⎟⎜ ⎟⎜ ⎟⎝ ⎠
x x

x
s

v

Example of a 
Typical Imaging Theory

Kirchhoff Migration
•Assume a physics model: Balance simplicity and 
realism, define a small unknown perturbation of the 
model..

•Solve the forward scattering problem: Linearize the 
Lippman-Schwinger equation.

•Invert the forward scattering integral for the 
perturbation: integration over sources and receivers.
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Forward Scattering (3D)

( )
( ) ( ) ( )

2
2

2
, ,s sF

v

ω
ψ ω ω δ

⎡ ⎤
⎢ ⎥∇ + =− −⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x
x

lim 0,
ψ ω

ψ
→∞

⎛ ⎞⎡ ⎤∂ ⎟⎜ ⎢ ⎥+ = =⎟⎜ ⎟⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
x

r

i
r r

r v

Helmholtz 
problem

Radiation condition, 
outgoing waves at infinity

( ) ( )
( )( )2 2

1 1
1

v c
α= + x

x x
Perturbation assumption

( )supp , 0zα =Ω Ω⊂ > Perturbation has compact support

Forward Scattering (3D)

Ω

Assume unbounded medium (i.e. recording plane is 
transparent).

Recording plane.
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Exercise: Radiation Condition

( )//1 1
,ωωψ +

+ += ⇒ Ψ = i t r vi r ve e
r r

Consider the two monochromatic waves defined by

Identify the direction of travel of each wave (as t increases, 
does r increase or decrease?). Which wave satisfies the 
radiation condition (consider v to be constant)

( )!

( )//1 1 ωωψ −−
− −= ⇒Ψ = i t r vi r ve e

r r

lim 0, ?
ψ ω

ψ
→∞

⎛ ⎞⎡ ⎤∂ ⎟⎜ ⎢ ⎥+ = =⎟⎜ ⎟⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
x

r

i
r r

r v

Radiation Condition
solution

( ) ( )phase /ω+Ψ = +t r v

We can determine the direction a wave moves by tracking 
a front of constant phase. Consider

Suppose this phase evaluates to a constant, q, at time t1 and 
radius r1. Then at a later time, t2, and a different radius, r2, 
then the wave front must satisfy

( )!

( ) ( )1 1 2 2/ /θ ω ω= + = +t r v t r v

from which we deduce

( )2 1 1 2 .= + −r r t t v

Since we chose t2> t1, then it follows that r2< r1 and so this 
wave moves in the direction of decreasing radius.
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Radiation Condition
solution

After a similar analysis for the other wave we have the 
directions

( )!

( )/1
incoming from infinityω +

+Ψ = ⇒i t r ve
r

( )/1
outgoing to infinityω −

−Ψ = ⇒i t r ve
r

By direct calculation of the partial derivatives we have

1
lim 0

ψ ψω ω
ψ ψ− −
− −

→∞

⎛ ⎞⎡ ⎤⎛ ⎞∂ ∂ ⎟⎜⎟⎜ ⎢ ⎥=− + ⇒ + =⎟⎟ ⎜⎜ ⎟⎟⎜ ⎜ ⎟⎢ ⎥⎝ ⎠∂ ∂⎝ ⎠⎣ ⎦r

i i
r

r v r r v

/1
lim 2 0ωψ ψω ω ω

ψ ψ+ +
+ +

→∞

⎛ ⎞⎡ ⎤⎛ ⎞∂ ∂ ⎟⎜⎟⎜ ⎢ ⎥⎟= − ⇒ + = ≠⎜⎟⎜ ⎟⎟ ⎜⎜ ⎟⎢ ⎥⎜⎝ ⎠∂ ∂⎝ ⎠⎣ ⎦
i r v

r

i i i
r e

r v r r v v

Warning: the form of the frequency domain radiation condition 
depends upon the Fourier transform sign convention chosen. Why?

Forward Scattering (3D)

( ) ( ) ( ), , , , , ,s I s S sψ ω ψ ω ψ ω= +x x x x x x
Incident and 

reflected (scattered) 
fields

Incident field solves the background problem

( )
( ) ( ) ( )

2
2

2
, ,I s sF

c

ω
ψ ω ω δ

⎡ ⎤
⎢ ⎥∇ + =− −⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x
x
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Forward Scattering (3D)
It results that the reflected field satisfies a 

perturbed Helmholtz equation

( )
( )

( )
( ) ( )

2 2
2

2 2
, , , ,S s s

c c

ω ω
ψ ω α ψ ω

⎡ ⎤
⎢ ⎥∇ + =−⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x x
x x

Note the appearance of the total field on the 
right. This is exact, no approximations. 

Given measurements of the reflected field and 
knowledge of the background medium, we wish 

to solve for the perturbation ( )α x

Exercise: Derive the perturbed 
Helmholtz equation

( ) ( ) ( ) ( ), , , , , , 3s I s S sψ ω ψ ω ψ ω= +x x x x x x

Given:

( )
( ) ( ) ( ) ( )

2
2

2
, , 2I s sF

c

ω
ψ ω ω δ

⎡ ⎤
⎢ ⎥∇ + =− −⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x
x

( )!

( )
( ) ( ) ( ) ( )

2
2

2
, , 1s sF

v

ω
ψ ω ω δ

⎡ ⎤
⎢ ⎥∇ + =− −⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x
x

Show that:

( )
( )

( )
( ) ( )

2 2
2

2 2
, , , ,S s s

c c

ω ω
ψ ω α ψ ω

⎡ ⎤
⎢ ⎥∇ + =−⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x x
x x

In the wavefield expressions, xs is a constant and the 
Laplacian operates only on x.Page 14 of 121
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The perturbed Helmholtz equation 
Solution

Substitute (3) into (1)

( )!

( )
( ) ( )( )

( )
( )

( )
( ) ( ) ( )

2
2

2

2 2
2 2

2 2

, , , ,

, , , ,

I s S s

I s S s s

v

F
v v

ω
ψ ω ψ ω

ω ω
ψ ω ψ ω ω δ

⎡ ⎤
⎢ ⎥∇ + + =⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∇ + + ∇ + =− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x x x
x

x x x x x x
x x

Subtract equation (2) from this

( )
( )

( ) ( )
( ) ( )

2 2 2
2

2 2 2
, , , , 0 4S s I s

v v c

ω ω ω
ψ ω ψ ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∇ + + − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x x x
x x x

The perturbed Helmholtz equation 
Solution -2-

Recall the definition of the perturbation

( )!

Use this in equation (4) and rearrange

( )
( )( ) ( )

( )
( ) ( )

2 2
2

2 2
1 , , , ,S s I s

c c

ω ω
α ψ ω α ψ ω

⎡ ⎤
⎢ ⎥∇ + + =−⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x x x
x x

( ) ( )
( )( )

( ) ( )
( )
( )2 2 2 2 2

1 1 1 1
1

v c v c c

α
α= + ⇒ − =

x
x

x x x x x

( )
( )

( )
( ) ( ) ( )( )

2 2
2

2 2
, , , , , ,S s I s S s

c c

ω ω
ψ ω α ψ ω ψ ω

⎡ ⎤
⎢ ⎥∇ + =− +⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x x x x
x x

Since the last term on the right is the total field, this is the
desired result. Page 15 of 121
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Solution Strategy

• Convert the perturbed Helmholtz equation to an 
integral equation using Green’s theorem. 

• Try to invert the integral equation and solve for 
the perturbation.

Green’s Theorem
Green’s Theorem for the Laplacian

2 2

D D

b a
a b b a d a b d

n n
σ

∂

⎡ ⎤∂ ∂⎡ ⎤ ⎢ ⎥∇ − ∇ = −⎢ ⎥⎣ ⎦ ⎢ ⎥∂ ∂⎣ ⎦
∫ ∫x

Where “a” and “b” are arbitrary scalar fields. 
This can be derived from a generalization of the 
fundamental theorem of calculus to 3D.
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Exercise: A Simple Green’s Theorem

2
2

1
1

2 2

2 2

x
x

x
x

d b d a db da
a b dx a b

dx dxdx dx

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥− = −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
∫

The following equation is a simple manifestation of 
Green’s theorem in 1D. a and b are ordinary 
functions of x and [x1,x2] is an interval on the real 
line. 

This can be derived by an application of integration 
by parts. See if you can do it before reading the 
solution on the next few slides.

( )!

A Simple Green’s Theorem
Solution

2 22

11 1

x xx

xx x
udv uv vdu= −∫ ∫

Recall the formula for 
integration by parts for two 
functions u and v:

Use this to evaluate:
2

1

2

2
?

x

x

d b
a dx

dx
=∫

Let u a=
2

2

d b
dv dx

dx
=and

( )
2

2 2

1 1
1

2

2

term
term

1
x

x x

x x
x

vdu
uv

d b db da db
a dx a dx

dx dx dxdx
= −∫ ∫

���	��
�	

Then it follows that

( )!
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A Simple Green’s Theorem
Solution -2-

Similarly we can find

Then, subtracting result (2) from (1) gives the desired solution:

( )
2

2 2

1 1
1

2

2
2

x
x x

x x
x

d a da da db
b dx b dx

dx dx dxdx
= −∫ ∫

2
2

1
1

2 2

2 2

x
x

x
x

d b d a db da
a b dx a b

dx dxdx dx

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥− = −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
∫

This derivation is exactly analogous to what is required to 
derive Green’s theorem in 3D. So we see that the theorem is 
simply a result of integral calculus and is a useful tool in 
physical problems although it has not “physics” itself.

( )!

Solution Strategy
Green’s Theorem for the Laplacian

( )
( ) ( )

2
2

2
, ,g gg

c

ω
ω δ

⎡ ⎤
⎢ ⎥∇ + =− −⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x
x

2 2 S
S S S

D D

g
g g d g d

n n

ψ
ψ ψ ψ σ

∂

⎡ ⎤∂ ∂⎡ ⎤ ⎢ ⎥∇ − ∇ = −⎢ ⎥⎣ ⎦ ⎢ ⎥∂ ∂⎣ ⎦
∫ ∫x

( )
( )

( )
( ) ( )

2 2
2

2 2
, , , ,S s s

c c

ω ω
ψ ω α ψ ω

⎡ ⎤
⎢ ⎥∇ + =−⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x x
x x

Physics

Math
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Forward Scattering
Lippman-Schwinger Equation
The surface integrals vanish due to the unbounded 

medium assumption and the radiation condition. One 
part of the volume integral collapses to the scattered 

field with the result

( ) ( )
( )

( ) ( )2
20

, , , , , ,S g s s g
z

g d
c

α
ψ ω ω ψ ω ω

>
= ∫

x
x x x x x x x

x

A Lippmann-Schwinger equation for the scattered 
field.  Note the presence of the total field in the 
integral.

