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1 Lecture One: Introduction to PDEs

A partial differential equation is simply an equation that involves both a function and its
partial derivatives. In these lectures, we are mainly concerned with techniques to find a
solution to a given partial differential equation, and to ensure good properties to that solu-
tion. That is, we are interested in the mathematical theory of the existence, uniqueness, and
stability of solutions to certain PDEs, in particular the wave equation in its various guises.

Most of the equations of interest arise from physics, and we will use x, y, z as the usual
spatial variables, and t for the the time variable. Various physical quantities will be measured
by some function u = u(x, y, z, t) which could depend on all three spatial variable and time,
or some subset. The partial derivatives of u will be denoted with the following condensed
notation

ux =
∂u

∂x
, uxx =

∂2u

∂x2
, ut =

∂u

∂t
, uxt =

∂2u

∂x∂t

and so on.1 The Laplace operator is the most physically important differential operator,
which is given by

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

1.1 Equations from physics

Some typical partial differential equations that arise in physics are as follows. Laplace’s
equation

∇2u = 0

which is satisfied by the temperature u = u(x, y, z) in a solid body that is in thermal
equilibrium, or by the electrostatic potential u = u(x, y, z) in a region without electric
charges. The heat equation

ut = k∇2u

which is satisfied by the temperature u = u(x, y, z, t) of a physical object which conducts
heat, where k is a parameter depending on the conductivity of the object. The wave
equation

utt = c2∇2u

which models the vibrations of a string in one dimension u = u(x, t), the vibrations of a thin
membrane in two dimensions u = u(x, y, t) or the pressure vibrations of an acoustic wave
in air u = u(x, y, z, t). The constant c gives the speed of propagation for the vibrations.
Closely related to the 1D wave equation is the fourth order2 PDE for a vibrating beam,

utt = −c2uxxxx

1We assume enough continuity that the order of differentiation is unimportant. This is true anyway in a
distributional sense, but that is more detail than we need to consider.

2The order of a PDE is just the highest order of derivative that appears in the equation.
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where here the constant c2 is the ratio of the rigidity to density of the beam. An interesting
nonlinear3 version of the wave equation is the Korteweg-de Vries equation

ut + cuux + uxxx = 0

which is a third order equation, and represents the motion of waves in shallow water, as well
as solitons in fibre optic cables.

There are many more examples. It is worthwhile pointing out that while these equations
can be derived from a careful understanding of the physics of each problem, some intuitive
ideas can help guide us. For instance, the Laplacian

∇2u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

can be understood as a measure of how much a function u = u(x, y, z) differs at one point
(x, y, z) from its neighbouring points. So, if ∇2u is zero at some point (x, y, z), then u(x, y, z)
is equal to the average value of u at the neighbouring points, say in a small disk around
(x, y, z). If ∇2u is positive at that point (x, y, z), then u(x, y, z) is smaller than the average
value of u at the neighbouring points. And if ∇2u(x, y, z) is negative, then u(x, y, z) is larger
that the average value of u at the neighbouring points.

Thus, Laplace’s equation
∇2u = 0

represents temperature equilibrium, because if the temperature u = u(x, y, z) at a particular
point (x, y, z) is equal to the average temperature of the neighbouring points, no heat will
flow. The heat equation

ut = k∇2u

is simply a statement of Newton’s law of cooling, that the rate of change of temperature is
proportional to the temperature difference (in this case, the difference between temperature
at point (x, y, z) and the average of its neighbours). The wave equation

utt = c2∇2

is simply Newton’s second law (F = ma) and Hooke’s law (F = k∆x) combined, so that
acceleration utt is proportional to the relative displacement of u(x, y, z) compared to its
neighbours. The constant c2 comes from mass density and elasticity, as expected in Newton’s
and Hooke’s laws.

1.2 Deriving the 1D wave equation

Most of you have seen the derivation of the 1D wave equation from Newton’s and Hooke’s law.
The key notion is that the restoring force due to tension on the string will be proportional

3Nonlinear because we see u multiplied by ux in the equation.

4



to the curvature at the point, as indicated in the figure. Then mass times acceleration ρutt

should equal that force, kuxx. Thus
utt = c2uxx

where c =
√

k/ρ turns out to be the velocity of propagation.

Figure 1: The restoring forces on a vibrating string, proportional to curvature.

Let’s do it again, from an action integral.

Let u = u(x, t) denote the deplacement of a string from the neutral position u ≡ 0. The
mass density of the string is given by ρ = ρ(x) and the elasticity given by k = k(x). In
paricular, in this derivation we do not assuming the the string is uniform. Consider a short
piece of string, in the interval [x, x+∆x]. Its mass with be ρ(x)∆x, its velocity ut(x, t), and
thus its kinetic energy, one half mass times velocity squared, is

∆K =
1

2
ρ · (ut)

2∆x.

The total kinetic energy for the string is given by an integral,

K =
1

2

∫ L

0

ρ · (ut)
2 dx.

From Hooke’s law, the potential energy for a string is (k/2)y2, where y is the length of the
spring. For the stretched string, the length of the string is given by arclength ds =

√
1 + u2

xdx
and so we expect a potential energy of the form

P =

∫ L

0

k

2
(1 + u2

x) dx.

4 The action for a given function u is defined as the integral over time of the difference of
these two energies, so

L(u) =
1

2

∫ T

0

∫ L

0

ρ · (ut)
2 − k · [1 + (ux)

2] dx dt.

4The one doesn’t really need to be in there, but it doesn’t matter for a potential energy.
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Adding δ times a perturbation h = h(x, t) to the function u gives a new action

L(u + δh) = L(u) + δ

∫ T

0

∫ L

0

ρ · ut · ht − k · uxhx dx dt + higher order in δ.

The principle of least action says that in order for u to be a physical solution, the first order
term should vanish for any perturbation h. Integration by parts (in t for the first term, in x
for the second term, and assuming h is zero on the boundary) gives

0 =

∫ T

0

∫ L

0

(−ρ · utt + k · uxx + kx · ux) · h dx dt.

Since this integral is zero for all choices of h, the first factor in the integral must be zero,
and we obtain the wave equation for an inhomogeneous medium,

ρ · utt = k · uxx + kx · ux.

When the elasticity k is constant, this reduces to usual two term wave equation

utt = c2uxx

where the velocity c =
√

k/ρ varies for changing density.

1.3 One way wave equations

In the one dimensional wave equation, when c is a constant, it is interesting to observe that
the wave operator can be factored as follows(

∂

∂t2
− c2 ∂

∂x2

)
=

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
.

We could then look for solutions that satisfy the individual first order equations

ut − cux = 0 or ut + cux = 0.

There are one way wave equations, and the general solution to the two way equation could
be done by forming linear combinations of such solutions. The solutions of the one wave
equations will be discussed in the next section, using characteristic lines ct− x = constant,
ct + x = constant.

Another way to solve this would be to make a change of coordintates, ξ = x−ct, η = x+ct
and observe the second order equation becomes

uξη = 0

which is easily solved.
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In higher dimensions, one could hope to factor the second order wave equation in the
form (

∂

∂t2
− c2∇2

)
=

(
∂

∂t
− cD

)(
∂

∂t
+ cD

)
,

where D is some first order partial differential operator (independent of t) which satisfies
D2 = ∇2. Good luck solving this one.5 The operator D is called the Dirac operator; finding
particular Dirac operators is a major intellectual achievement of modern mathematics and
physics. The Atiyah-Singer index theorem is a deep result connecting the Dirac operator
with the geometry of manifolds.

1.4 Solution via characteristic curves

One method of solution is so simple that it is often overlooked. Consider the first order
linear equation in two variables,

ut + cux = 0,

which is an example of a one-way wave equation. To solve this, we notice that along the line
x − ct = constant k in the x, t plane, that any solution u(x, y) will be constant. For if we
take the derivative of u along the line x = ct + k, we have,

d

dt
u(ct + k, t) = cux + ut = 0,

so u is constant on this line, and only depends on the choice of parameter k. Call this
functional dependence f(k) and thus we may set

u(x, t) = f(k) = f(x− ct).

