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The Direct Scattering Problem for an Infinite Cylinder

Scattering by an Infinite Cylinder

g replacements PSfrag replacements

< OO >
v U T

1. A Perfect Conductor (E = (0,0, u))

Aou+k*u=0 in R*\ D

v = u'4u’
u = 0 ondD
a S
nm\/q?(i—ik@ﬁ):o
r—00 or
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The Direct Scattering Problem for an Infinite Cylinder

2. An Inhomogeneous Medium

Asu + k*n(z)u =0 in R?
u=u'+ u®

lim +/r (ai _ zku) —0

r—00 or

Assume u'(z) = e**4 n(x) = 1in R?2\ D, Im n(z) > 0 for
reD, Ren(z) >0, k>0, r=|x|.
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The Direct Scattering Problem for an Infinite Cylinder

Scattering by an Infinite Cylinder

Let .
b (1)
O(x,y) = ZHO (klxe —y|) ,x#uy.

Then for z € R\ D, Green’s theorem implies that

ww) = [ (w0 g @) - G )B(an)) dsiy
oD

This is known as Green’s representation formula.

Theorem: In R?\ D, u®(z) is a real-analytic function of its

independent variables.

Rellich’s Lemma: Let v € C?(R?\ D) be a solution of the
Helmholtz equation satisfying

Jim [u(y)|*ds(y) = 0.
ly|=R

Then u =0 in R?\ D.

Definition: The condition

lim /7 (8“ —z‘ku8> —0

r—00 or

is called the Sommerfeld radiation condition.
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The Direct Scattering Problem for an Infinite Cylinder

The Perfect Conductor:
Uniqueness and Existence

Uniqueness Theorem: Let u® € C?*(R?\ D) N C(R?\ D) be
a solution of the Helmholtz equation in R?\ D satisfying

the Sommerfeld radiation condition and u® = 0 on 90D.
Then u® =0 in R*\ D.

Proof: Let B be a disk centered at the origin such that
B D D. Then by Green’s theorem

_ou’ s 0u’ B
/(u 5, U ar)dS—O. (1)

0B
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The Direct Scattering Problem for an Infinite Cylinder

The Perfect Conductor:
Uniqueness and Existence

But for z € R?\ B,

u'(r,0) = Y an(r)e™ (2)

s

1 .
an(r) = Dy u®(r,0)e""0dp

an(r) = anHW (kr).

Using the Wronskian relation for Hankel functions,
1), 2)=

oo

> lan>=0

= u®(z) = 0 for x € R?\ B and, by analyticity, u®(xz) = 0
for x € R*\ D.
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The Direct Scattering Problem for an Infinite Cylinder

The Perfect Conductor:
Uniqueness and Existence

We now try to construct a solution to the direct scattering
problem for a perfect conductor. We first look for a solution
in the form of a double layer potential

w@) = [ o) sl 0)ds(y),
oD

However, this approach fails if k2 is an eigenvalue of the
interior Dirchlet problem for the Laplacian in D! Hence, we
look for a solution int he form of a modified double layer
potential

0P(z,y) . }
u’(x) = ———= —indP(x, ds
@)= [ ot { G~ inla ) | dsto)
oD
where p € C(0D) and n # 0. u*® will be a solution of the
scattering problem if

©+ 2 / oY) {% — in@(x,y)} ds(y) = —2etFd

It can be show using the Fredholm alternative that there
exists a unique solution to this integral equation. Hence
existence of a solution to the scattering problem for a
perfect conductor has been established.
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The Direct Scattering Problem for an Infinite Cylinder

The Inhomogeneous Medium:
Uniqueness and Existence

In this case uniqueness (and hence, by the Fredholm
alternative, existence) is based on the following theorem:

Unique Continuation Principle: Let G be a domain in R?
and suppose u € C?(G) is a solution of

Asu + k*n(z)u =0

in G such that n € C(G) and u vanishes in a neighborhood
of some zg € G. Then u is identically zero in G.

Uniqueness Theorem: Let u € C?(R?) satisfy
Agu + k*n(z)u =0 in R?

lim f(@ —zku) =0

r—00 or
Then u = 0 in R2.