Forward Scattering
Born Approximation

We approximate the total field with the incident field

( ) ( )
( )

( ) ( )2
20

, , , , , ,S g s I s g
z

g d
c

α
ψ ω ω ψ ω ω

>
= ∫

x
x x x x x x x

x

The first-order Born approximation to the Lippmann-
Schwinger scattering equation.

( ) ( ) ( ) ( ), , , , , , , , ,s I s S s I sψ ω ψ ω ψ ω ψ ω≈ <<x x x x x x x x
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Forward Scattering
Born Approximation

Taken from: Lecture Notes on the Mathematics of Acoustics, M.C.M. Wright 
(ed.), Imperial College Press, 2005

Inverse Born Scattering
Source Gather

Usually more approximations are required to invert linearized 
Lippmann-Schwinger equation.. For example, if we assume the 
geometry of a source gather, a constant background velocity, and
approximate the incident field with a Green’s function, then an 
approximate formula is

( ) ( ) ( )/3
1 2 1 22 0

4 cos
, ,

ωθ
α ξ ξ ωψ ξ ξ ω

π

∞ +
= ∫ ∫x s gi r r cs

S
A

g

x r
d d d e

c r

2θ gr
1ξ

2ξ

sr

x
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Inverse Born Scattering
Source Gather

Dissecting the equation:

( ) ( ) ( )/3
1 2 1 22 0

4 cos
, ,

ωθ
α ξ ξ ωψ ξ ξ ω

π

∞ +
= ∫ ∫x s gi r r cs

S
A

g

x r
d d d e

c r

( ) /
1 2, ,

ωψ ξ ξ ω gi r c
S e

The scattered data downward continued to 
the image point by phase shift. 

1
/1 ω

−
−⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

si r c

s

e
r

Green’s function model of the incident 
field. 

2

cosθ

gr
A collection of geometric factors.

Exercise: Time shift by phase shift

Consider a signal g(t) with Fourier transform given by

( ) ( )ˆ ωω −= ∫\
i tg g t e dt

Show that the Fourier transform of g(t+τ) is 

( )!

( ) N ( )
Fourier Pair

time domain Fourier domain

ˆ ωττ ω+ ⇔��	�
 ��	�

ig t g e

How do you time shift a signal in the frequency domain?
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Time shift by phase shift
solution

Denote the time shifted signal by

( ) ( ) ( )ˆ ω ωω τ− −= = +∫ ∫\ \
i t i tu u t e dt g t e dt

This is one of the most important properties of the Fourier 
transform. You can move things around by phase shifting the 
spectrum. Warning: The sign of the phase shift depends on the 
sign of the time shift AND on the Fourier transform convention. 
So you will almost always get it wrong the first time.

( )!
( ) ( )τ= +u t g t

Then

( ) N ( ) ( ) ( ) ( )

let

ˆ ω τ ωωτ

τ
ω − − −

+ =
= =∫ ∫\ \

i x i xi

t x

u g x e dx e g x e dx

( ) ( )ˆ ˆωτω ω= iu e gfinally

Inverse Born Scattering
Kirchhoff Mapping

Data space for one 
source gather

2ξ

1ξ

t
2x

1x

3x

Reflectivity 
model space

The summation along the hyperbolic surface is done by 
a phase shift that flattens the surface and then a sum over 
the spatial coordinates.Page 22 of 121
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Inverse Born Scattering
Major Points

• Many assumptions required to get here. 

• The perturbation at depth is estimated directly from an 
integration of the surface data. This integration requires 
phases and weights which must be estimated from 
raytracing.

• Ultimately, this does note quite work because of the 
frequency bandwidth of seismic data.

Inverse Born Scattering
Seismic Frequency Band

• Typical: 10-100 Hz, missing both high and low 
frequencies. 

( )
( )

2

2
1

c

v
α = −x

x

3x

( )3xα

( ) ( )1
ˆ ~

2
n Rβ α= ∇ •x x

3x

( )3xβ
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Inverse Born Scattering
Source Gather, Reflectivity Estimator

( ) ( ) ( )/3
1 2 ; 1 22 2 0

2 cos
, , s gi r r cs

S s
A

g

x r
d d i d e

c r

ωθ
β ξ ξ ω ωψ ξ ξ ω

π

∞ +
= ∫ ∫x

A similar integral as before but the linear frequency 
weighting means that the missing low frequencies are 

downweighted.

These methods are known as 
Kirchhoff Migration methods.

Kirchhoff Approach Summary

• Inverse scattering approach

• Ray theoretical assumptions made (high frequency)

• Stable ray tracing required

• Computationally simple but weights are subject to 
assumptions and are generally different from one 
application to the next

• Only a small subset of the seismic wavefield is 
captured in this approach
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Marmousi Velocity Model

Marmousi Wavefronts
finite difference simulation

Albertin, Yingst, and Jaramillo, Comparing … Maslov, Gaussian Beam, 
and Coherent State Migrations, SEG, 2001Page 25 of 121
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Marmousi Wavefronts
Kirchhoff (raytracing) simulation

Albertin, Yingst, and Jaramillo, Comparing … Maslov, Gaussian Beam, 
and Coherent State Migrations, SEG, 2001

Wavefield Extrapolation Methods

• Move away from the ray-theoretic inverse 
scattering approach towards a more complete 
simulation of wave propagation.

• In theory, these methods move toward wave 
propagation as a path integral along all possible 
paths rather than the few select, ray theoretical, 
paths.
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Seismic Imaging Paradigm
A common seismic imaging methodology is derivable from 

first-order inverse Born scattering

( ) ( ) ( ), ,refl inc inc incx t R x x tΨ = Ψ
G G G

reflector

A reflectivity estimate.

( )inc , incx tΨ
G

( )
( )

( )
,

,
refl inc

inc inc

x t
R x

x t

Ψ
=

Ψ

G
G

G

Seismic Imaging Paradigm
Seismic imaging typically is done in the frequency domain 

and uses depth steps not time steps, so a more common  
imaging condition is:

( )
( )
( )

, , ,
, ,

, , ,
refl

inc

x y z z
R x y z

x y z zω

ψ ω

ψ ω

=∆
∆ =

=∆∑
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Seismic Imaging Paradigm
So for each depth, we must calculate two fields:

( ), , ,refl x y n zψ ω∆

( ), , ,inc x y n zψ ω∆

The reflected field comes from 
mathematically marching the recorded 
data down into the earth.

The incident field comes from a 
mathematical model of the source 
wavefield that is also marched down.

In both cases, the wavefield marching is done through a 
“background” velocity field that is presumed known.

∆z

Wavefield Extrapolator
The Phase Shift Extrapolator

( ) ( )0, 0, ,ψ ω ψ ω= ≡x z x

( ), ,ψ ω∆x z

z

x

constant velocity=v

Given

Find

( )
2

2
2

, , 0
ω

ψ ω
⎛ ⎞⎟⎜ ⎟∇ + =⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

x z
v

Assume
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Wavefield Extrapolator
The Phase Shift Extrapolator

( )
( )
( )

2 2 2 2

2 2 2 2

2
2

2

exp ,
ˆ , , ,

exp ,
ω

ω

⎧⎪ ∆ − >⎪⎪⎪∆ =⎨⎪⎪ −∆ − <⎪⎪⎩

=

x x

x

x x

i z k k k k
W k k z

z k k k k

k
v

( ) ( )
( )

( )
phase shift operatorwavefield in ,

1 ˆ ˆ, , ,0, , ,
2

ω

ψ ω ψ ω
π

−∆ = ∆∫\ ��	�
 ���	��

x

x

ik x
x x x

k

x z k W k k z e dk

While valid only for constant velocity, this is still the 
“canonical form” to which all other methods aspire.

Wavefield Extrapolator
In the space-frequency domain

( ) ( )
( )

( )

( )
Wavefield extrapolatorwavefield in ,
in ,  domain

, , ,0, , ,

ω
ω

ψ ω ψ ω′ ′ ′∆ = − ∆∫\ ��	�
 ���	��

x

x

x z x W k x x z dx

Since multiplication in the wavenumber domain is a 
convolution in the space domain, the phase-shift 
expression is equivalent to

( ) ( ) ( )1 ˆ, , , ,
2π

′−′− ∆ = ∆∫\
xik x x

x xW k x x z W k k z e dk

where
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Wavefield Extrapolator
as abstract operator

( ) ( ) ( ) ( ) ( ), , ,0, ,0, , ,ψ ω ψ ω ψ ω∆ ′ ′ ′∆ = ≡ − ∆∫\W zx z L x x W k x x z dx

We often find it convenient to hide most of the details in 
an abstract wavefield extrapolation operator

For two steps we write
( ) ( ) ( ) ( )2, 2 , ,0,ψ ω ψ ω∆ ∆∆ = DW z W zx z L L x

Where ◦ symbolizes the composition of the operators which 
just means their sequential application. For N steps we 
write ( ) ( ) ( ) ( ) ( )

( ) ( )

2

1

, , ,0,

,0,

ψ ω ψ ω

ψ ω

∆ ∆ ∆

∆
=

∆ =

≡∏

" DW N z W z W z

N

W n z
n

x N z L L L x

L x

Exercise: Derive the phase shift 
extrapolation expression

( ) ( )ˆ , , , ,ψ ω ψ ω= ∫\
xik x

xk z x z e dx

Define the spatially Fourier transformed wavefield

( )!
In 2D the Helmholtz equation is

( )
2 2 2

2 2 2
, , 0

ω
ψ ω

⎛ ⎞∂ ∂ ⎟⎜ ⎟+ + =⎜ ⎟⎜ ⎟⎟⎜∂ ∂⎝ ⎠
x z

x z v

In a similar fashion to the derivation of the Helmholtz equation
we find that

( ) ( )
2 2

2
2 2

ˆ ˆ, , , ,
ω

ψ ω ψ ω
⎛ ⎞∂ ⎟⎜ ⎟=− −⎜ ⎟⎜ ⎟⎟⎜∂ ⎝ ⎠

x x xk z k k z
z v
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Exercise: Derive the phase shift 
extrapolation expression

( ) ( ) ( ) ( )ˆ , , , , 2ψ ω ω ω −= +z zik z ik z
x x xk z A k e B k e

So we must solve

( )!
It is customary to define

This equation is actually an ODE and has the general solution

( ) ( ) ( )
2

2
2

ˆ ˆ, , , , 1ψ ω ψ ω
∂

=−
∂ x z xk z k k z

z

2
2 2 2 2

2
,

ω
= − =z xk k k k

v

( )
2 2 2 2

2 2 2 2

2
2

2

,
3

,

ω

⎧⎪ − ≥⎪⎪=⎨⎪⎪− − <⎪⎩

=

x x

z

x x

k k k k
k

k k k k

k
v

where we define kz explicitly 
by equation (3) and by √ we 
mean the positive square root.