That is, given any differentiable function f on the real line, we obtain a solution

u(x, t) = f(x− ct)

and all solutions are of this form. Note this solution represents simply the waveform f(x)
moving along to the right at velocity c.

Choosing which solution is a question of initial conditions and boundary values. In fact,
if we are given the initial values for u = u(x, 0) then this determines f , since u(x, 0) =
f(x− c0) = f(x). That is, the initial values for u determine the function f , and the function
f determines u everywhere on the plane by following the characteristic lines.

We note in passing that in the usual (two-way) wave equation in three dimensions,

utt = c2∇2u,

5You might ask yourself, why not D = ∇? If you don’t know why not, then you are in trouble!
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there are characteristic hyperplanes determined by constants (kx, ky, kz, ω) with

c2(k2
x + k2

y + k2
z) = ω2.

It is easy to verify that given any twice-differentiable function f(x), that the functions

u1(x, y, z, t) = f(kxx + kyy + kzz − ωt)

u2(x, y, z, t) = f(kxx + kyy + kzz + ωt)

are solutions to the wave equation. Note that the vector k = (kx, ky, kz) can be interpreted
as a direction of propagation of the traveling wave, and ω is related to temporal frequency.
When f is a 1-periodic function, k is wavenumber and ω is frequency. Wavenumber and
frequency are related by the velocity c. Unlike the order one example above, not all solutions
are of this form, since we have many characteristic hypersurfaces. More general solutions
can be obtained by forming linear combinations of these elementary solutions. Lecture Two
will discuss how the elementary solutions can be combined to give the general solution.

1.5 Solution by separation of variables

This is a powerful technique that is applicable to many areas of mathematics. The idea is
to look first for solutions of a particularly simple form, then combine to obtain the most
general solution. In the PDE case, we look for solutions of the form

u(x, y, z, t) = A(x)B(y)C(z)D(t).

For instance, consider the equation for vibrations of a thin beam (with constant k = 1):

utt = −uxxxx.

Plugging in u = A(x)D(t), a separable function of two variables, we obtain

A(x)D′′(t) = −A′′′′(x)D(t),

which can be rearranged into an equation with all the functions of x on one side, all those
of t on the other

A′′′′(x)

A(x)
= −D′′(t)

D(t)
= λ

which must therefore be a constant (independent of both x and t), which we have denoted
by λ. Thus the problem has separated into solving for two ODEs,

A′′′′(x) = λA(x) and D′′(t) = −λD(t)

with a free parameter λ. These are linear, constant coefficient ODEs are easily solved using
trig and exponential functions, so for instance we see that some elementary solutions include

u1(x, t) = sin(ωx) sin(ω2t)

u2(x, t) = cos(ωx) sin(ω2t)

u3(x, t) = sinh(ωx) sin(ω2t)

u4(x, t) = cosh(ωx) sin(ω2t)
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where we have chosen ω > 0 with ω4 = λ > 0. The fact that the temporary frequency is
the square of the spatial frequency in the oscillating solutions tells us this physical situation
is very different than the wave equation. The interested reader might consider finding all
possible separable solutions.

Notice once again we have many solutions, and more general solutions are obtained by
taking linear combinations of these solutions. We defer to Lecture Two the question of how
boundary conditions, or initial conditions, restrict this smorgasbord to a unique solution.

1.6 The Helmholtz equation

The Helmhotz equation is a spatial PDE involving the Laplacian, and usually appears in the
form

∇2u + k2u = 0,

on some domain of interest, with given boundary conditions. It arises quite naturally in the
separation of variables technique applied to solving the wave equation

utt − c2∇2u = 0.

If we look for solutions of the form u(x, t) = A(x)B(t), then we obtain the two separate
systems

∇2A + λA = 0, B′′ + c2λB = 0,

where λ is the separation constant. There is no apriori reason to assume this constant λ is
positive; however in most problems with physical boundary conditions, the only solutions
have λ > 0. One usually sets k =

√
λ, and ω = ck, to connect the temporal and spatial

frequencies, and the k2 factor appears as the parameter in the Helmhotz equation..

The Helmhotz equation is also obtained by Fourier transforming the wave equation with
respect to the time variable alone. The utt term becomes −4π2ω2 times the transformed
function. We thus have a new equation, for the transformed function v = v(x, y, z, ω) with

∇2v + 4π2ω2v = 0,

which is again the Helmholz equation, with k2 = 4π2ω2.

It is worth noting the Helmholtz equation is an eigenvalue problem for the Laplacian,
which is an elliptic operator. This makes the problem quite elegant, from a mathematical
point of view. Including suitable boundary conditions (eg. Dirichlet conditions) turns this
into a well-posed problem. For instance, if we solve the 1D wave equation via separation of
variables, for a vibrating string with boundary conditions u(0, t) = u(L, t) = 0, we obtain
the Helmholtz problem

A′′ + k2A = 0 with boundary conditions A(0) = A(L) = 0.
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The general solution to the ODE will be sums of complex exponentials; the boundary con-
ditions restrict this to solutions sin(kx), with kL a multiple of π. Thus the eigenfunctions
for this problem are the functions

An(x) = sin πnx/L.

Continuing with the separation of variables, the corresponding frequency in time is ωn =
πnc/L with eigensolutions sin πnct/L and cos πnct/L. The general solution to the wave
equation on an interval is thus the linear combinations

u(x, t) =
∑

[an sin(nπct/L) + bn cos(nπct/L)] sin πnx/L.

Initial conditions will fix the coefficients an, bn uniquely.

Solving the wave equation by this technique, on different domains (disks, balls, etc)
lead to different eigenvalue/eigenfunction problems for the Laplace operator. The famous
problem “Can you hear the shape of a drum,” posed by Marc Kac in 1966, asks whether
the eigenvalues of the solution uniquely characterizes a planar domain, since we can hear
the corresponding frequency in the time domain. The answer was known to be negative in
dimension 16 (!), but it took until 1991 to find counterexamples in the plane. The figure
gives an example of two different regions in the plane with the same eigenvalues for the
Laplacian.

Figure 2: Two regions with different eigenvalues for the Laplacian.

1.7 Classification of second order, linear PDEs

A second order linear PDE in two variables x, t is an equation of the form

Auxx + Buxt + Cutt + Dux + Euy + Fu = G,

where the coefficients A, B, C,D, E, F, G are constants, or specified functions of the variables
x, t. The equation is classified into one of three types, based on the coefficients A, B, C, as

• Elliptic: if B2 − 4AC < 0;
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• Parabolic: if B2 − 4AC = 0;

• Hyperbolic: if B2 − 4AC > 0.

So for instance, Laplace’s equation is elliptic, the heat equation is parabolic, and the wave
equation is hyperbolic. It is useful to classify equations because the solution techniques,
and properties of the solutions are different, depending on whether the equation is elliptic,
parabolic, or hyperbolic. Also, the physical nature of the corresponding problems are dif-
ferent. For instance, elliptic equations often arise in steady-state and equilibrium problems;
parabolic equations arise in diffusion problems; hyperbolic problems arise in wave motion
and vibrational problems.

An equation can be of mixed type if it changes from one type to another, depending on
the value of the functions A, B, C. For instance, the equation

tuxx + utt = 0

is of mixed type, for B2 − 4AC = −4t is zero along the line t = 0 (parabolic), is positive for
t < 0 (hyperbolic), and negative for t > 0 (elliptic).

When A, B, C are constant, it is always possible to make a linear change of variables to
put the equation in a canonical form. This is result is as simple as diagonalizing a 2 by 2
symmetric matrix. The canonical forms as

• Elliptic: uxx + utt = G(x, y, u, ut, ux);

• Parabolic: uxx = G(x, y, u, ut, ux);;

• Hyperbolic: uxx − utt = G(x, y, u, ut, ux) or uxt = G(x, y, u, ut, ux).

The form B2 − 4AC is reminiscent of the quadratic formula, but it really should make
you think of the determinant of the matrix[

A B/2
B/2 C

]
where the sign of the determinant tells you whether there are two non-zero eigenvalues of
the same sign (elliptic), opposite sign (hyperbolic), or one zero eigenvalue (parabolic). This
is the key to understanding the classification for linear PDEs with more variables.