Proof: Green’s theorem implies that for D C {z: |z| < a}

/ u—ds— / {|grad ul® — k*njul’} dx

|z|=a lz|<a
and hence
Im / u—ds = k? / Im n|ul?dxz > 0. (1)
|z|=a |lz|<a
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The Direct Scattering Problem for an Infinite Cylinder

The Inhomogeneous Medium:
Uniqueness and Existence

ou 1 ou ou
Im |x_au5ds 5 / (ua—u§>d

|z|=a

But

and the Wronskian relation for Hankel functions implies
that

Im / u—ds<0

|z|=a
unless u = 0 for |z| > a. Hence, from 1) u =0 for |x| > a
and the theorem follows by the unique continuation

principle.

The direct scattering problem for an inhomogeneous
medium is easily seen to be equivalent to the problem of

solving the Lippmann Schwinger equation

u(w) = u'(e) = K [ (o, ymlyuly)dy, o € R
R2
where m := 1 — n. The above uniqueness theorem and the
Fredholm alternative now imply the existence of a unique
solution to the direct scattering problem for an

inhomogeneous medium.
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The Direct Scattering Problem for an Infinite Cylinder

Far Field Patterns

Recall that for both a perfect conductor and an

inhomogeneous medium,

w@) = [ (w0 0) - G )B(en)) dsio)

ov(y)
oD

Letting r = |x| — oo implies that

ezkr

\/F

ut(x) = Uoo (&, d) + 0(r—3/2)

where & = x/|z| and

X 6z'7r/4 O . ous ..
Uoo (T, d) = /(usae hEy _ 5, C REYYds(y).

Definition: uo is called the far field pattern corresponding

to the specific scattering problem under consideration.
Theorem: Suppose ts = 0. Then u®* =0 in R?\ D.

Proof: [ |u*(y)|?ds = [ |uso(Z,d)|?ds(2) +0(3) as
lyl=R |Z[=1
r — 00. If use = 0 then by Rellich’s lemma u® = 0.
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The Direct Scattering Problem for an Infinite Cylinder

Far Field Patterns
Reciprocity Principle: oo (2, d) = tUoo(—d, —2).

It follows from the reciprocity principle that u. (2, d) is
infinitely differentiable with respect to its independent
variables.

Example: Consider the direct scattering problem for a
perfect conductor when D is a disk of radius a. Then using
the Jacobi-Anger expansion

o0

eikr cost  _ Z ian(kr)einO
we have that, ford = (cos¢,sin¢),
o0 Jn(ka)

ui(r,0) = — 5 " HW (kr)e0=¢)

—00 Hg)(ka)

and since

HWY (kr) = \/gexp [ (kr — %T — %)} +0 (r_3/2>

we have that

uoo(A; _ 7,7r/4\/72 H zn(@ qf))
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The Direct Scattering Problem for an Infinite Cylinder 11

Far Field Operator for a Perfect Conductor

Let Q :={x : |z| = 1}. The far field operator
F:L?(Q) — L*(9) is defined by

(Fg)(d) == / oo (3, d)g (d)ds(d).

Q

From the smoothness of u,, we see that F' is a compact
operator. Note that (Fg)(z) is the far field pattern
corresponding to the incident field u* being a Herglotz wave
function v, (x) defined by

vg(x) = /eikm'dg(d)ds(d).

Q

Theorem: If F'is the far field operator corresponding to a

perfect conductor then F' is a normal operator.
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The Direct Scattering Problem for an Infinite Cylinder 12

Far Field Operator for a Perfect Conductor

Theorem: The far field operator corresponding to a perfect
conductor is injective with dense range if and only if there
does not exist a Dirichlet eigenfunction for D which is a

Herglotz wave function.

Outline of Proof: The reciprocity principle implies that the

adjoint operator F'* satisfies

(F"h)(d) = (Fg)(=d)

where g(2) = h(—2). Hence F is injective if and only if F*
is injective. But N(F*)1 = F(L2(Q)) and hence we only
need to prove that F' is injective.

Fg = 0 implies that the scattering problem with u* = Vg
has vanishing far field pattern and hence using Rellich’s
lemma vy (x) = 0 for x € dD. Thus v, is a Dirichlet

eigenfunction unless g = 0.
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The Direct Scattering Problem for an Infinite Cylinder

Far Field Operator for
an Inhomogeneous Medium

Recall that the far field operator F': L?(Q) — L?*(Q) is
defined by

(Fg)(z) = /uoo(:?:,d)ds(d).