Exercise: Derive the phase shift 
extrapolation expression

( ) ( )( ) ( )0
ˆ, , and , 0ω ψ ω ω= =x x xA k k B k

( )!
In equation (2), the functions A and B are arbitrary functions 
of the Fourier coordinates and must be determined by the 
prescribed boundary conditions. This is actually a problem 
since we have two arbitrary functions and only one boundary 
condition, namely:

( ) ( )0, , , a known functionψ ω ψ ω≡ =x z x

Lacking a second boundary condition, we proceed with a 
simplifying assumption. We assume that the given wavefield 
contains waves moving only upward (in the –z direction). Using 
reasoning similar to that made in discussing the radiation 
condition, we can show that A represents the strength of upgoing
waves and B represents downgoing waves. So we take
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Exercise: Derive the phase shift 
extrapolation expression

( ) ( )ˆ ˆ, , ,0,ψ ω ψ ω= zik z
x xk z k e

This works for any value of z if velocity remains constant but 
we are interested in the specific value z=∆z. So write:

( )!
So we have our final solution

where we define 
the wavefield 
extrapolation 
operator in the 
Fourier domain as

( ) ( ) ( )ˆ ˆ ˆ, , ,0, , ,ψ ω ψ ω= ∆x x xk z k W k k z

( )
( )
( )

2 2 2 2

2 2 2 2

2
2

2

exp ,
ˆ , ,

exp ,

ω

⎧⎪ ∆ − >⎪⎪⎪∆ =⎨⎪⎪ −∆ − <⎪⎪⎩

=

x x

x

x x

i z k k k k
W k k z

z k k k k

k
v

Exercise: Transform the phase-shift 
operator to the space-frequency domain

( )!
The phase-shift wavefield extrapolator is

Now interchange the order of integration

( ) ( ) ( )1 ˆ ˆ, , ,0, , ,
2

ψ ω ψ ω
π

−= ∆∫\
xik x

x x xx z k W k k z e dk

To proceed, substitute ( ) ( )ˆ , , , ,ψ ω ψ ω= ∫\
xik x

xk z x z e dx

( ) ( ) ( )1 ˆ, , , , , ,
2

ψ ω ψ ω
π

′ −⎡ ⎤′ ′= ∆⎢ ⎥⎣ ⎦∫ ∫\ \
x xik x ik x

x xx z x z e dx W k k z e dk

( ) ( ) ( ) ( )1 ˆ, , , , , ,
2

ψ ω ψ ω
π

′− −⎡ ⎤
′ ′⎢ ⎥= ∆

⎢ ⎥⎣ ⎦
∫ ∫\ \

xik x x
x xx z x z W k k z e dk dx

where we have been careful to construct the inner integral 
as an inverse Fourier transform over spatial coordinates.Page 32 of 121
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Exercise: Transform the phase-shift 
operator to the space-frequency domain

( )!
Now, introduce a new symbol for the inverse Fourier 
transform of the phase-shift operator (take its hat off) …

So, in the space-frequency domain, wavefield extrapolation 
is a spatial convolution.  Later we will see how to adapt this 
expression to variable velocity.

where we have defined

( ) ( ) ( ), , , , , ,ψ ω ψ ω′ ′ ′= − ∆∫\x z x z W k x x z dx

( ) ( ) ( )1 ˆ, , , ,
2π

′− −′− ∆ ≡ ∆∫\
xik x x

x xW k x x z W k k z e dk

( )
synthetic source record

,0,ψ ω

����

inc x ( )
recorded data

,0,ψ ω

����

refl x

Wavefield Extrapolator Imaging
“wave equation migration”of shot records 

First Step

( ) ( ) ( )0ψ ψ∆∆ =refl reflW zz L

( )
( )
( )ω

ψ

ψ

∆
∆ =

∆∑ refl

inc

z
R z

z

( ) ( ) ( )0ψ ψ∆∆ =inc incW zz L
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( ) ( ) ( )22ψ ψ∆∆ = ∆inc incW zz L z ( ) ( ) ( )22ψ ψ∆∆ = ∆refl reflW zz L z

( )
synthetic source record

,0,ψ ω

����

inc x ( )
recorded data

,0,ψ ω

����

refl x

Wavefield Extrapolator Imaging
“wave equation migration” of shot records

Second Step

( )ψ ∆refl z

( )
( )
( )
2

2
2ω

ψ

ψ

∆
∆ =

∆∑ refl

inc

z
R z

z

( )ψ ∆inc z

Wavefield Extrapolator Imaging
“wave equation migration” of shot records

Any Step

( ) ( ) ( ), , , ,ψ ω ψ ω+∆+∆ =refl reflW z zx z z L x z

( ) ( ) ( ) ( ) ( )2, , ,0,ψ ω ψ ω∆ ∆ ∆∆ = D" Drefl reflW N z W z W zx N z L L L x

( )
( )
( )

{ }
, ,

, , 0, , 2 ,
, ,ω

ψ ω

ψ ω
= ⊂ ∆ ∆ ∆∑ …refl

inc

x z
R x z z z z N z

x z

We can obtain such a reflectivity estimate for each depth 
and for each source position.

( ) ( ) ( ) ( ) ( )2, , ,0,ψ ω ψ ω∆ ∆ ∆∆ = D" Dinc incW N z W z W zx N z L L L x

Page 34 of 121
Margrave



Simulation in 3D

Four test sources

Receiver lines

x

y

Receiver interval 10 meters and receiver line spacing 10 meters.

PP Data at z=0, 60 Hz
a b

c d

Horizontal reflector at 500 m depth with R=0.1Page 35 of 121
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PP Data at z=500, 60 Hz
a b

c d

Source at z=500, 10 Hz
a b

c d
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PP Reflectivity at 60 Hz
a b

c d

( ),R x z

Now we expand the notation to denote each individual 
source with an index. In principle, each source can 
provide a reflectivity estimate at each subsurface 
position “beneath” the survey.

Wavefield Extrapolator Imaging
Compositing the individual shot records

So each the reflectivity estimates from each source have 
an angle dependency.
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Let the reflectivity 
estimate from the 
kth source be

Wavefield Extrapolator Imaging
Compositing the individual shot records

( )
( )
( )

, , ,
,

, , ,ω

ψ ω

ψ ω
=∑ refl k

k
inc k

x x z
R x z

x x z

It is common to form a stacked reflectivity image (or migrated 
section) by summing the estimates from each source.

( ) ( ), ,=∑stk k
k

R x z R x z

The ensemble of reflectivity estimates at a given x, considered as a 
function of k and z, is called a common image gather (CIG).

( ), CIG at position .=kR x z x

Wavefield Extrapolator Imaging
Compositing the individual shot records

The stacked reflectivity image is

( ) ( )
( ) ( )

( ) ( )

, ,0,

, ,
, ,0,ω

ψ ω

ψ ω

∆

∆

= =
∏

∑ ∑∑∏
refl kW n z

n
stk k

inc kk k W n z
n

L x x

R x z R x z
L x x

A natural question to ask is could we somehow move the stacking 
operator all the way to the right thereby compositing the data 
before all of the wave-equation stuff. This would save a lot of 
computational cost. To make life simpler, lets define

( ) ( ) ( )
( ) ( )

( ) ( ), ,

, , 0,

,
, ,0,ω

ψ ω
ψ

ψ ω

∆

∆

= ≡
∏

∑∏k

refl kW n z
n

k refl kmig x z x
inc kW n z

n

L x x

R x z O x
L x x
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Wavefield Extrapolator Imaging
Compositing the individual shot records

The stacked reflectivity image is

( ) ( ) ( ), ,, ψ=∑ kstk refl kmig x z x
k

R x z O x

So, is it possible that

( ) ( ) ( ) ( ) ( )
?

,, ,, ψ ψ′= =∑ ∑kstk refl k refl kmig x zmig x z x
k k

R x z O x O x

The answer to this is NO!, but it turns out that, with a great 
deal of effort we can do something like

( ) ( ) ( )

( ) ( ) ( )

, ,

, , ,

, ψ

ψ

=

′≈

∑

∑
k

k

stk refl kmig x z x
k

refl kmig x z nmo x t x
k

R x z O x

O O x

Wavefield Extrapolator Imaging
Compositing the individual shot records

So there is the possibility of a number of different 
imaging operators:

( )

( )

( )

, ,

,

, ,

Migration operator (pre-stack)

Migration operator (post-stack)

Normal moveout operator

=

′ =

=

k

k

mig x z x

mig x z

nmo x t x

O

O

O

There is much more to this story than can be told here. 
The important thing is that O'mig and Onmo are the 
common choice today but too much is lost in the 
approximation. Omig is the obvious choice for the future, 
but a great deal of work and research remains. 
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Kirchhoff versus WEM

Kirchhoff traces Snell rays to 
each point in the image.

Wavefield Extrapolation 
Migration uses mathematical 
operators to march entire 
wavefields to the image point.

Both methods are first-order Born approximations to the 
inverse scattering problem.

Final Points
Seismic Images are routinely produced but there 

are many outstanding problems.