For a function u = u(x1, x2, x3, . . . , xn) of n independent variables, the general linear
second order PDE will be of the form

n∑
i,j=1

Aij
∂2u

∂xi∂xj

+
n∑

i=i

Bi
∂u

∂xi

+ Cu = D
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where the coefficients Aij, Bi, C,D are constants or functions only of the independent vari-
ables. The matrix

A = [Aij]

can be chosen symmetric. The equation is then classified into four types, as

• Elliptic: if all the eigenvalues of A are nonzero, and of the same sign;

• Parabolic: if exactly one of the eigenvalues is zero, and the rest have the same sign;

• Hyperbolic: if n− 1 of the eigenvalues are of the same sign, the other of opposite sign;

• Ultrahyperbolic: If at least two eigenvalues are positve, at least two negative, and none
are zero.

This doesn’t cover all cases, but it does cover most of the interesting ones. The first three
are the typical ones that appear in physics.

1.8 Hyperbolic equations and the wave equation

The wave equation
utt = c2∇2u

is an example of a hyperbolic second order linear PDE for a function u = u(x, y, z, t) of four
independent variables. By a change of variables, any hyperbolic equation

n∑
i,j=1

Aij
∂2u

∂xi∂xj

+
n∑

i=i

Bi
∂u

∂xi

+ Cu = G

can be put into a canonical form that looks a lot like the standard wave equation

utt = ∇2u + G(x, y, z, t, u, ux, uy, uz, ut),

at least locally. This is why we spend so much effort understanding the standard wave
equation. Eventually we would like to examine techniques to solve the general hyperbolic
equation, which will allow us to consider more realistic physical situations like nonhomoge-
neous media, anisotropy, and so on. But that will not happen in this series of lectures.
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2 Lecture Two: Solutions with boundary conditions

and initial conditions

In the first lecture, we saw several examples of partial differential equations that arise in
physics, and ways to find many possible solutions. In most physical applications, we are
looking for “the solution;” that is, extra conditions are imposed on the equation to pick out
a unique, useful solution For PDEs, these are usually boundary conditions and/or initial
conditions. We will look at some typical boundary and initial conditions that might ensure a
unique solution, and consider what it means to properly pose a mathematical question that
has a good solution. We then look at some theorems on existence and uniqueness.

2.1 Boundary and initial conditions

Usually we think of satisfying a PDE only in a particular region in xyz space, for instance in
a ball of some radius R. If we denote the region by Ω, typically it is assumed to be an open,
connected set with some piecewise smooth boundary ∂Ω. A boundary condition is then an
additional equation that specifies the value of u and some of its derivatives on the set ∂Ω.
For instance,

u = f(x, y, z) on ∂Ω

or
ux = g(x, y, z) on ∂Ω

are boundary conditions.

An initial condition, on the other hand, specifies the value of u and some of its derivatives
at some initial time t0 (often t0 = 0). So the following are examples of initial conditions:

u(x, y, z, t0) = f(x, y, z) on Ω

or
ut(x, y, z, t0) = f(x, y, z) on Ω.

As an example, consider the 1D wave equation restricted to the interval [0, L]. The region
of interest is the open interval Ω = (0, L) with boundary points x = 0, L. A typical physical
problem is to solve (for u = u(x, t)) the equation

utt = c2uxx, on the region 0 < x < L, 0 < t

u(0, t) = 0, a boundary condition

u(L, t) = 0, a boundary condition

u(x, 0) = f(x), an initial condition, at t0 = 0

ut(x, 0) = g(x), an initial condition.
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It is routine now to solve this by separation of variables. The boundary conditions force
terms like sin(λx), cos(λx) to vanish at the endpoints; this kills the cosine, and puts λ to be
integer multiples of π/L. The (unique) solution is of the form of an infinite series

u(x, t) =
∞∑

n=1

(an cos(nπct/L) + bn sin(nπct/L)) sin(nπx/L),

where the coefficients an, bn are now determined by the initial conditions. In fact, they are
determined by the sine expansion of the functions f(x), g(x) on the interval [0, L].6 Provided
that f, g are reasonably smooth, there always is a unique solution to this problem.

The boundary condition
u(0, t) = 0

is a reasonable assumption for a vibrating string where the string is fixed at the endpoint
x = 0. If, on the other hand, we have a free end to the string, the physical constraint could
be expressed by the boundary condition

ux(0, t) = 0.

A combination of these conditions,

au(0, t) + bux(0, t) = 0

for given constants a, b leads to the classical Sturm-Liouville problems.

In higher dimensions, a boundary condition

u(x, y, z, t) = 0 on ∂Ω

corresponds to a vibrating system that is fixed on the boundary. The condition that the
normal component of the gradient vanish on the boundary, say,

η · ∇u(x, y, z, t) = 0 on ∂Ω,

where η denotes the normal to the surface, gives the physical restriction for a vibrating
system that slides freely along a fixed surface.7

2.2 Cauchy, Dirichlet, and Neumann conditions

We will often hear reference to these three types of boundary/initial conditions. So let’s
make it clear what it is.

6Notice the constants. The problem is simpler if we set c = 1 and L = π, but this is just a bit extra
algebra.

7In seismic, the displacements u are vector-valued functions; the boundary conditions are determined by
forcing continuity of the stress tensor. The condition for a free surface are different. But for pressure waves,
as measured by hydrophones, say, then one has the vanishing condition, u = 0 on the free boundary.
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The Cauchy condition specifies the values of u and several of its normal derivatives,
along some given smooth surface in the coordinate space of all the independent variables
(including time). To have any hope of getting a well-posed problem, it is important to get
the dimensions right. So, if u is a function of n variables, the surface S should have dimension
n − 1 (it is a hypersurface), and if the PDE is order k, the Cauchy data must specify the
values of u and its first k − 1 derivatives along the normal to S:

u = f0, uη = f1, uηη = f2, . . . uη...η = fk−1 on S,

where f0, . . . , fk−1 are given functions. Here uη means the derivative along the normal to
the surface. If u is an analytic function, you can consider doing a power series expansion
at points along S, using the Cauchy data and PDE to solve for the coefficients in series
expansion.8

The initial value problem

u(x, y, z, 0) = f(x, y, z) for all x, y, z

ut(x, y, z, 0) = g(x, y, z) for all x, y, z

is an example of a Cauchy problem for any second order ODE, with hypersurface S =
{(x, y, z, t) : t = 0}.

It is important that the hypersurface not be a characteristic surface for the Cauchy
problem to be solvable. We won’t define characteristic surface here; they come from the
coefficients of the PDE, and you would notice if you were on one!

The Dirichlet condition specifies the value of u on the boundary ∂Ω of the region of
interest. Think Dirichlet = Data on boundary.

The Neumann condition specifies the value of the normal derivative, uη, of the boundary
∂Ω. Think Neumann = Normal derivative on boundary.

Note that ∂Ω is a hypersurface, and so the Dirichlet and Neumann conditions each specify
less information than the Cauchy condition for second order and higher PDEs. It is rather
remarkable that for certain elliptic problems, merely Dirichlet or Neumann data alone suffices
to solve the problem.

The point of including boundary and initial problems is to force our solutions to be
unique, and hopefully well-behaved. Lets look at what it means to pose a good mathematical
problem.

8If you are wondering why only the normal derivatives are specified, note that the tangential derivatives
along S are already determined by forcing u = f0 along S.
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2.3 Well-posed problems

We say a mathematical problem is well-posed 9 if it has the following three properties:

1. Existence There exists at least one solution to the problem;

2. Uniqueness: There is at most one solution;

3. Stability The unique solution depends in a continuous manner on the data of the
problem. A small change in the data leads to only a small changes in the solution.

It is easy enough to illustrate these ideas with the example of solving for x a linear system
of equations

Ax = y,

for given matrix A and vector y. If the matrix A is singular, for some inputs y, no solution
may exist; for others inputs y there may be multiple solutions. And if A is close to singular,
a small change in y can lead to a large change in solution x.