Q

Theorem: If F'is the far field operator corresponding to an
inhomogeneous medium, and I'm n(zx) = 0 for x € D, then
F' is a normal operator.

Theorem: The far field operator corresponding to an
inhomogeneous medium is injective with dense range if and
only if there does not exist w € C?(D) N CY(D) and a
Herglotz wave function v such that v, w is a solution of the

interior transmission problem

Asv + k20 =0
in D

Asw + k2n(x)w = 0

vV =w

on 0D
Qv _ Ow
ov Ov’
14 of 49
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The Direct Scattering Problem for an Infinite Cylinder 14

Far Field Operator for
an Inhomogeneous Medium

Definition: Values of k such that the interior transmission
problem has a nontrivial solution are called transmission

eigenvalues.

Theorem: If I'm n(xg) # 0 for some zy € D then k is not a
transmission eigenvalue, i.e. the far field operator F’ is

injective with dense range.

Proof: If there exists a nontrivial solution to the interior

transmission problem then

v _Ov ow _ Ow
0 = /(vg—v$>ds = /(w% — w%>ds

oD oD

= /(wA@ — WAw) dv = 2ik? /Im n|w|*dz.
D D
If Im n(xg) # 0 then w(x) = 0 in a neighborhood of zy and

by the unique continuation principle w(z) = 0 for x € D.
Then v has vanishing Cauchy data and hence v(xz) = 0 for
e D =<«
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The Direct Scattering Problem for an Infinite Cylinder 15

Partially Coated Perfect Conductors

If a portion of a perfectly conducting cylinder is partially
coated by a dielectric, we are led to the mixed boundary
value problem

Asu+Kk*u=0 in R*\D
uw=u'+ u®

u=0 onlIp

@+i/€)\u:00nF[
v

lim /7 (au —ikus) —0

r— 00 87“

where ) is a positive constant and 0D =T'p UT';.

Theorem: The mixed boundary value problem has at most
one solution.

Proof: Green’s theorem and Rellich’s lemma.

It is no longer appropriate to use integral equations of the
second kind to obtain existence; instead integral equations
of the first kind must be used.
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The Direct Scattering Problem for an Infinite Cylinder 16

Partially Coated Perfect Conductors

From Green’s representation formula we have

ou
u—SE—Du

where S and D are single layer and double layer potentials
respectively. Applying the boundary conditions and letting
Y1 and ¥ p be the unknown boundary data for v on I'; and
% + tkAu on I'p respectively leads to a system of integral
equations of the first kind for the determination of ¢; and

Yp:

NEa

V1

Theorem: In an appropriate function space, A is a Fredholm

operator with index zero and A has a trivial kernel.

Corollary: A solution exists to the mixed boundary value

problem.
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The Linear Sampling Method

Consider the scattering of a time harmonic plane wave
[]i(ﬂf t) _ eikmwi—iwt
Y

by a sound soft obstacle D C R?.

Then, if U*(z,t) = u®(x)e” ™" is the scattered wave,

6ikr

\/;Z

where r = |z|, T = z/|x|,

u’(x) =

Uoo (T, d) + O (7“_3/2)

dl = 1.

The inverse scattering problem is to determine D from
the far field pattern u..(z,d) for z,d € €2 where

Q:={x: |z|=1}.
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The Linear Sampling Method

Now let .
(@
Oz, z) = ZHO (k|x — z|)

which has the far field pattern
€i7r/4

(I)OO(:%7 Z) _ = e—ikfc.z.

/

Suppose there exists ¢(-, z) € L*(2) such that
the far field equation

/ wo (2, d)g(d, 2)ds(d) = Do (2, 2)

is satisfied for z € D.

Then by Rellich’'s lemma

/ u* (2, d)g(d. 2)ds(d) = —B(z, 2)

Q
for z € OD.
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The Linear Sampling Method

Since D is sound-hard, u*(z,d) = —e®** for x € OD
and hence the Herglotz wave function with kernel g

vy(x) = /eikx'dg(d, 2)ds(d)

Q

tends to infinity as z — 0D —

Tim g, )] 2y = oc.