The Kirchhoff method is derivable from Born 
scattering theory and is limited by ray theory.

The wavefield extrapolation method seems like a 
way forward but is computationally challenging and 

it is not clear what the limitations are.

Both methods are first-order Born approximations.

Determination of the background velocity model is 
a major concern.

No one knows anything about convergence.
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Introduction to
Phase Space Concepts 

in Seismic Imaging

Seismic Imaging Summer School

Calgary, 2006

Gary F. Margrave

Outline

• Fourier Transforms

• Stationary Fourier Methods

• Phase Space

• Pseudodifferential Operators
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Part 1

Fourier Transforms

Fourier Transform
Forward

( ) ( )ˆ , 0, , 0, eψ ω ψ ω= = =∫\
xik x

xk z x z dx

Forward transform 
time→frequency

( ) ( )

( )

, 0, , 0, e

, 0,

ωψ ω

ω

−= = Ψ =

= Ψ =

∫\�
i tx z x z t dt

x z
Forward transform 
space→wavenumber

Forward 2D transform over time and space

( ) ( ) ( )

( )

2
ˆ , 0, , 0, e

ˆ , 0,

ωψ ω

ω

−= = Ψ =

= Ψ =

∫\
�

xi k x t
x

x

k z x z t dtdx

k z
The use of a different sign convention for the space and 
time transforms is intentional. This is called the 
"symplectic" form of the Fourier transform.Page 42 of 121
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Fourier Transform
Inverse

( ) ( ) ( )
22

1 ˆ, 0, , 0, e
4

ωψ ω ω
π

−Ψ = = =∫\
xi t k x

x xx z t k z dk d

Inverse transform over wavenumber and frequency

Physical interpretation:

( )e ω − xi t k x Basis vectors or fundamental waves, 
apparent velocity ω/kx.

( )ˆ , 0,ψ ω=xk z Amplitudes and phases of the 
fundamental waves 

Synthetic First Break Event

Page 43 of 121
Margrave



Seismic Shot Record
Gained and clipped

Fourier Transform
synthetic data

( ) ( ) ( )
2

ˆ , , e ωψ ω −= Ψ∫\
xi k x t

xk x t dxdt

( ),x t ( ),xk ω

( )ˆ ,ψ ωxk( ),Ψ x t

opposing signs in exponent (symplectic)Page 44 of 121
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Fourier Transform 
synthetic data

( ) ( ) ( )
2

ˆ , , e ωψ ω − += Ψ∫\
xi k x t

xk x t dxdt

same signs in exponent

( ),x t ( ),xk ω

Exercise: 2D Transform of a linear event

Model an ideal linear event using the Dirac Delta distribution:

( ) ( ), ,δΨ = − + ∈\x t px t c p c

where the Delta distribution has the "sifting" property

( ) ( ) ( )0 0f u u u f u duδ= −∫
\

for any f that we care about.

Show that the 2D (symplectic) Fourier transform of (x,t) is

( ) ( )ˆ , 2 ωψ ω πδ ω= − i c
x xk k p e

use this to explain the preference stated in lecture for the 
symplectic Fourier transform. For [ ]0,1p ∈
showing where several typical events lie in both domains.

make a sketch

( )!
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Exercise: 2D Transform of a linear event
solution

We wish to calculate

( ) ( ) ( )
2

ˆ , e ωψ ω δ −= − +∫\
xi k x t

xk px t c dtdx

We can use the sifting property of the Delta function to 
collapse either the t or the x integral. We choose t:

( ) ( ) ( )( )

( ) ( )

2 2

2

becomes 

e e

e 2

ωω

ωω ω

δ

πδ ω

− +−

+

−

− + =

= = −

∫ ∫

∫

\ \

\

���	��

xx

x

i k x px ci k x t

t px c

i k p xi c i c
x

px t c dtdx dx

e dx k p e

The last step is not obvious and is explained on the 
next slide.

( )!

Exercise: 2D Transform of a linear event
solution

Using the sifting property of the Dirac distribution, we 
calculate its Fourier transform

( ) 0
0 eδ − =∫\

x xik x ik xx x dx e

Therefore, by the inverse Fourier transform, we must 
have

So we see that a complex exponential, whose phase is 
linear in the integration variable, yields a Dirac 
distribution when integrated over the real line. Applying 
this result gives the last step on the previous slide.

( ) ( )00
0

1 1
e

2 2
δ

π π
− −−− = =∫ ∫\ \

xx x ik x xik x ik x
x xx x e dk e dk

( )!
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Exercise

Important points
• All events with the same slope (p-value) in (x,t) have the 
same amplitude spectrum in (kx,ω).
• The slope of an event in (x,t) and the corresponding event 
in (kx,ω) are inversely related.
• The value of p can be calculated directly from the ratio of 
kx to ω in Fourier space.

( ) ( )2 ωδ πδ ω− + ⇔ − i c
xpx t c k p e

So we have the Fourier correspondence:

Fourier Transform 
synthetic data

( ) ( ) ( )
2

ˆ , , e ωψ ω −= Ψ∫\
xi k x t

xk x t dxdt

( ),x t ( ),ωxk
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Fourier Transform 
synthetic data

( ),x t ( ),ωxk

( ) ( ) ( )
2

ˆ , , e ωψ ω −= Ψ∫\
xi k x t

xk x t dxdt

Fourier Transform
real data

( ),x t ( ),ωxk

( ) ( ) ( )
2

ˆ , , e ωψ ω −= Ψ∫\
xi k x t

xk x t dxdt
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Fourier Transform Pairs

( ),x t ( ),ωxk

( ),Ψ x t ( )ˆ ,ψ ωxk

Fourier Transform Pairs

( ),x t ( ),ωxk
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Fourier Transform Pairs

( ),x t ( ),ωxk

Fourier Transform Pairs

( ),x t ( ),ωxk
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Part 2

Stationary Fourier Methods

Stationary Filters

A 1D stationary filter operation can be written

( ) ( ) ( ) ( )( )
abstract operator

explicit integral

τ τ τ= − ≡∫
\

��	�

����	���


ws t w t r d C r t

which is a convolution integral. In Seismology, for 
example, this is a prescription for generating a 1D 
synthetic seismogram when r(t) is called the reflectivity 
time series and w(t) is the source waveform or wavelet. 
The term stationary refers to the fact that w(t) appears in 
the integral dependent only upon the difference between 
input and output time. While this translation independence
leads to beautiful mathematics, it fails to model a lot of 
physics. Page 51 of 121
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Fourier Multipliers
Why we like stationarity

Every stationary convolution operator has a corresponding 
Fourier multiplier:

( ) ( )( ) ( )( )1
ˆw ws t C r t F M Fr t−= =

1
ˆw ws C r F M Fr−= =

or more simply

where:

aM b ab≡

ŵ Fw≡

the Fourier transformF =

The "Convolution 
Theorem"

Fourier Multipliers
Inverse Operators

A Fourier multiplier has a simple inverse, if

1
ŵs F M Fr−=

then

provided that ˆ 0≠w

1
1

ŵ
r F M Fs−

−=

N1 1 1
1 1 1 1

ˆ ˆˆ ˆ ˆ
1

1

− − −
− − − −= = =

��	�
w ww w w
F M Fs F M FF M Fr F M M Fr r
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Fourier Multipliers
Inverse Operators

If 

( )
( )1

ˆ , 0,1
ˆ ˆsupIw
w w

µ
µ

= ∈
+

then

where 

ˆ 0w=

1
ˆ Iwr F M Fs−≈

somewhere in its domain, or is very small, then a
common practice is to seek an approximate inverse such as

Fourier Multipliers
Square Root Operators

A Fourier multiplier has a square root operator. That is, if

1
ŵs F M Fr−=

then is the square root multiplier in the sense that
ŵ

M

1 1 1 1
ˆˆ ˆ ˆ ˆ

− − − −= = ww w w w
F M FF M F F M M F F M F

Generally this will require taking the square root of a 
complex-valued function so care must be taken to select 
the correct square-root branches.

Page 53 of 121
Margrave



Fourier Multipliers
Solution of PDE’s

2 2 2

2 2 2 2

1⎡ ⎤∂ Ψ ∂ ∂⎢ ⎥= − Ψ⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦z v t x

( ) ( )
2

2 2 2

2 2 2 2 2

1 1 ˆ , , e
4

ωψ ω ω
π

−

Ψ

⎡ ⎤∂ Ψ ∂ ∂⎢ ⎥= −⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦
∫\������	�����


xi t k x
x xk z dk d

z v t x

( ) ( ) ( )

2

2

22 2

1 ˆ, , , e
4

ωα ω ψ ω ω
π

−∂ Ψ
=

∂ ∫
\

xi t k x
x x xk k z dk d

z

( )
2

2
2 2

,
ω

α ω = −x xk k
v

Fourier multiplier or symbol 
for the second z derivative.

The constant-velocity wave 
equation rearranged.

Fourier Multipliers
Solution of PDE’s

( ) ( ) ( )

2

12

1 ˆ, , , e
4

ωα ω ψ ω ω
π

±
−±⎛ ⎞∂Ψ⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠∂ ∫

\

xi t k x
x x xk k z dk d

z

( ) ( )
( )

2 2
2 2

2 2

1 2
2 2

2 2
2 2

sign ,

, ,

,

ω ω
ω

α ω α ω
ω ω

±

⎧⎪⎪⎪± − ≥⎪⎪⎪=± =⎨⎪⎪⎪− − >⎪⎪⎪⎩

x x

x x

x x

i k k
v v

k k

k k
v v

Now, we can deduce two alternative expressions for the 
first z derivative, as square root multipliers 

These are examples of one-way wave equations. They are 
exact for v=constant and represent independent solutions to 
the full wave equation. However, this approach fails if v is not
constant. Page 54 of 121
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Exercise: Fourier Multipliers
Solution of PDE’s

+Ψ

Show that solutions to either of these one-way wave 
equations are also solutions to the two-way wave equation.

1

1
2 2α+

+
− +

⎛ ⎞∂ ∂Ψ ∂⎟ ⎡ ⎤⎜ ⎟⎜ = Ψ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎟⎜∂ ∂ ∂⎝ ⎠
F M F

z z z

21 1

2
1 1 1

2 2 2 2 2 2

The two-way equation

αα α+ +

+
− − + − + ∂ Ψ

= Ψ = Ψ =
∂�����	����


F M F F M F F M F
z

1

1
2 2α+

+
− +∂Ψ

= Ψ
∂

F M F
z

Let satisfy

( )!