To see this in a PDE context, consider the following problem of solving the 1D heat
equation in the positive quadrant x, t > 0. We add some reasonable boundary and initial
conditions to try to force a unique solution:

ut = uxx, x > 0, t > 0

u(x, 0) = 0, x > 0, a boundary condition

u(0, t) = 0, t > 0, an initial condition.

The boundary and initial conditions strongly suggest “the solution” is

u(x, t) ≡ 0,

which is indeed a solution satisfying the BC and IC. But it is not the only solution; for
instance, another solution satisfiying that BC and IC is the function

u(x, t) =
x

t3/2
e−x2/4t.

It is easy to check that this function satisfies the PDE in the open quadrant x, t > 0 and
extends to be zero on both the positive x axis x > 0, and the positive t-axis t > 0. It is
curious that by ignoring the behaviour of the function at the origin (x, t) = (0, 0) somehow
allows for more than one solution.10

One might suppose this is only a mathematical oddity; perhaps one would reject the
second solution based on physical grounds. However, keep in mind that many PDE problems

9Hadamard came up with this definition.
10In fact the function has an interesting singularity at the origin, it blows up along certain curves ap-

proaching the origin.

16



may be solved numerically: it is unlikely that your numerical method will be smart enough
to reject non-physical solutions, without you considering these possibilities.11

The heat equation can also be used to illustrate instability in solutions by observing that
diffusion processes, when run backwards, tend to be chaotic. But instability can also come
up in elliptic equations as well (which we often think of as “nice”). For instance, fix ε > 0 a
small parameter and consider Laplace’s equation on the upper half plane, with

uxx + utt = 0, −∞ < x < ∞, t > 0

u(x, 0) = 0 all x, a boundary condition

ut(x, 0) = ε sin
x

ε
all x, a boundary condition.

This has solution u(x, t) = ε2 sin(x/ε) sinh(t/ε), which gets very large as ε → 0. Compare
this with the zero solution u0(x, t) ≡ 0, which is the solution to the problem for ε = 0. Thus
we have an instability: the input ut(x, 0) = ε sin(x/ε) goes to zero as ε → 0 but the output
does not converge to the zero solution.

2.4 Existence and uniqueness theorems

The first result, the Cauchy-Kowalevski Theorem, tells us that the Cauchy problem is always
locally solvable, if all the functions that appear are analytic 12. The result is usually stated
in terms of an initial value problem; the general result follows by transforming the general
Cauchy problem, locally, to an initial value problem.

Theorem 1 (Cauchy-Kowalevski) If the functions F, f0, f1, . . . fk−1 are analytic near the
origin, then there is a neighbourhood of the origin where the following Cauchy problem (initial
value problem) has a unique analytic solution u = u(x, y, z, t):

∂ku

∂tk
(x, y, z, t) = F (x, y, z, t, u, ux, uy, uz, ...) a k-th order PDE

∂ju

∂tj
(x, y, z, 0) = fj(x, y, z) for all 0 ≤ j < k.

The statement means to indicate that the function F depends on the independent vari-
ables x, y, z, t as well as u and all its partial derivatives up to order k, except for the “dis-
tinguished” one ∂ku

∂tk
. The proof amounts to chasing down some formulas with power series.

We’ve stated the case for (3+1) dimensons, but it is true in other dimensions as well.

11I like to remember that the existence of the positron was predicted from some “unphysical” solution to
certain equations in quantum mechanics. So you never know when a non-physical solution might actually
be real.

12They have power series expansions that converge in some neighbourhood.
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It is a rather odd theorem, though, because it assumes a lot of analyticity. We might ex-
pect, in geophysics, certain coefficients in our wave equation to be only piecewise continuous;
Cauchy-Kowalevski does not guarantee that we have a solution then.13

The next result concerns the Laplacian, which is an elliptic operator. You can consider
it in any dimension you like.

Theorem 2 (Dirichlet and Neumann problems) Suppose Ω is an open, bounded, con-
nected region with smooth boundary ∂Ω. Then the Dirichlet problem

∇2u = 0 in Ω,

u = f on ∂Ω

has a unique solution for each continuous function f on ∂Ω.

The Neumann problem

∇2u = 0 in Ω,

uη = f on ∂Ω

has a solution for continuous function f if and only if
∫

∂Ω
f = 0. In this case, the solution

is unique up to an additive constant.

For simple regions (half plane, open ball), the existence is proved by constructing Greens
functions for the Laplacian operator. For more complicated regions, the method of layer
potentials is used. The types of regions Ω this is valid for can be expanded, to include finite
unions of the given type, or their unbounded complements. There are similar results for
the more general Laplace equation, ∇2u = g. Notice that both the Dirichlet and Neumann
problems specify only one half of the data we expect for Cauchy problems: this is a special
feature of elliptic problems.

It is worthwhile to note that for more general elliptic PDEs with non-constant coefficients,
there are similar existence and uniqueness results, provided the coefficients are smooth, and
the operator is coercive (a measure of just how elliptic it is). In general, for a k-th order
elliptic PDE, only k/2 normal derivatives need to be specified.14

Stability is shown from explicit formulas connecting the forcing terms and boundary
conditions to the solution. Unique is often proved using an energy formula.

13And there are some strange counterexamples to any “extensions” of Cauchy-Kowaleski that would drop
analyticity. Eg. the Lewy example.

14For k odd, this will seem like a strange requirement, but there is a way to make precise what half a data
set means.
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2.5 D’Alembert’s solution to the 1D wave equation

Separately, we look at the existence of solutions to the initial value problem (Cauchy problem)
for the wave equation. In one dimension, this is called D’Alembert’s solution.

From the Cauchy-Kowaleski theorem, we expect to specify u and its first time derivative
along the initial curve t = 0. Thus, we look for a solution u = u(x, t) for the 1D wave
equation with initial conditions:

utt = c2uxx for−∞ < x < ∞, t > 0

u(x, 0) = f(x) for −∞ < x < ∞
ut(x, 0) = g(x) for −∞ < x < ∞

From the method of characteristic curves, we know to look for a solution as a sum of left
and right going waves,

u(x, t) = ul(x + ct) + ur(x− ct).

From the initial equations, we have

ul(x) + ur(x) = f(x) and c(u′l(x)− u′r(x)) = g(x).

Differentiating the first equation, we solve the 2 by 2 system to obtain u′l = 1
2
(f ′ + g/c),

u′r = 1
2
(f ′ − g/c), and integrate to find

ul(x) =
1

2
f(x) +

1

2c

∫ x

0

g(s) ds + C1 ur(x) =
1

2
f(x)− 1

2c

∫ x

0

g(s) ds + C2,

where C1 + C2 = 0, as ul + ur = f . Now we have

u(x, t) =
1

2
(f(x + ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct

g(s) ds.

It is easy to see this solution satisfies the initial value problem, and the solutionu is smooth
when f, g are both smooth. What’s more, if f, g are discontinuous, or even generalized
functions, this solution still makes sense in a distributional sense.

2.6 Solution to the n-dimensional wave equation

The n-dimensional initial value problem (Cauchy problem)

utt = c2∇2u for x ∈ Rn, t > 0

u(x, 0) = f(x) for x ∈ Rn

ut(x, 0) = g(x) for x ∈ Rn
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can be reduced to a 1D wave equation by integrating the wavefield u(x, t) over spheres of
radius r in the spatial variables, at least when n is odd. To summarize the derivation, we
note if φ = φ(x) is a smooth function in the spatial variables x, then the spatial average

Mφ(x, r) =

∫
|y|=1

φ(x + ry) dσ(y)

satisfies the the PDE

∇2Mφ(x, r) =

[
∂2

∂r2
+

n− 1

r

∂

∂r

]
Mφ(x, r).

Taking averages over a wavefield u(x, t), which depends on time t, we find that u satisfies
the wave equation if and only if

c2

[
∂2

∂r2
+

n− 1

r

∂

∂r

]
Mu(x, r, t) =

∂2

∂t2
Mu(x, r, t).