Unfortunately, in general no solution exists to the far
field equation, i.e. (assuming that k? is not a Dirichlet
eigenvalue) the solution of the interior Dirichlet problem

Aou + Ku =0 in D
u = P(, 2) on 0D

for z € D is not a Herglotz wave function!
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Herglotz Wave Functions

The linear sampling method for solving the inverse
scattering problem is based on the fact that although
the far field equation is in general not solvable, for every
e > ( there does exist a "solution” with discrepancy ¢

and this approximate solution tends to infinity as
z— 0D for z € D.

This fact is a corollary of the following theorem where

we H'Y(D) and
Aou+Ek>u=0inD .

Theorem (Colton-Sleeman): With respect to the
HY(D) norm the set of Herglotz wave functions is

dense in H(D).
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Herglotz Wave Functions

Outline of Proof

Step 1: Let

Then the set

is complete in H~1/2(0D).

Step 2: There exists a positive constant C' such that if u is the
unique weak solution of

Asu + k?u =0 in D
ou

g—l—zu:f on 0D

for f € H1/2(0D) then

lullzr oy < Cllflz-1r2(0D)-

For details see
D.Colton and B.D. Sleeman, An approximation property of

importance in inverse scattering theory,
44 (2001), 449-454.
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Herglotz Wave Functions

In the case of the inverse scattering problem with
limited aperture data, the following generalization of
the Colton-Sleeman theorem is important:

Theorem (Cakoni-Colton): With respect to the
HY(D) norm the set of Herglotz wave functions with
kernels supported in 2y C Q2 is dense in H(D).

Hence, in order to reconstruct D from the far field
pattern u., for d € wy, T € €21, one must solve the far
field equation

/uoo(:%, d)g(d, z)ds(d) = P (T, 2), z € )

Qo

and determine where ||g(-, 2)|[2(q,) "blows up".

This is done by using regularization methods to solve
the far field equation. However, it remains to be shown
that this numerical procedure recovers the Herglotz
kernel g of Colton-Sleeman and Cakoni-Colton
theorems! In this regard see

Tilo Arens, Why linear sampling works, Inverse
Problems 20 (2004), 163-173.
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Mixed Boundary Value Problems

V. -AVvu+Ek>v =0

Asu + k?u =10
v—u=20
, ou
U—u:—m(x)g
ov _(9u_0
aVA 8V_

u=u"+ u’®

lim /7 (a“ —iku3> =0

r—00 or

where

A€ CY(D), A is symmetric,

on

on

on

Re (€ - AE) > ~[¢|? for some v > 0, Zm (€ - AE) =0,

1 € Loo(I'y) where n(xz) > ng > 0,

u'(z) = e and 595’72 =v-AVo.
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Mixed Boundary Value Problems

Theorem: There exists a unique solution (v, u) in
H'(D) x H}

loc

(R%2\ D) to the mized transmission
problem.

The scattered field u° has the asymptotic behaviour

6zkr

\/;

u’(x) =

Uoo (T, d) + O (7“_3/2>

as 1 — oo where r = |z|, T = x/r, k is fixed and u, is
the far field pattern of the scattered field u°.

The inverse scattering problem is to determine D and 7
from a knowledge of u..(Z, d) for z,d € €.
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10

Mixed Boundary Value Problems

A solution to the far field equation

/uoo(.f:, d)g(d, z)ds(d) = (T, 2)

exists if and only if the solution w, of the interior
transmission problem

V- AV, +k*v, =0 in

Asw, + k*w, =0 in

Vy — Wy = (I)(y Z) on

v, —w, = ®(+, 2) —inag (w, +®(-,2z))  on
v
ov ow 0

Oovy,  Ov Ov (> 2) on

for z € D is a Herglotz wave function.

Definition: Values of k for which there exists a
nontrivial solution to the interior transmission
problem for ® = 0 are called transmission
ergenvalues.
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11

Mixed Boundary Value Problems

Theorem: Assume that k is not a transmission
eigenvalue and that R(& - AE) > ~|€]? or
R(E-ATLE) > ~|€|? for some v > 1. Then there exists

a unique solution v, € H' (D), w, € H'(D) and
ow,

v

c L*(I'y) to the interior transmission problem.