Apply the first 
derivative twice

Operators and One-Way Wave Equations

( ) ( )
2

2
1

22

abstract operator notation
The Helmholtz Operator realized as a Fourier Multiplier

1 ˆ, , , e
2 α

ψ
α ω ψ ω ψ

π
− −∂

= =
∂ ∫

\
��	�


�������	������


xik x
x x xk k z dk F M F

z

2 2 2

2 2 2

ψ ω
ψ

⎡ ⎤∂ ∂⎢ ⎥=− +⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦z v x
The Helmholtz Operator

( )
2

2
2 2

,
ω

α ω = −x xk k
v

The Fourier multiplier 
or operator "symbol".
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Operators and One-Way Wave Equations
Operator names:

( ) ( )
1

1
1

abstract operator notation
Square Root Helmholtz Operator as Fourier Multiplier

1 ˆ, , , e
2 α

ψ
α ω ψ ω ψ

π
±

±
−± ± −∂

= =
∂ ∫

\ ���	��

��������	�������


xik x
x x xk k z dk F M F

z

The Square Root 
Helmholtz Operator or 
one-way wave equation 
(frequency domain)

2 2

2 2

ψ ω
ψ

±
±

⎡ ⎤∂ ∂⎢ ⎥= ± +⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦
i

z v x

( ) ( )
( )

2 2
2 2

2 2

1 2
2 2

2 2
2 2

sign ,

, ,

,

ω ω
ω

α ω α ω
ω ω

±

⎧⎪⎪⎪± − ≥⎪⎪⎪=± =⎨⎪⎪⎪− − >⎪⎪⎪⎩

x x

x x

x x

i k k
v v

k k

k k
v v

One-Way Wave Equations

( ) ( )1

The Square Root Helmholtz Operator realized as a Fourier Multiplier

1 ˆ, , , e
2

ψ
α ω ψ ω

π

±
−± ±∂

=
∂ ∫

\��������	�������


xik x
x x xk k z dk

z

• Works in 2D or 3D
• Nonlocal operator (Two-way wave equation is local)
• Exact for homogeneous medium
• Not obvious what to do for variable velocity

( ) ( ) 1
1

, , , e e
2

αψ ω ω
π

± −± ±= ∫\
xik xz

x xx z A k dkSolution:

( ) ( )ˆ, , 0,ω ψ ω± ±= =x xA k k zwhere (boundary condition)
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Exercise: One Way Wave Equation

( ) ( ) 1
1

, , , e e
2

αψ ω ω
π

± −± ±= ∫\
xik xz

x xx z A k dkShow that 

(where A is arbitrary) solves the one-way wave equations 
on the previous slides. Then show that the + sign 
corresponds to waves traveling in the -z direction and the -
sign gives waves traveling in the +z direction.

What happens with this approach when v depends on x?

( )!

Exercise: One Way Wave Equation
solution

( ) ( )1
1

, e e 1
2

αψ ω
π

± −± ±= ∫\
xik xz

x xA k dkWe wish to show that

( )!

Is a solution to 

( ) ( ) ( )1
1 ˆ, , , e 2

2

ψ
α ω ψ ω

π

±
−± ±∂

=
∂ ∫

\

xik x
x x xk k z dk

z

The z partial derivative of equation (1) is easy:

( ) ( )

( ) ( )

1 1

1
1

1 1
, e e , e e

2 2

1
, e e 3

2

α α

α

ω ω
π π

α ω
π

± ±

±

− −± ±

−± ±

⎡ ⎤ ⎡ ⎤∂ ∂⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

=

∫ ∫

∫

\ \

\

x x

x

ik x ik xz z
x x x x

ik xz
x x

A k dk A k dk
z z

A k dk
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Exercise: One Way Wave Equation
solution

( ) ( ) 1ˆ , , , eαψ ω ω
±± ±= z

x xk z A k

Now, since equation (1) is an inverse Fourier transform, it 
follows that

( )!

So that equation (3) reduces to

( ) ( )1
1

1 1 ˆ, e e , , e
2 2

αξ ω α ψ ω
π π

± − −± ±⎡ ⎤∂
⎢ ⎥ =
⎢ ⎥∂ ⎣ ⎦

∫ ∫\ \
x xik x ik xz

x x x xA dk k z dk
z

which is equation (2).

Exercise: One Way Wave Equation
solution

To determine the direction of travel of the solutions of 
equation (1) we write the corresponding time-domain solution

( )!

( ) ( ) ( ) ( )1
1

, , , e e 4
2

ωαω ω
π

± −± ±Ψ = ∫\
xi t k xz

x xx z t A k dk d

( )
( )

( )

2 2
2 2

2 2

1
2 2

2 2
2 2

sign ,

, 5

,

ω ω
ω

α ω
ω ω

± ± ±

⎧⎪⎪⎪± − ≥⎪⎪⎪= ⇒ =⎨⎪⎪⎪ − >⎪⎪⎪⎩

x x

z x z

x x

k k
v v

ik k k

i k k
v v

Now let

And equation (4) is

( ) ( ) ( ) ( )1
, , , e e 6

2
ωω ω

π

± −± ±Ψ = ∫\
xz i t k xik z

x xx z t A k dk d
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Exercise: One Way Wave Equation
solution

From equation (5) it is obvious that

( )!

2
2

2
0, and 0,  when  and 0

ω
ω+ −≥ ≤ ≥ ≥z z xk k k

v
Equation (6) expresses the wavefield as a superposition 
of basis waves whose phase is given by

( ), , , ,θ ω ω ±= − +x x zx z t k t k x k z

We track a wavefront, as a surface of constant phase, by 
equating the phase at (t1,z) to that at (t2,z+δz) by

( ) ( )1 2
1 2

ω
ω ω δ δ± ± ± ±

±

−
+ = + + ⇒ =z z

z

t t
t k z t k z z z

k

2 10,ω> >t tSo, taking we have
0  is upgoing

0  is downgoing

δ

δ

+ +

− −

< ⇒Ψ

> ⇒Ψ

z

z

One Way Wave Equation
A Convenient Solution

( ) ( )1 ˆ, , , 0, e e
2

ψ ω ψ ω
π

± −± ±= =∫\
xz ik xik z

x xx z k z dk

( )
( ) 2 2 2 2

1
2 2 2 2

sign ,
,

,

ω
α ω± ± ±

⎧⎪± − ≥⎪⎪= ⇒ =⎨⎪⎪ − >⎪⎩

x x
z x z

x x

k k k k
ik k k

i k k k k

2
2

2

ω
=k

v

This is a very convenient and accurate method of wavefield 
extrapolation, but what can we do if velocity varies?
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Problem

• We need wavefield analysis and filtering 
methods that adapt rapidly to spatial and 
temporal variations in the wavefield but still 
retain high fidelity.

• Raytracing offers rapid adaptation but poor 
fildelity.

• Fourier methods give high fidelity but poor 
spatial adaptivity.

Part 3

Phase Space
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Local Fourier Transforms

Apply a 2D Gaussian window in (x,t)

( ),x t ( ),ωxk

Local Fourier Transforms

Localization in one domain causes blurring in the other

( ),x t ( ),ωxk
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Local Fourier Transforms

A larger window causes less blurring but is, of course, 
less local.

( ),x t ( ),ωxk

Local Fourier Transforms

An even smaller window causes extreme blurring.

( ),x t ( ),ωxk
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Local Fourier Transforms

Localizing somewhere else shows us a different 
spectrum.

( ),x t ( ),ωxk

Uncertainly Principle

Localization in (x,t) causes loss of detail in (kx,ω). That is, 
we cannot precisely define the (kx,ω) values at a precise 
(x,t) position. As Heisenberg showed in the context of 
quantum mechanics, this implies:

(uncertainty in (x,t))(uncertainty in (kx,ω)) ≥ a constant

This is often stated as the time-width band-width theorem. 

Question: Just what is meant by “uncertainty” in such a 
statement? 
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Time-width Band-width Theorem

Given any convenient measure of width, the time-width 
and bandwidth of a signal are inversely proportional.

( ) 2 1
0x x s x dx E−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
∫
\

( ) 2 1
0 ŝ d Eξ ξ ξ ξ −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
∫
\

( ) ( ) ( ) 222 1
0x x x s x dx E−

⎡ ⎤
⎢ ⎥∆ = −⎢ ⎥
⎢ ⎥⎣ ⎦
∫
\

( ) ( ) ( ) 222 1
0 ŝ d Eξ ξ ξ ξ ξ −

⎡ ⎤
⎢ ⎥∆ = −⎢ ⎥
⎢ ⎥⎣ ⎦
∫
\

( ) 2
E s x dx= ∫

\

( ) 1
4x ξ π −∆ ∆ ≥

The equality holds only for a Gaussian signal.

Time-limited Band-limited Theorem

If a signal, not identically zero, is compactly supported 
then its Fourier transform cannot be and vice-versa.

It follows that any finite length signal cannot be bandlimited.
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Correspondence

• Associated with a neighborhood of a point in 
(x,t), there is a local Fourier spectrum. (Strictly 
speaking this depends upon the details of the 
localizing window.)

• Resolution in the local spectrum is directly 
proportional to the size (radius) of the 
neighborhood.

Phase Space

( ) ( ): , , , , , ,ω× x y zM x y z t k k k

The phase space of a wavefield is the 8D manifold:

Methods that have been devised to directly manipulate 
a field on its phase space include:

• Ray tracing 

• Pseudodifferential operators

• Gabor Multipliers

• Nonstationary filters
Page 65 of 121
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Part 4

Pseudodifferential 
Operators

Helmholtz Operator
Variable Velocity

Construct the Helmholtz operator when v=v(x):

( )
( )

2 2 2

2 2 2

1 ˆ , , e
2

ψ ω
ψ ω

π
−

⎡ ⎤∂ − ∂⎢ ⎥= +⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

∫\
xik x

x xk z dk
z xv x

( ) ( )
2

22

1 ˆ, , , , e
2

ψ
α ω ψ ω

π
−∂

=
∂ ∫\

xik x
x x xk x k z dk

z

Superficially the Helmholtz operator appears the same as before;
however, this integral is no longer an inverse Fourier transform but is 
instead an example of a pseudodifferential operator, specifically of the 
Kohn-Nirenberg (standard) calculus.