This PDE for Mu can be converted to the 1D wave equation and solved using d’Almerbert’s
approach.

Skipping a few details, we present the solution for the 3-dimensional wave equation, with
c constant, which is given as

u(x, t) =
1

4π

∂

∂t

(
t

∫
|y|=1

f(x + cty) dσ(y)

)
+

t

4π

∫
|y|=1

g(x + cty) dσ(y).

The integrals are simply averages over sphere of fixed radius, using the usual surface area
integral; This has the effect of computing the value of u(x, t) in terms of data on a ball (in
space) centered at x, with radius ct. That is, the information propagates from initial data to
solutions at exactly the speed c. This integral over the sphere corresponds to a distribution
in R3 with support on the set {z ∈ R3 : |z − x|2 = c2t2}. This distribution is denoted
δ(|z−x|2−c2t2)/|z−x|, where δ is the Dirac delta distribution on the real line. The integral
formulation is an equivalent formulation.

For n = 2, the solution is obtained from the previous formula by the method of descent;
we just solve with initial conditions that depend only on two spatial variables. Again,
skipping the details, we write down the solution to Cauchy problem for the 2-dimensional
wave equation as

u(x, t) =
1

2π

∂

∂t

(
t

∫
|y|≤1

f(x + cty)√
1− |y|2

dy

)
+

t

2π

∫
|y|≤1

g(x + cty)√
1− |y|2

dy.

In contrast to the 3-dimensional case, here the integral is over the unit disk |y| ≤ 1, so the
solution depends on data points that are within a distance ct or less. So propagation of
information in 2D is quite different, in particular Huygens principle is not true here.

The solutions to the Cauchy problem in higher dimensions can be given; they are re-
markably similar to the above forms. In fact, the formulas just involve some extra time
derivatives in front of the integrals. (See Folland’s book for details.)
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2.7 Huygens principle

The above integrals show that in dimension 3 (and in fact, for all odd dimensions), the
solution of the wave equation at point x0, at time t0, depends only on the initial data in an
infinitesimal neighbourhood of the sphere |x − x0| = ct0. This is a statement of Huygens
principle. In particular, it says that information from a point source travels in the form of a
sphere. The wavefront is thus sharp, with a sudden onset at the start, and sudden cutoff at
the end.

In dimension 2 (and all even dimensions), the behaviour is different. Wavefronts do have
a sharp onset, but they decay with a long tail. This we see because the solution at x0, t0
depends on the initial conditions on the entire disk |x−x0| ≤ ct0. This behaviour can be
observed in the ripples of a pond that are formed around a pebble that falls into the pond.

However, it is worth pointing out that although Huygens principle is not true in even
dimensions, it is still approximately true! The integrand in solution to the Cauchy problem
has a factor of

√
1− |y|2 in the denominator, which gives a hefty singularity at the surface

of the sphere. Not as much as a delta function, but still significant.

2.8 Energy and uniqueness of solutions

The energy of a wavefield u(x, t) in some region of space Ω is simply defined as the integral

E =
1

2

∫
Ω

(ut)
2 + c2 (∇xu)2 dx.

Why this is an energy is an interesting question. The ut term is related to a velocity, so this
a kinetic energy term; the spatial gradient ∇xu is related to displacement, and thus to the
stored energy in a stretched elastic (Hooke’s law), so this is a potential energy term.15

This energy definition can be used to prove the uniqueness of solutions to the wave
equation. For instance, if we fix a point x0 in space, and some time t0 ≥ 0, consider the ball
of points close enough to communicate with x0 using a travel time of t0 − t ≥ 0. We define
this ball as

Bt = {x ∈ Rn : |x− x0| ≤ c(t0 − t)}.
The energy on this shrinking ball is then defined as

E(t) =
1

2

∫
Bt

(ut)
2 + c2 (∇xu)2 dx.

It is an easy exercise in the divergence theorem to show that if u satisfies the wave equation,
and twice continuously differentiable, then

dE

dt
≤ 0.

15We are being a bit casual about the choice of units here.
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If we know from initial conditions that E(0) = 0, then it follows that energy E(t) = 0 is
constant on the interval [0, t0], since by definition, the energy is a nonegative function.

So, we get the following uniqueness theorem:

Theorem 3 Suppose u1, u2 are C2 solutions to the wave equation utt = c2∇2u whose initial
data (Cauchy data) agree on the ball

B = {(x, 0) : |x− x0| ≤ ct0}.

Then the two solutions u1, u2 agree on the cone

C = {(x, t) : |x− x0| ≤ c(t0 − t)}.

Figure 3: The cone of influence on solutions to the wave equation.

Roughly speaking, this says that if two solutions agree on a given ball, then any distur-
bances that come in to make them different must creep into the ball at no faster than the
propagation speed c.

The proof proceeds by considering the function u = u1 − u2 which is another solution to
the wave equation, but with zero initial values. The corresponding energy defined above (on
the shrinking balls) is thus zero, and so ut = 0,∇xu = 0 on the cone. Thus u is a constant
on the cone, and by the initial conditions, this constant is zero. Thus u1 = u2.

Note the same analogous uniqueness theorem is true for the inhomogeneous wave equation

utt − c2∇2u = h

22



since via the same proof, the difference function u = u1−u2 is a solution to the homogeneous
wave equation. Even the forcing term h for the two solutions u1, u2 could be different
functions, that happen to agree on the cone.

This will be useful to remember for the next lecture, where we consider the inhomogeneous
wave equation.
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3 Lecture Three: Inhomogeneous solutions - source

terms

In this lecture we solve the inhomogeneous wave equation

utt − c2∇2u = h

where h = h(x, y, z, t) is a forcing term that drives the vibrational system. One might find it
a little odd that this is so important in seismic imaging, since in typical seismic experiments,
the seismic source (dynamite, Vibroseis) is on the earth’s surface and could be treated as
a boundary condition. There are not really seismic sources inside the earth, except for
earthquakes. However, the reflectors within the earth (geological structures, reservoirs, etc)
can be treated as a source of energy, that initiates a wave traveling back to the surface the
the earth, where the resulting wave is measured by geophones.16 For this reason we must
consider solving the wave equation with a forcing term.

3.1 Particular solutions and boundary, initial conditions

Given any particular solution to the inhomogeneous equation

utt − c2∇u = h

another solution can be obtained by adding any nonzero solution of the homogeneous equa-
tion

utt − c2∇u = 0.

Thus, the most general solution to the inhomogeneous equation can be written as a sum of
a homogeneous solution uH , and a particular solution uP , with solution

u = uH + uP

the general solution. As we saw earlier, there are many solutions to the homogeneous equa-
tion, and thus again we have a situation with many different solutions.

So, how to we set up a well-posed problem with a unique solution? Again, the approach is
to specify boundary conditions and/or initial conditions that will pick out a unique solution.
However, we have done all the necessary work in the lectures above; we don’t have to do any
addition work for the inhomogeneous case. The procedure is as follows:

1. Fix a forcing term h and, say, Cauchy conditons u = f, ut = g at t = 0;

16Perhaps this is called the exploding reflector model.
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2. Find any particular solution that satisfies utt − c2∇u = h, call. it uP . Note that uP

need not satisfy the Cauchy conditions;

3. Solve the homogeneous equation utt − c2∇2u = 0 with Cauchy condtions u = f −
uP , ut = g − uP

t at t = 0. Call the solution to this homogeneous problem uH . It is
unique.

4. The unique solution to the inhomogeneous equation satisfying the Caucy conditions,
is u = uH + uP .

So, the uniqueness is assured by solving the homogeneous problem with modified Cauchy
conditions.

I’m taking some pains to point out here that the particular solution uP is not unique,
and so we should not really call it “the” solution. It is “a” solution to the inhomogeneous
equation, and is just one of many, unless we add boundary or initial conditions or something.
In this lecture, we will only be looking for “a” solution to the inhomogeneous problem. It
would be a mistake, then, to talk about “the” solution obtained by Green’s functions, by
Fourier transform, by variation of parameters, because these solutions are not unique and
can even be different particular solutions.17

3.2 Solution via variation of parameters

Since we’ve solved homogeneous wave equation with Cauchy data, it is useful to know that
this solution can be used to solve the inhomogeneous equation using the technique of variation
of parameters.