Theorem (Cakoni-Colton-Monk):  The set of
Herglotz wave functions v, for all g € L*(Q) is dense
1mn

H(D) = {w € H(D) such that g—t;} C L2<F2)}

equipped with the graph norm.

Proof: Based on the ideas of Colton-Sleeman.
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12

Determination of D and n

Theorem: Assume that k is not a transmission
ergenvalue and let v,, w, be the unique solution of the
interior transmaission problem. Then w, can be
approximated in H(D) by the Herglotz wave function
v, with kernel g, an approximate solution of the far

field equation.

e The above theorem provides a method for
approximating both D and ||n||._(r,)- In particular,
if 77 is a constant we have

—3 — I m (w;,(20))

4
|55 (wsy +@(, 20)) 1721,

n = Z()ED.

e Since ['5 is unknown, the above expression only
provides a lower bound for 7!
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13

Determination of D and n
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Reconstruction of 7 (approximate D)

30 of 49
Colton




14

Maxwell’s Equations

ES
curlcurl E — k?E = 0 in
E=FEs+FE"
v X E=0 on
‘ 1|im (curl E* x © — ik|x|E®) =0
where
i ik':L'-d.

E'(z) = %curl curl pe

R*\ D

Theorem: There exists a unique solution E of the

above scattering problem such that E is in
Hipo(curl, R?\ D).
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15

Maxwell’s Equations

It can be shown that

P = T {=an o ()}

] ]

as |z| — oo The inverse scattering problem is to determine D
from E..(Z,d,p) for Z,d on the unit sphere ) and three linearly
independent polarizations p.

We will now use the linear sampling method to determine D.
To this end we define the far field operator F': L2(Q2) — L?(Q)

by
(Fg)(@) = [ Ew(i.d. () ds(a)
Q
and the corresponding far field equation by

(Fg)(ﬁj) — Ee,OO(iv'%q)

where E. - is the far field pattern of the electric dipole
E.(x) = %curl curl g ®(z, 2)

1 6ik:|:1c—z|

where <I>(:13,z):4 ‘ %
T |lx—2
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Maxwell’s Equations

For z € D the far field equation F'g = E. » has a unique solution
if and only if the solution E of the following interior problem has
a unique weak solution that is a Herglotz wave function:

curlcurl E — k2E = 0 in D
vXx (E+E.) =0 on

p1

There exists a unique solution in H(curl, D) to the above interior
problem if k is not a Maxwell eigenvalue.

Theorem (Colton-Kress):  With respect to the H(curl, D)
norm the set of Herglotz wave functions with kernel in L2()

is dense in the space of H(curl, D) solutions to
curlcurl E — k* E = 0.

The above analysis now implies that D can be determined by
solving the far field equation for g(-, z) using regularization
methods and determining where ||g(-, 2)||2(n) "blows up".
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Mixed Boundary Value Problems

Mixed boundary value problems in electromagnetic scat-
tering theory arise when the scattering object s a com-
posite material such that parts of the scatterer have dif-

ferent electrical properties.

Such scattering objects can be:

o Partially coated perfect conductors.

e Thin objects with one side a perfect conductor and
the other side an imperfect conductor or dielectric.

e Partially coated dielectrics.
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Mixed Boundary Value Problems

The direct scattering problem

e The mathematical analysis of mized boundary value

problems 1s difficult due to the non-standard solution
space.

e No matter how smooth the boundary data s, the
change of boundary conditions causes the scattered

field to be singular at the interface. This gives rise
to numerical difficulties.

The inverse scattering problem

e Since the physical structure of the composite medium
s not known a priori, the use of weak scattering
approzimations and/or nonlinear optimization
techniques are problematic.
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Scattering by a Coated Dielectric

X Eri Xes

N

V x B¢t — jkH®*t =

X in R3\ D
V x He*t ik Bt =0

V x Eint — ik Himt =

\ in D
V x H"™ + kN (x)E"™ =0

\

vx B —yx E"™ = 0 on OD=T,UIl,
vX H*' —pyx H™ = (0 on I
vx H" —uy x H™ = pn(z)(v x E") xv on

where the exterior field E¢*t, H¢*! is given by

Eext _ Ez i ES Heact _ HZ i HS,

I's

E?, H? is the scattered field satisfying the Silver Miiller radiation
condition and E*, H' is the given incident field.
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The Inverse Problem

The scattered electric field £° has the asymptotic behaviour

6zk|a:|

@0 ()]

as |z| — oo where & = x/|z|, T -FEs(2) =0 and F(2) is the

E’(x) =

electric far field pattern. We always assume that £ > 0 is fixed.