( )
( )

2
2

2 2
, ,

ω
α ω = −x xk x k

v x

Helmholtz 
Operator

Helmholtz Symbol
(a function on phase space)
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Pseudodifferential Operators
Kohn-Nirenberg standard form:

( )N ( ) ( )N ( )( )
signal spectrumgeneralized

multiplier

1 ˆ ˆ,
2 αα
π

−= ≡∫\��	�

xik x I

s x x xg x x k h k e dk F h x

Kohn-Nirenberg anti-standard form:

( ) ( ) ( )N ( )( )
signalspectrum generalized

multiplier

ˆ , αα= ≡∫\�	
 ��	�

xik x

a x x xg k x k h x e dx F h k

In general a sg g≠ , although you should be able to find

an obvious case when they are equal.

Pseudodifferential Operators
Most of the time, we use the K-N standard form

That is 

( ) ( ) ( ) ( )( )

( )( ) ( )

1 ˆ ˆ,
2 α

α α

α
π

−= ≡

= ≡

∫\
xik x I

s x x x

I

g x x k h k e dk F h x

F Fh x T h x

N N
abstract form Fourier integral

decomposition

α α= IT F F

So a standard pseudodifferential operator consists of 
an ordinary forward Fourier transform followed by the 
generalized multiplier-inverse transform.Page 67 of 121
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Pseudodifferential Operators
These operators extend the idea of Fourier multipliers to 
the “nonstationary” setting.

Definition: The x dependence of the symbol will be called 
its nonstationary dependence.

Definition: A “stationary limit” of a pseudodifferential 
operator is any limiting form of the operator in which the 
nonstationary dependence of the symbol becomes 
constant.

( )!

Pseudodifferential Operators
as generalizations of convolution

We have:

1lim
s

I

stat
F F Mα α

−=

lim
sstat

F M Fα α=

lim s
stat

α α=where

lim α α=
sstat

T C

The standard and anti-
standard operators have 
the same stationary limits

The stationary limit is a 
convolution operator.

( )!
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Pseudodifferential Operators

IFα

Initial state

Final state

Space-time 
Domain

Fourier 
Domain

× ×

× ×

F

1F−

s
Mα

Fα

The green lines are stationary paths to the final state while 
the red lines are nonstationary. In general, the red paths 

give a different result if the same symbol is used.

s
Cα�

( )!

Spaces and Symbol Classes
Usually pseudodifferential operators can be extended to 
mappings:

:T S Sα ′ ′→

Symbols are classified by the order of their polynomial 
growth at infinity:

mSα∈

( ) / 22
1 , ,

ρ ρ

ρ
α

ρ
−⎛ ⎞∂ ⎡ ⎤ ⎟⎜= + ∈ ∈⎟⎜⎢ ⎥ ⎟⎜ ⎟⎣ ⎦⎝ ⎠∂

` ]
m

x
x

O k m
k

We say

if

Symbols are also classified by their growth in x.

( )!
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The Square-Root Helmholtz Operator
Back to the Helmholtz operator, in case of arbitrary v(x), we 
might still hope that

( ) ( )2
1 ˆ, , , , e

2

ψ
α ω ψ ω

π

±
−±∂

= ±
∂ ∫

?

\
xik x

x x xk x k z dk
z

It turns out that this is still a useful approximate one-way 
wave equation but its solutions are not exact solutions to 
the two-way equation.

The Square-Root Helmholtz Operator
Let, α1(kx,x,ω) be the exact symbol of the square root 
Helmholtz operator for upgoing waves

Then, the following composition equation must be satisfied

( ) ( )
11

1 ˆ, , , , e
2 α

ψ
α ω ψ ω ψ

π
−∂

= ≡
∂ ∫\

xik x
x x xk x k z dk T

z

( )
2 1 1

2

2 α α α
ψ

ψ ψ
∂

= =
∂

DT T T
z

That is, two applications of Tα1 must give Tα2 which is 
known exactly. In a generalized sense we are asking for 
the operator square root of a particular pseudodifferential 
operator. Page 70 of 121
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Pseudodifferential Operators
Composition Theorem

Let

T T Tβ α γ=D

be two elliptic pseudodifferential operators with Tα Tβ
suitably nice symbols. Then

2 2

2 2

1

2

β α β α
γ αβ

ξ ξ
∂ ∂ ∂ ∂

− −
∂ ∂ ∂ ∂

∼ "i
x x

where γ has the asymptotic expansion

This expansion is the generalization of the convolution 
theorem to the setting of pseudodifferential operators. 

,m n m nS S Sα β γ +∈ ∈ ⇒ ∈

All of the higher order terms vanish in the stationary limit.

Pseudodifferential Operators
So, if we define 

Then lha lha
1 1

γα α ψ ψ=DT T T

( )
lha lha lha lha2lha 1 1 1 1

1 2
α α α α

γ α α
ξ ξ

∂ ∂ ∂ ∂
− + = − +

∂ ∂ ∂ ∂
∼ " "i i

x x

It is still possible to find an exact factorization in certain 
cases (e.g. Fishman …).

( )1 1

lha -lha
2 2 and α α α α= =−

where

Thus, only in the homogeneous (stationary) case is the 
square-root symbol the exact symbol of the one-way wave 
equation.  However, it is still a very powerful approximation.
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Pseudodifferential Operators
A problem with attempting this factorization using 
pseudodifferential operator theory is that the theory 
assumes the relevant symbols are elliptic.

Definition: A pseudodifferential symbol is said to be 
elliptic if there exists a constant C such that:

( ), ,α > ∀ ∈\x xx k C k x

Symbol ( )
( )

2
2

2 2
, ,

ω
α ω = −x xk x k

v x
is not elliptic.

( )!

Wavefield Extrapolators

Recall the one-way wave equation

( ) ( )lha
1

1 ˆ, , , , e
2

ψ
α ω ψ ω

π

+
−+∂

=
∂ ∫\

xik x
x x xk x k z dk

z

( ) ( ) ( )lha
1 2, , , , , ,α ω α ω ω= ≡x x z xk x k x ik k x

2 2
2 2

2 2

2 2
2 2

2 2

,
( ) ( )

,
( ) ( )

ω ω

ω ω

⎧⎪⎪⎪ − ≥⎪⎪⎪⎪=⎨⎪⎪⎪ − >⎪⎪⎪⎪⎩

x x

z

x x

k k
v x v x

k

i k k
v x v x
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Wavefield Extrapolators
We wish to solve the wavefield extrapolation problem:

z∆

( )0zψ =

( )z zψ =∆

given

find

upward traveling wavefield

( ) ( )lha
1

1 ˆ, , , , e
2

ψ
α ω ψ ω

π
−∂

=
∂ ∫\

xik x
x x xk x k z dk

z

( )lha
1

, ,α
ψ

ψ ω
∂

=
∂ xT k z

z
or

one-way equation 
for upward 
traveling waves.

z

x

Wavefield Extrapolators
The GPSPI formula

It turns out that pseudodifferential theory allows the following
approximation

( ) ( )( ) ( )1ˆ ˆˆ, , , , ,0,
2

ψ ω ψ ω
π

−∆ = ∆∫\
xik x

x x xx z W k x k z k e dk

This is known as the GPSPI (generalized phase shift plus 
interpolation) wavefield extrapolator. 

( )
( )

k x
v x

ω
=

( )( )
( )( ) ( )

( )( ) ( )

2 2 2 2

2 2 2 2

exp ,
ˆ , ,

exp ,

⎧⎪ ∆ − ≥⎪⎪⎪∆ =⎨⎪⎪ −∆ − <⎪⎪⎩

x x

x

x x

i z k x k k x k
W k x k z

z k k x k x k
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Exercise: Derive The GPSPI formula
Use Taylor series to derive the GPSPI formula from the 
approximate 1-way wave equation

( )!

( ) ( )lha
1

1 ˆ, , , , e
2

ψ
α ω ψ ω

π
−∂

=
∂ ∫\

xik x
x x xk x k z dk

z

( ) ( )

( ) ( )

2 2
2 2

2 2

lha
1

2 2
2 2

2 2

,

,

ω ω

α
ω ω

⎧⎪⎪⎪ − ≥⎪⎪⎪⎪=⎨⎪⎪⎪− − >⎪⎪⎪⎪⎩

x x

x x

i k k
v x v x

k k
v x v x

Carefully describe all approximations made. 

Derive The GPSPI formula
Solution

Assume the starting depth is 0, and then write the wavefield 
one step down as a formal Taylor series

( ) ( )
( )2 2

2
0 0

0
2

ψ ψ
ψ ψ

= =

∆∂ ∂
∆ = +∆ + +

∂ ∂z z

z
z z

z z

( )

0
!

ψ

=

∆ ∂
+ +

∂
" "

k k

k
z

z

k z

( )
( )

lha lha lha
1 1 1

2

0 0 0 ...
2α α αψ ψ ψ ψ

∆
∆ = +∆ + +D

z
z zT T T

which can be written symbolically as

( )!
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Derive The GPSPI formula
Solution

According to the composition theorem

( )lha lha
1 1

0 0

times

γα α ψ ψ≡D "
���	��


n

T T T

is a pseudodifferential operator whose symbol has a first 
order approximation: ( )lha

1γ α∼
n

So, with an unknown error, we approximate the Taylor series 
as

( )
( )2lha

1lha
1 0

1 ˆ1 ...
2 2

α
ψ α ψ

π
−

⎛ ⎞⎟⎜ ∆ ⎟⎜ ⎟⎜ ⎟∆ = +∆ + +⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∫\

xik x
x

z
z z e dk

( )!

The series in brackets converges to the exponential function.
2

1 ...
2!