Theorem 4 (Variation of parameters) Fix forcing term h = h(x, t). For each real num-
ber s, let v = v(x, t; s) be the solution to the homogeneous wave equation

vtt − c2∇2v = 0

v(x, 0; s) = 0

vt(x, 0; s) = h(x, s).

Then u(x, t) =
∫ t

0
v(x, t− s; s) ds is a solution to the inhomogeneous wave equation

utt − c2∇2u = h

u(x, 0) = 0

ut(x, 0; s) = 0.

17Personally, I have found this very confusing. So for instance, there is not such thing as “the” Green’s
function, or “the” fundamental solution the wave equation. There is “a” Green’s function; in fact there are
infinitely many if we don’t specify initial or boundary conditions. Personal note: try not to worry when
physicists throw a Green’s function at you and call it “the” Green’s function.
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For this theorem to hold, one must assume some continuity on the first few derivatives of
h. The proof proceeds simply by verifying that the function u(x, t) so defined is a solution
as stated. So,

u(x, 0) =

∫ 0

0

v(x, 0− s; s) ds = 0.

Also, by the fundamental theorem of calculus (remember to differentiate the endpoints too)

ut(x, t) = v(x, 0; t) +

∫ t

0

vt(x, t− s; s) ds =

∫ t

0

vt(x, t− s; s) ds,

and thus ut(x, 0) = 0. Differentiating again, we have

utt(x, t) = vt(x, 0; t) +

∫ t

0

vtt(x, t− s; s) ds

= h(x, t) +

∫ t

0

c2∇2v(x, t− s; s) ds = h(x, t) + c2∇2u(x, t).

So, u satisfies the required inhomogeneous wave equation. This completes the proof.

It is sometime convenient to restate the theorem while hiding the initial time t = t0. So
if the forcing term h = h(x, t) is zero for t � 0, just let v(x, t; s) be the solution to the
homogeneous problem

vtt − c2∇2v = 0

v(x, 0; s) = 0

vt(x, 0; s) = h(x, s).

and set u = u(x, t) =
∫ t

−∞ v(x, t − s; s) ds for the solution to the inhomogeneous problem,
which is zero at t � 0.

3.3 Fundamental solutions

A fundamental solution to a linear, constant coefficient partial differential operator L is a
distribution Φ which satisfies the distributional equation

LΦ = δ0,

where δ0 is the Dirac delta function at the origin (eg. a unit point mass). Note that if Φ is
a fundamental solution to the wave equation, then for any (smooth, compactly supported)
function h = h(x, t) we have

(∂tt − c2∇)(h ∗ Φ) = h ∗ (∂tt − c2∇)Φ = h ∗ δ0 = h.

Thus the function u = h ∗ Φ is a solution to the inhomogeneous wave equation

utt − c2∇u = h.
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The converse is true as well; if Φ is a distribution with the property that u = h ∗ Φ is a
solution to the inhomogeneous wave equation, for each function h, then Φ is a fundamental
solution.

We already have examples of fundamental solutions for the wave equation: we simply
reinterpret the integral solutions of the last section as convolutions, and identify the distri-
bution.

In dimension n = 1, the d’Alembert solution for the variation of parameters problem
gives

v(x, t; s) =
1

2c

∫ x+ct

x−ct

h(r, s) dr =
1

2c

∫ ct

−ct

h(x + r, s) dr

and thus the particular solution to the homogeneous equation is

u(x, t) =
1

2c

∫ t

−∞
v(x, t− s; s) ds =

1

2c

∫ t

−∞

∫ c(t−s)

−c(t−s)

h(x + r, s) dr ds.

The inner integral looks like a convolution with a boxcar function, with support of length 2c.
The outer integral looks like a convolution with a boxcar function with half-infinite support.

With this hint, we can guess the form of the convolution, and verify that this integral is
simply the convolution of h with the function

Φ+(x, t) =

{
0 t ≤ 0;
1
2c

t > 0,−ct ≤ x ≤ ct.

Figure 4: The fundamental solution to the 1D wave equation.
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That is, for this piecewise constant function Φ+, we can express the solution u to the
inhomogeneous wave equation as

u = h ∗ Φ+.

This function Φ+ is an example of a fundamental solution to the wave equation in 1D.

Note the cross-sections Φ(·, t) at fixed times are the boxcar functions described in Ursen-
bach’s lectures.

Similarly, in dimensions 2 and 3, for each time t > 0 we define spatial distributions Φ2
t , Φ

3
t

by the integrals

〈Φ2
t , g〉 =

t

2π

∫
|y|≤1

g(cty)√
1− |y|2

dy

〈Φ3
t , g〉 =

t

4π

∫
|y|=1

g(cty) dσ(y),

which are simply the integrals that appeared in the solution to the Cauchy problem, centered
at x = 0. The fundamental solutions to the wave equation, in dimensions two an three, are
given by defining the space-time distribution Φ+ as

Φ+(x, t) =

{
0 t ≤ 0;
Φn

t t > 0,−ct ≤ x ≤ ct.
for n = 2, 3.

An interesting exercise is to verify that the convolution u = h∗Φ+ is exactly the solution
to the inhomogeneous wave equation we derived earlier.

Notice the values of the solution u = h ∗ Φ+ at point t0 depends only on the values of h
at times t ≤ t0. It is a natural choice for a solution that arises from h driving the system.
Another perfectly acceptable fundamental solution Φ− is obtained by time reversal, with

Φ−(x, t) = Φ+(x,−t).

In physics, these are usually called the retarded and advanced Green’s functions for the wave
equation.18

3.4 Green’s functions, Green’s theorem

Mr. Green was apparently a very popular man, and many things got named after him,
which can be confusing for the rest of us. A fundamental solution to a (constant coefficient
linear) PDE is often called a Green’s function; thus the fundamental solutions of the previous
section are called the Green’s function for the wave equation. And again, there is nothing

18In dimension three, the distribution can be expressed as δ(|x|2 − c2t2)/|x|, scaled by 4π.
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unique about them, so they shouldn’t really be called “the” Green’s function. Also note that
these “functions” are actually distributions.

It is somewhat confusing that when we talk about the wave equation, another Green’s
function for a different PDE is often mentioned. Within the wave equation, there is the
Laplacian operator ∇2. The fundamental solution for the Laplacian ∇2u = δ0 is often called
“the” Green’s function; in dimension n = 2 it is given by

Φ(x) =
1

2π
log |x|,

while in dimension n > 2 it is given by

Φ(x) =
|x|2−n

(2− n)µn

,

where µn is a normalizing constant (the volume of the unit ball in dimension n.) This is
easily verified by confirming that ∇2(g ∗ Φ) = g for any smooth function g.

And, to be really precise, the Green’s function for the Laplacian, applied to a specific
bounded domain Ω with smooth boundary ∂Ω, is the unique function G(x,y) such that for
each point x in Ω,

1. ∇2
y[G(x,y)− Φ(x− y)] = 0;

2. y 7→ G(x,y) is continuous on Ω;

3. G(x,y) = 0 for each x ∈ Ω,y ∈ ∂Ω,

where Φ is the fundamental solution mentioned in the last paragraph. That is, the difference
between the Green’s function and a fundamental solution is the unique solution to the
Dirichlet problem on a specific domain. Note for certain domains, the solution to this
problem could be very complicated.

Similarly, to specify a unique Green’s function, or fundamental solution, for the wave
equation, one must pose some boundary and initial conditions. The answer always will
involve a distribution, in dimensions n > 1. The examples in the last section are precise
formulations of particular distributional solutions.

Green’s theorem, on the other hand, consists of some identites Laplacian, namely:

Theorem 5 (Green’s Identities) Suppose Ω is a bounded domain in Rn whose boundary
∂Ω is smooth. If u, v are functions with continuous first derivatives, then∫

∂Ω

v∂ηu dσ =

∫
Ω

(v∇2u + ∆v ·∆u) dx∫
∂Ω

(v∂ηu− u∂ηv) dσ =

∫
Ω

(v∇2u− u∇2v) dx
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where ∂η indicates the outward normal derivative, and dσ the surface area.

The first identity is a consequence of the divergence theorem19 with vector field F = v∇u,
and

∫
∂Ω

(F · η)dσ =
∫

Ω
(∇ · F)dx. The second identity follows by subtracting the symmetric

result from the first identity. They have obvious uses when computing with the Laplacian.

3.5 Why the convolution with the fundamental solutions?

Let’s point this out specifically. There is something magical in the fact that we can solve
the inhomogeneous wave equation in the form of convolution u = h ∗ Φ. The only reason
this works is because we have been working with a constant coefficient PDE. Thus the
fundamental solution at the origin (the one that gives the Dirac delta function at the origin)
can be transported around to other points (x0, t0) simply by translation. Summing these up
with weights h(x0, t0) results in a convolution.

For non-constant coefficient equations, we expect something much more complicated to
happen. For instance, you might need a different fundamental solution at each point, and
then sum them up with the weighting h. This will not be a convolution.

In general, one might hope to solve a non-constant coefficient PDE Lu = h with an
integral solution

u(x) =

∫
Φ(x,y)h(y) dy

where, for each x, the distributional map y 7→ Φ(x,y) satisfies LΦ(x, ·) = δx. Looking for a
fundamental solution at each x could be very challenging.

3.6 The Fourier transform and solutions

Constant coefficient linear PDEs can also be effectively solved using the Fourier transform.
The Fourier transform of a function f = f(t) of a single variable is defined as

f̂(ω) =

∫
R

f(t)e−2πit·ω dt;

the function is recovered from its transform using the inverse transformation,

f(t) =

∫
R

f̂(ω)e+2πit·ω dω.

19And, as I like to explain to my kids, the Divergence Theorem simply says you can measure how much
methane gas a cow produces by either measuring how much is produced in each cubic centimeter of the cow,
or simply by measuring how much leaks out its mouth and rear end, and other places on the surface of the
cow.
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The factor of 2π in the exponent is particularly convenient for normalizing this operator; it
also gives useful physical units for the dual variable ω20

One should worry a bit about what kinds of function the Fourier transform is defined
for. However, it is easy to note it is well-defined on smooth functions which decay rapidly at
infinity, faster than the reciprocal of any polynomial (Schwartz class functions). By duality,
the Fourier transform is extended to all tempered distributions, and thus it behaves nicely
on a wide class of (generalized) functions.

The Fourier transform preserves L2 norm; maps convolutions to pointwise products, and
vice versa; it converts derivatives to mutliplications by polynomials in the dual variable, and
vice versa.

In higher dimensions, the Fourier transform is defined using a higher dimensional integral;
similar properties hold. Since we are working with the wave equation, it is convenient to
indicate the space and time variables separately. Thus, for u = u(x, t) we define its transform
as

û(k, ω) =

∫
R

∫
Rn

u(x, t)e−2πi(x·k+t·ω) dxdt,

and of course the inverse transform gives

u(x, t) =

∫
R

∫
Rn

û(k, ω)e+2πi(x·k+t·ω) dkdω.

To solve the inhomogeneous wave equation utt− c2∇2u = h, we simply apply the Fourier
transform to the equation to obtain

−4π2ω2û + c24π2|k|2û = ĥ

and thus

û =
1

4π2(c2|k|2 − ω2)
ĥ.

We would then recover u via the inverse Fourier transform.

However, there are some problems with this approach, namely because the factor 4π2(c2|k|2−
ω2) is zero along the light cone, and dividing by zero is not well-defined. In particular, we can
say the reciprocal 1/4π2(c2|k|2−ω2) is not the Fourier transform of a tempered distribution.

To fix things, one can define distributions Φε
+ and Φε

− as those distributions with Fourier
transform

Φ̂ε
+(k, ω) =

1

4π2(c2|k|2 − (ω − iε)2)

Φ̂ε
−(k, ω) =

1

4π2(c2|k|2 − (ω + iε)2)

20Eg. if t is time measured in seconds, then ω is frequency measured in Hertz. What could be more
natural?
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and take the limits of these distributions as ε → 0+. It can be verified that in fact, the re-
tarded and advanced Green’s functions (fundamental solutions) derived in the earlier section
are these limits.21

It is curious that the addition of an infinitesimally small, imaginary part to the temporary
frequency frequency switches solutions from the retarded to the advanced. This gives an idea
of how bad the behaviour could be if one is not careful about those zeros.

A closely related solution is to the the limit of distributions Φε
f , whose Fourier transform

is

Φ̂ε
f (k, ω) =

1

4π2(c2|k|2 − ω2 − iε)
.

The limiting distribution is called the causal Green’s function, or the Feynmann propagator
Φf .

3.7 Analyticity and avoiding zeros

There is another way to avoid the zeros that comes up in the polynomial c2|k|2 − ω2; we
mention this because it works well for all constant coefficient PDEs. The key idea is that
when a function f(t) has compact support, then its Fourier transform

f̂(ω) =

∫
R

f(t)e−2πit·ω dt

extends to an analytic function for complex values of ω. This is also true in higher dimensions.
Thus, by moving off the real line, we can avoid the zero set of any polynomials that arise.

For the wave equation, this is easy to do. In the dual variable for time, we look at
values ω + iε. These will never give a zero in the characteristic polynomial, and in fact
c2|k|2 − (ω + iε)2 is bounded away from zero. So, rather than integrating over the real line
for ω, we integrate on a line in the complex plane, where Im(ω) = ε 6= 0.

Thus, for any compactly supported forcing term h, we may define

u(x, t) =

∫
Rn

∫
Im(ω)=ε

ĥ(k, ω)

4π2(c2|k|2 − ω2)
e2π(x·k+t·ω) dωdk,

where the inner integral is along a line in the complex plane which thus avoids zeros in the
denominator. Applying the wave operator, we pick up the polynomial term that cancels the
denominator, so

utt − c2∇2u =

∫
Rn

∫
Im(ω)=ε

ĥ(k, ω)e2π(x·k+t·ω) dωdk,

21This would be a good exercise.
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By analyticity of the integrand, we can deform the integral along the line Im(ω) = ε to
the real line (Cauchy’s theorem in complex variables), and obtain the desired result, that
utt − c2∇2u = h.

This does not reveal the fundamental solution22, but it is an effective solution technique
for the inhomogenous wave equation. That is, it is mathematically exact, there are not
approximations or wishful ignoring of singularities. It would seem these solutions are related
to the distributions Φε

+ defined in the last section. They are close, but not the same thing.

It is certainly worth pointing out that the factors e2π(x·k+t·ω) appear to be plane waves in
variables x, t, for any fixed k, ω. Thus this solution looks like a sum of plane waves. However,
we really do have some exponential behaviour happening, since the ω is actually a complex
number in this integral formulation.

3.8 Spatial Fourier transforms

In this section and the next, we let û denote the Fourier transform in the spatial variables
alone, that is,

û(k, t) =

∫
Rn

u(x, t)e−2πix·k dx.

This transforms the initial value problem

utt − c2∇2u = 0, u(x, 0) = f(x), ut(x, 0) = g(x)

to a second order ODE in variable t, with

ûtt + 4π2c2|k|2û = 0, û(k, 0) = f̂(k), ût(k, t) = ĝ(k).

Taking into account the initial conditions, we solve this ODE as a linear combination of
cosines and sines, so

û(k, t) = f̂(k) cos 2πc|k|t + ĝ(k)
sin 2πc|k|t

2πc|k|
.

Thus, taking the inverse Fourier transforms, these products turn into convolutions, so we
can write the solution as

u(·, t) = f ∗Ψt + g ∗ Φt,

where we use a spatial convolution. Of course, we know what these distributions Ψt, Φt

are, since we know their Fourier transforms23 But, it is simpler to note that Φt is the same
distribution that appeared in Section 3.3 on fundamental solutions, and

Ψt =
∂Φ

∂t
22the one that gives our convolutional results
23A good exercise would be to compute these distributions by finding the inverse Fourier transform of the

functions c(k) = cos 2πc|k|t and s(k) =
sin 2πc|k|t

2πc|k|
.