= + + +x x
e x

Derive The GPSPI formula
Solution

Summing the series gives ( )
lha
1

0
1 ˆ

2
αψ ψ

π
−∆∆ = ∫\

xik xzz e e dk

( ) ( )( ) ( )1 ˆˆ, , , , ,0,
2

ψ ω ψ ω
π

−∆ = ∆∫\
xik x

x x xx z W k x k z k e dk

or

This is known as the GPSPI (generalized phase shift plus 
interpolation) wavefield extrapolator. 

( )
( )

k x
v x

ω
=

( )( )
( )( ) ( )

( )( ) ( )

2 2 2 2

2 2 2 2

exp ,
ˆ , ,

exp ,

⎧⎪ ∆ − ≥⎪⎪⎪∆ =⎨⎪⎪ −∆ − <⎪⎪⎩

x x

x

x x

i z k x k k x k
W k x k z

z k k x k x k

( )!
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Derive The GPSPI formula
Solution

The GPSPI extrapolator

Summary of approximations:

( ) ( )1 2, , , ,α ω α ω± ≈±x xk x k x

1
n

nα α≈

( )2 , ,α ωxk x is elliptic.

The Taylor series converges.

(1)

(2)

(3)

(4)

True only for homogeneous medium.

Only asymptotically valid even if the first derivative symbol 
is exact.

A hidden assumption. Elliptic means bounded 
away from zero and this is false.

It does in some specific cases but we 
don’t know in general.

( )!

( ) ( )( ) ( )1 ˆˆ, , , , ,0,
2

ψ ω ψ ω
π

−∆ = ∆∫\
xik x

x x xx z W k x k z k e dk

The GPSPI Extrapolator
The GPSPI extrapolator

Things we know (or think we do):

(1)

(2)

(3)

(4)

Any explicit finite difference method is an approximation to GPSPI.

“Screen” methods are approximations to GPSPI.

GPSPI produces very high quality seismic images but it is 
computationally expensive.

More accurate methods can be formulated simply as operators with
different symbols.

( ) ( )( ) ( )1 ˆˆ, , , , ,0,
2

ψ ω ψ ω
π

−∆ = ∆∫\
xik x

x x xx z W k x k z k e dk
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Fishman's results
The exact one-way extrapolator, equivalently the one-way 
wave equation, for arbitrary v(x) can also be written this way, 
but the symbol becomes much more complicated.

The cascade of many such operators in a wavefield 
marching scheme is a numerical computation of a Path 
Integral. This means that energy propagates along all 
possible paths not just the Snell paths.

( ) ( ) ( )1 ˆˆ, , , , ,0,
2

ψ ω ψ ω
π

−∆ = ∆∫\
xik x

exact x x xx z W x k z k e dk

To find the exact operator, 

Fishman: Locally Homogeneous Approximation
3 block velocity function

( ) ( )1Im Re extrapolator phaseα = =zk

x xk

1v

2v

3v
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Fishman: Exact Operator Symbol
3 block velocity function

x xk

( ) ( )1Im Re extrapolator phaseα = =zk

1v

2v

3v

The Exact Operator Symbol
is Frequency Dependent

2k =

High 
frequency Moderate 

frequency

Low 
frequency

Zero
frequency

3 block velocity, rotated view
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Exercise
Schwartz Kernel of a Pseudodifferential Operator

( ) ( ) ( )1
ˆ,

2
α

π
−= ∫

\

xik x
x x xs x x k r k e dkgiven:

show by formal manipulation (don’t worry about conversion 
etc) that this is equivalent to

( ) ( ) ( ),= −∫
\

s x A x x y r y dy ( ) ( ) ( )1
, ,

2
α

π
− −− = ∫

\

xik x y
x xA x x y x k e dk

The quantity A(x,x-y) is called the Schwartz kernel of the 
pseudodifferential operator and the integral applying A is 
called a singular integral operator.

( )!

Singular Integral form of a ΨDO 

s T rα=Given:

( ) ( )( ) ( ) ( ),= ≡ −∫
\

As x I r s A x x y r y dy

( ) ( ) ( )1
, ,

2
α

π
− −− = ∫

\

xik x y
x xA x x y x k e dkwhere

then, with suitable circumstances, it follows that 

( )!
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Pseudodifferential Operators

IFα

Initial state

Final state

Space-time 
Domain

Fourier 
Domain

× ×

× ×

F

1F−

s
Mα

Fα

AI

Exercise
Schwartz Kernel of a Fourier Multiplier

1s F M Frα
−=

Given:

show that the Schwartz kernal depends only on x-y
(translation invariance) and that the resulting singular 
integral operator is just a convolution. 

( ):α →\ \xk

( )!
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Conclusions
Fourier transforms provide a powerful method for 

stationary problems.

At every point in space-time, a localized Fourier 
space, with understandable properties, is easily 

defined.

The concept of phase space facilitates 
nonstationary extensions of Fourier theory.

Pseudodifferential operators generalize the 
concept of Fourier multipliers and convolutional 
operators to the nonstationary setting. They are 
generalized Fourier multipliers acting directly on 

phase space.
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Phase Space Concepts 
in Seismic Imaging

Part II

Seismic Imaging Summer School

Calgary, 2006

Gary F. Margrave

• A Pseudodifferential Operator 
Imaging Method

• Separable Symbols and
The Gabor Transform

• A Gabor Imaging Method

Outline
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Part 1

A Pseudodifferential 
Operator Imaging Method

Seismic Imaging Paradigm
A common seismic imaging methodology is derivable from 

first-order inverse Born scattering

( ) ( ) ( ), ,refl inc inc incx t R x x tΨ = Ψ
G G G

reflector

A reflectivity estimate.

( )inc , incx tΨ
G

( )
( )

( )
,

,
refl inc

inc inc

x t
R x

x t

Ψ
=

Ψ

G
G

G
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Seismic Imaging Paradigm
So for each depth, we must calculate two fields:

( ), , ,refl x y n zψ ω∆

( ), , ,inc x y n zψ ω∆

The reflected field comes from 
mathematically marching the recorded 
data down into the earth.

The incident field comes from a 
mathematical model of the source 
wavefield that is also marched down.

In both cases, the wavefield marching is done through a 
“background” velocity field that is presumed known.

Wavefield Extrapolator
Locally homogeneous approximation (GPSPI)

A K-N form FIO

( )( )
( )( ) ( )

( )( ) ( )

2 2 2 2

2 2 2 2

exp ,
ˆ , ,

exp ,

⎧⎪ ∆ − >⎪⎪⎪∆ =⎨⎪⎪ −∆ − <⎪⎪⎩

x x

x

x x

i z k x k k x k
W k x k z

z k k x k x k

( ) ( ) ( )( )1 ˆ ˆ, , , , , ,
2

ψ ω ψ ω
π

−+∆ = ∆∫\
xik x

x x xx z z k z W k x k z e dk

Symbol (physics)

While a highly accurate approximation, this form is 
computationally challenging.

( )
( )

2
2

2

ω
=k x

v x
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Wavefield Extrapolator
Imaging

( ) ( ) ( ), , , ,refl reflW zx z z L x zψ ω ψ ω⎡ ⎤+∆ = ⎢ ⎥⎣ ⎦

( ) ( ) ( ) ( ) ( ) ( )2 0, , ,0,refl reflW z W z W z Wx z z L L L L xψ ω ψ ω∆ ∆
⎡ ⎤+∆ = ⎢ ⎥⎣ ⎦D" D D

Hundreds of operators

( ) ( ) ( ) ( ) ( ) ( )2 0, , ,0,inc incW z W z W z Wx z z L L L L xψ ω ψ ω∆ ∆
⎡ ⎤+∆ = ⎣ ⎦D" D D

( )
( )
( )

, ,
, ,

, ,
refl

inc

x z z
R x y z z

x z zω

ψ ω

ψ ω

+∆
+∆ =

+∆∑

Possible routes to fast algorithms

• Approximate the operator using a compactly 
supported Schwartz kernel.

• Find a separable approximation to the K-N 
symbol (screen methods).

• Gabor methods (also separable). 
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Wavefield Extrapolators

In the space-frequency domain

( ) ( )( ) ( ), , , , , 0,ψ ω ψ ω′ ′ ′= − =∫\x z W k x x x z x z dx

where the Schwartz kernel is given by

( )( ) ( )( ) ( )1 ˆ, , , ,
2π

′− −′− = ∫\
xik x x

x xW k x x x z W k x k z e dk

This can be an efficient algorithm if a suitably, compactly 
supported, approximation to W can be found.

Wavefield Extrapolators

wavenumber + jk− jk

Consider the wavefield extrapolator in the wavenumber 
domain for some fixed velocity, vj.

( )( )ˆ ˆ , , ,
ω

≡ = ∆ =j j x j
j

W W k x k k z k
v
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imaginary

real

meters

Wavefield Extrapolators
In the space-frequency domain

window function=Ω

Wavefield Extrapolators

Back to the wavenumber domain

wavenumber

( )ΩF W
Ŵ
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Wavefield Extrapolators

wavenumber

Back to the wavenumber domain

Stabilization by Wiener Filter

Two useful properties

( ) ( ) ( )ˆ ˆ ˆ/ 2 / 2∆ = ∆ ∆j j jW z W z W z

Product of two half-steps make a whole step.

1 * 2 2ˆ ˆ ,− = >j j j xW W k k

The inverse is equal to the 
conjugate in the wavelike region.
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Stabilization by Wiener Filter

A windowed forward operator for a half-step

( ) ( )2 2∆ =Ω ∆�
j jW z W z

( ) ( )1 ˆ2 2
η− ⎡ ⎤

∆ • = ∆⎢ ⎥
⎢ ⎥⎣ ⎦

�
j j jW z WI F W z

Solve by least squares for WIj

0 2η≤ ≤

Stabilization by Wiener Filter

is a band-limited inverse for jWI ( )/ 2∆�
jW z

Both have compact support 

( ) ( ) ( )* 2∆ = • ∆ ≈ ∆�
Fj j j jW z WI W z W z

Form the FOCI approximate operator by

FOCI is an acronym for 

Forward Operator with Conjugate Inverse.
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Spatial Resampling

( ) 1
2 x

−∆( ) 1
2 x

−− ∆ Wavenumber
F

re
q

u
en

cy

Propagating
kz is real

minxk vω =minxk vω =−

maxω

( )

2
2

2

ω
= −z xk k

v x

Spatial Resampling

( ) 1
2 x

−∆( ) 1
2 x

−− ∆ Wavenumber

F
re

q
u

en
cy

In red are the wavenumbers of a 7 point filter
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Spatial Resampling

( ) 1
2 x

−∆( ) 1
2 x

−− ∆
F

re
q

u
en

cy
Downsampling for the lower frequencies 

uses the filter more effectively

( ) 1
2 x

−′∆( ) 1
2 x

−′− ∆

Spatial Resampling

( ) 1
2 x

−∆( ) 1
2 x

−− ∆

F
re

q
u

en
cy

Spatial resampling is done in frequency “chunks”.
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Math Depot Analogy

4 meters

Sine Wave Carrier

This?This?
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Sine Wave Carrier

Or This?Or This?