33



is its time derivative.

3.9 Local Fourier theory: pseudodifferential operators

We saw that the spatial Fourier transform represents the Laplacian as multiplication by a
polynomial in the Fourier dual variables k = (kx, ky, kz), with,

∇2u(x) =

∫
R3

−4π2
(
k2

x + k2
y + k2

z

)
û(k)e2πix·k dk.

By the Fourier inversion formula, a linear differential operator with non-constant coefficients
can be represented by a polynomial in k with coefficients that depend on the spatial variable
x. So, for instance, an inhomogeneous Laplacian can be calculated as

a(x)uxx + b(x)uyy + c(x)uzz =

∫
R3

−4π2
(
a(x)k2

x + b(x)k2
y + c(x)k2

z

)
û(k)e2πix·k dk.

A pseudodifferential operator is a linear operator given by an Fourier integral formula as
above, but replacing a polynomial such as p(x,k) = −4π2

(
a(x)k2

x + b(x)k2
y + c(x)k2

z

)
with

an arbitrary (but given) function σ(x,k). We can define the corresponding operator Kσ as

Kσu(x) =

∫
R3

σ(x,k)û(k)e2πix·k dk.

With reasonable restrictions on the smoothness and growth of the function σ, the correspond-
ing operator Kσ retains many of the important properties of a real differential operators.
The function σ is called the symbol of the operator. There is a well-developed mathematical
theory which provides a functional calculus for combining symbols to create useful pseudod-
ifferential operators. So for instance, the square root of the Laplacian can be approximated
by a pseudodifferential operator whose symbol approximates the square root of the symbol
for the Laplacian, such as

σ(x,k) = 2πi
√

k2
x + k2

y + k2
z + ε.

In other words, this provides an approximation to the Dirac operator.

Pseudodifferential operators provide a useful tool for working with PDEs with non-
constant coefficients, such as those describing an inhomogeneous earth. These will be de-
scribed in other lectures of this workshop.

3.10 Radon transform

There is a very elegant way of solving the Cauchy problem for the wave equation using the
Radon transform. The basic idea is to consider the simple case where the initial data f, g are
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constant along (hyper)planes, with the same normal vector k. That is, we have two function
F, G of one variable and wish to solve the Cauchy problem

utt − c2∇2u = 0, u(x, 0) = F (x · k), ut(x, 0) = G(x · k).

We expect the solution to have the same symmetry, and in fact the solution is obtained as
in the d’Alembert 1D solution, so we find

u(x, t) =
1

2
[F (x · k + t) + F (x · k− ct)] +

1

2c

∫ ct

−ct

G(x · k + s) ds.

The more general solution, for more general Cauchy conditions, is to decompose the initial
condition into a sum (or integral) of functions which are constant along various hyperplanes.
Thus, suppose we can write the functions f, g as integrals

f(x) =

∫
Sn

F (x · k,k) dσ(k), g(x) =

∫
Sn

G(x · k,k) dσ(k).

Then the solution to the wave equation would be

u(x, t) =
1

2

∫
Sn

[
F (x · k + t,k) + F (x · k− ct,k) +

1

c

∫ ct

−ct

G(x · k + s,k) ds

]
dσ(k),

where we integrate over the unit sphere of all possible direction vectors k.

That is all there is to it: once we know how to decompose the functions f(x), g(x) in
terms of integrals of some functions F (s,k), G(s,k), we have the formula for the solution to
the wave equation. So we present here how to obtain this decomposition using the Radon
transform.

This decomposition is obtained by the modified Radon transform. First, the Radon
transform is defined on spatial functions f = f(x) by integrating the function over all
possible (hyper)planes x · k = s. Thus, for each direction k and each displacement s, we
obtain a value for the transform, with

(Rf)(s,k) =

∫
x·k=s

f(x) dx,

where the integral is the usual (n−1) dimensional area integral. It is interesting to note that
the Radon transform is closely related to the spatial Fourier transform; indeed, it is easy to
check that

Rf(s,k) =

∫
R

f̂(ωk)e2πis·ω dω.

As you might expect, this transform is invertible, and the inverse can be written as an integral
over points k in the sphere Sn and displacements s ≥ 0. Integrating over the displacements,
and taking care of some symmetries, gives the modified Radon transform R̃ which satisfies
the decomposition

f(x) =

∫
Sn

R̃f(x · k,k) dσ(k).

35



Thus it is the modified Radon transform that should be used in computing the solution to
the wave equation.

In dimension 2, the modified Radon transform involves a Hilbert transform, so it should
be computed with some care24. In dimension 3, we can just write it down

R̃(s,k) =
1

2

∫ ∞

−∞
R̂f(ω,k)ω2e2πisω dω,

where R̂f here means the Fourier transform of the Radon transform Rf(s,k) with respect
to the first variable s.

3.11 Things we haven’t covered

Given more time, it would have been useful for cover topics such as smoothness results, ray
theory, and numerical solutions.

For a brief summary of each:

Smoothness: we can ask, given certain smoothness conditions on the input to a PDE
problem, how smooth will the solution be? For elliptic operators, the answer is very nice:
there is no loss of smoothness. That is, if the Cauchy data is f ∈ Ck, g ∈ Ck−1, then the
solution u is also Ck. For the wave equation, there is a loss of smoothness, of about order
n/2. So, for Cauchy data f ∈ Ck+n/2, and g ∈ Ck−1+n/2, then the solution is u is in Ck. This
can be thought of as the result of weak singularities colliding into other weak singularities, to
produce stronger singularities. For constant coefficient wave equations, this can only happen
in a limited sense, hence the loss of only n/2 orders of derivatives. Moreover, this loss can
only happen in startup of the solution: we can loss n/2 orders of smoothness in going from
u(x, 0) to u(x, ε), but after that there is no further loss moving on to any point u(x, t). And
if one uses L2 derivatives, there is no loss at all! A complete discussion of this would require
the introduction of Sobolev spaces. And it is not clear (to me) that analogous results hold
for non-constant coefficient wave equation, because the creation of caustics can produce very
bad singularities.

Ray theory: Light travels in rays. Well, not really, but this is a useful approximation
in geometric optics. A similar approximation can be made in seismic imaging, where one
assumes most of the energy in a seismic experiment has travelled along a ray that follows
the path of least time.25 These paths can be computed by looking at the coefficients in the
wave equation, in particular in the velocity term c = c(x). In the constant velocity case, the
ray paths are straight lines; for non-constant velocities, they are other curves. The problem

24Huygens principle fails in dimension 2, which is related to this problem.
25Or possibly an extremal for time.
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of computing paths of fastest travel time is a standard problem in the calculus of variations,
and not so much a problem in PDEs.

Numerical methods: There are many techniques for approximating the solution to a PDE
using numerical methods. For non-constant coefficient equations, sometimes these are the
only known methods to finding accurate approximations to the solutions. Finite differences,
finite elements, matrix solvers, filtering methods, and so on, are all useful techniques. The
seismic problem is difficult enough that the tradeoff between accuracy and speed becomes
one of the most important issues in choosing a solution method.
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4 Summary

Here are the key points to remember from these lectures.

First, there are many solutions to the wave equation. It is only by adding boundary
and initial conditions that we turn a question about the wave equation into a well-posed
mathematical problem.

Second, for the constant coefficient wave equation, there are many techniques for com-
puting the solutions to (well-posed) problems. These included separation of variables, char-
acteristic curves, variations of parameters, one-way wave equations, d’Alembert and higher
dimensional explicit solutions, Green’s functions, Fourier and Radon transforms. A technical
facility with these techniques will help you in solving real problems about waves.

Finaly, for non-constant coefficient problems, we still expect many solutions to exist for
the wave equation. Well-posedness will come from imposing boundary and initial conditions.
Local solutions can always be found. We can optimistically expect that the many solutions
to the constant coefficient case can be applied, at least locally, to give methods of solution
to the more general, non-constant coefficient case.
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