Spatial Resampling

511175.37→4.88

6591.96.84→5.62

83729.03→7.08

10556.911.5→9.28

13544.314.9→11.7

17534.119.3→15.1

22726.325.1→19.5

28920.732.2→25.4

3731641.7→32.5

47812.560→42

Number of tracesSpatial sample size 
(m)

Partition frequencies 
(Hz)

Specific Results for Marmousi
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Spatial Resampling
WithWithout

Marmousi Velocity Model
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FOCI Pre-Stack Migration
Shot 30

FOCI Pre-Stack Migration
Shot 30
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Depth Migration Movie

FOCI Pre-Stack Migration
Stack +50*Shot 30
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FOCI Pre-Stack Migration
51 Point Operator, 15 Hours on 1 PC

Marmousi Velocity Model
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Detail of Pre-Stack Migration

Marmousi Reflectivity Detail
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Improvements by Saleh Al-Saleh
Desired spectrum

Transition 

band

Transition 

band

Wavelike region

Evanescent 

region

Evanescent 

region

Improvements by Saleh Al-Saleh
Old/New

Exact

Old FOCI

New FOCI
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Old FOCI 
operator = 51 points

Old FOCI 
operator = 15 points
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New FOCI 
operator = 15 points

New FOCI
operator = 9 points
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Part 2

Separable Symbols 
and

The Gabor Transform

Approximating PSDO's

( ) ( )( ) ( ) ( )1 ˆ,
2αψ α ψ
π

−= = ∫ xixk
x x xs x T x x k k e dk

If the symbol is taken to a stationary limit

( ) ( )0lim ,α α=x xstat
x k k

Then the result is a simple Fourier multiplier 

0

1lim α ψ−=
stat

s F M F

Recall the standard form K-N Pseudodifferential 
operator (PSDO)

a Fourier multiplier
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Piecewise Stationary Symbols

( ) ( ) ( )
2

,α χ α ε
∈

− <∑x j j x
j L

x k x k

Consider an arbitrary symbol

and corresponding functions {αj} such that

( ),α xx k

One can always find a partition of { }, , ∈jx j

( ) )11, ,

0,otherwise
χ +

⎧ ⎡⎪ ∈ ⎢⎪ ⎣=⎨⎪⎪⎩

j j
j

x x x
x

1+jxjx

Piecewise constant 
approximation to a 
function

Piecewise Stationary Symbols

( ) ( ) ( ),α α
∈

=∑x j j x
j

x k w x k

Suppose the symbol is separable such that

( )jw x( )1−jw x ( )1+jw x

( ) 0
∞∈jw x C

1.0

x
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Piecewise Stationary Symbols
Standard Calculus

( )( ) ( ) ( ) ( )1 ˆ
2αψ α ψ
π

−

∈

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎣ ⎦
∑∫ xixk

j j x x x
j

T x w x k k e dk

( ) ( ) ( ),α α
∈

=∑x j j x
j

x k w x k

A K-N standard operator is

( )( ) ( ) ( ) ( )

Ordinary Fourier Multipliers

1 ˆ
2αψ α ψ
π

−

∈

=∑ ∫ xixk
j j x x x

j

T x w x k k e dk

( )( ) ( ) ( )1 ˆ,
2αψ α ψ
π

−= ∫ xixk
x x xT x x k k e dk

Let 

Piecewise Stationary Symbols
Standard and Anti-Standard Calculus

It is left as an exercise to show that the anti-standard 
operator reduces to

1
α αψ ψ−

∈

=∑ jj
j

T w F M F

The only difference is the position of the window function! 
Both formulae are special cases of the application of a 
Gabor multiplier with a Gabor transform.

1
α αψ ψ−

∈

=∑ j

a
j

j

T F M Fw

So the operator reduces to a windowed 
superposition of Fourier multipliers
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Gabor Transform

( ) ( )1,  are suitable bump functions
∈

Ω = Ω∑ j j
j

x x

Begin with a partition of unity (POU)

Let ( ) ( ) ( ) ( ) [ ]1

analysis window synthesis window

and , 0,1γ −=Ω =Ω ∈p p
j j j jg x x x x p

Then, the Gabor transform is defined by

( ) ( )( ) ( ) ( )2 2

Forward Fourier for 
a suite of windows

, :ψ ψ= → ×g x j xV j k F g k L L

This particular Gabor transform is partially discrete 
by design. Fully discrete and fully analytic algorithms 
are easily derived.

Inverse Gabor Transform
Given ( ) ( )( ),ψ ψ= ∈ ×g x j xV j k F g k

( )1 1
γ ψ γ ψ ψ γ ψ− −

∈ ∈

= = =∑ ∑g j j j j
j j

V V F Fg g

The signal is recovered with a windowed inverse Fourier 
transform and a summation over windows.

Note that: ( )1 21gV V Lγ
− = ∈

( )1 21gV V P Lγ
− = ≠ ∈ ×

where P is a projection operator onto the range of the 
forward Gabor transform.
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Gabor Transform

( )2L ×] \

Vγrange of

gV 1
gV Vγ

−

( ) ( )2domain gV L=

1Vγ
−

gV

1Vγ
−

The range of Vg is only a subset 
of ZxR because a function must 
have a certain smoothness to 
be a Gabor transform.

Gabor Multipliers

Given ( ) ( )( ),ψ ψ= ∈ ×g x j xV j k F g k

1

MultiplicationInverse Forward 
Gabor Gabor

γ α γ αψ ψ−=g gG V M V

( ),α ∈ ×xj k

We define a Gabor multiplier through the operation
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Gabor Multipliers
and K-N PSDO's

1 ,  and 1α γ α γ αψ ψ ψ γ−= = = =g g k k kT G V M V w g

For a piecewise stationary symbol, we had for the standard 
KN operator 1

α αψ ψ−

∈

=∑ jj
j

T w F M F

This can be written as a Gabor multiplier as

Similarly, for the anti-standard operator
1 , 1 and α γ α γ αψ ψ ψ γ−= = = =a

g g k k kT G V M V g w

Part 3

A Gabor Imaging Method
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Gabor Wavefield Extrapolation
Approximate the variable velocity GPSPI extrapolator 
as a windowed sum of constant-velocity operators

( ) 1Ω =∑ j
j

x

V
el

oc
ity

A Partition of Unity (POU) with each 
window localized for a "reference" velocity.

How to choose the optimal set of reference velocities 
and the corresponding windows?

1+jxjx

( )v x

Piecewise constant approximation, 
each piece defines a "reference 
velocity"

Gabor Wavefield Extrapolation

( )( ) ( )N ( )
windows constant velocity

extrapolators

ˆ ˆ, , , ,∆ ≈ Ω ∆∑ ���	��
x j j x
j

W k x k z x W k k z

Approximate the variable velocity GPSPI extrapolator 
as a windowed sum of constant-velocity operators

( )( ) ( )N ( ) ( )
Split-step 
Fourier 

correction

ˆ ˆ, , , ,∆ ≈ Ω ∆∑x j j j x
j

W k x k z S x x W k k z

A usually better approximation is

where ( ) ( )∆= ik x z
jS x e accounts for "residual" time shifts.
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Gabor Wavefield Extrapolation

The Gabor approximation to GPSPI then becomes

( ) ( ) ( )1
, ,

2
ψ ω

π
+∆ = Ω∑ …P j j

j

x z z x S x

( ) ( )ˆ ˆ, , , ,ψ ω −∆∫\
xik x

x j x xk z W k k z e dk

Now, lets look at how to choose the POU.

A uniform POU Gabor frame

( ) 1Ω − = ⇒∑ j
j

x x All windows are translates 
of a mother window.
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An adaptive POU frame

( ) 1Ω = ⇒∑ j
j

x Each window can be unique.

New Method

• Number of reference velocities chosen to give a defined 
maximum position error (relative to GPSPI).

• For each reference velocity define an indicator function:

( )
( )1, min

0, otherwise

j
j

v x v
I x

⎧⎪ − =⎪⎪=⎨⎪⎪⎪⎩

( ) 1j
j

I x =∑

Velocity

P
ro

ba
bi

li
ty

Reference velocities
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New Method

• Define a smallest “atomic window”

• Build the POU by a normalized convolution:

( ) ( )( )j jx I xΩ = •Θ

atomic windowΘ=

The POU is satisfied automatically

Works in any number of dimensions

New Method

v(x)

Example: v(x) is a step function and two 
reference velocities are chosen.

Windows

velocity
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v(x)

New Method
Example: v(x) is a step bump function 
and two reference velocities are chosen.

Windows

velocity

v(x)

New Method
Example: v(x) is a smooth bump function 
and three reference velocities are chosen.

Windows

velocity
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v(x)

New Method
Example: v(x) is a ragged bump function and 
three reference velocities are chosen.

Windows

velocity

Gabor Test
position error ~ 1.25m

Page 113 of 121
Margrave



Gabor Test
position error ~ 5m

FOCI  Result
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FOCI enlargement

Gabor enlargement
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Marmousi Reference Velocities
position error ~ 5m

Marmousi Reference Velocities
position error ~ 2.5m
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Marmousi Velocity Model

Conclusions

A fast, explicit wavefield extrapolator based on the GPSPI 
formula was presented.

The central problem of extrapolator stability was presented and 
addressed by designing two half-step operators with opposing 
instability.

Spatial resampling was described as a very useful imaging tool.

Gabor methods can be used to approximate pseudodifferential 
operators.

Gabor wavefield extrapolators, based on an adaptive POU, give 
promising wavefield extrapolation results.
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