If we use the incident field given by

E'(x): = %V x V x petked
Hi(z): = V xpeksd

then
Foo(Z) := Ex(Z,d,p).

Let QO :={z: |z| =1}.

The inverse scattering problem we want to solve is to
determine both D and n from a knowledge of

Foo(Z) = Exo(2,d,p) forz € Qo C Q, d e Q; CQ and
peR?
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Uniqueness Theorems

Theorem (Cakoni-Colton). D is uniquely determined by
the electric far field pattern Eo.(z,d,p) for & € Qy,
d € )1 and three linearly independent polarizations pq,

P2, P3-

Remark: The matrix N(x) is not uniquely determined by
the far field pattern!

Theorem (Cakoni-Colton-Monk):

Let E?_(Z,d,p) be the electric far field pattern
corresponding to a fixed matriz N(x) but different
coatings 1 =1;, 7 = 1,2. Assume that k s not a
Mazwell eigenvalue for D = {x : I — N(x) # 0}. Then
if EL (2,d,p) = E? (2,d,p) for & € Qqy, d € Qy and
three linearly independent polarizations p € R?, we have
that 1y (x) = 1no(x) for x € 'y
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Electric Dipoles

The radiating solution to Maxwell's equations

E.(x,z q):= %Vm X Vg, X q®(x, 2)

H.(x,2,q) ==V, X q®(x,2)
with

1 eik\x—z\

® = c R*
(,2) 4t |:U—z\’q

is called the electric dipole located at z and polarized in
the direction ¢ € R?.

Fe. (2, z,q) denotes the far field pattern of the electric
dipole.
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Far Field Equation

We define the far field operator F': L?(Q2) — L?(Q) by

(Fg)(#) := / Eoo(#.d, 9(d)) ds(d).

Q

Given g € L?(Q)), Fg is the far field pattern of the
scattered field corresponding to the incident field being a
Herglotz wave function with kernel ¢ given by

E,(z):= ik/eikx'dg(d)ds(d).

Q

Now consider the far field equation

(Fg)(i??) — Ee,OO(iqa 2 Q)
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Solving the Far Field Equation

Using the approximation properties of Herglotz wave
functions we can prove the following theorem:

Theorem (Cakoni-Colton-Monk): For every e > 0 there
exists g such that

HFQZ — Ee,oo('727Q)HL2(Q) < €

and

e Forze D, lin% | Eye
€—

X(D,ly) < 00

e For each ¢ > 0, li%’lD | Ege || x(p,rs) = 00
z—

[ FOT Z € RS \E; III% HEQE X(D,FQ) = OXO.

Here X (D, 1'y) is the space
{ue L*(D): Vxue L*D), vxulr, € Ly(I1)}.
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10

Linear Sampling Method

The linear sampling method determines g from the far
field equation Flg = F, .

The support D can be determined by the behavior of g. In
particular, ||Eg||X(D,F2) — OQ lmplles ||g||L2(Q) — OQ.

Open Problem: In practice ¢ is obtained by using a
regularization method such as Tikhonov regularization.
Does this regularized solution behave in the same way as
the approximate solution g whose existence is given by the
previous theorem?

This question has been answered positively in certain cases
by Arens (2004) using the ideas of the factorization
method developed by Kirsch (1998).
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Limited Aperture Data

In practice we have
/Eoo(ij, d,g(d))ds(d) = Eeoo(Z,2,q) T € Q.
951

Based on

Theorem (Cakoni-Colton): With respect to the X (D, 1)
norm the set of Herglotz wave functions with kernel

supported in a subset )1 of Q) is dense in H.

the above discussion is applicable to the far field equation
with limited aperture data.

Here

H={ue X(D,I2): VxVxu—ku=0inD}.
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Determination of 7

Assume 7) is a constant and let E., H,, E“ H" be the
unique solution of the interior transmission problem

(

\

vx B —vxE,

VXH;M—I/XHZ

VXH;”t—I/XHz

where E., H, is the

VXxE,—ikH, =0

in D

VxH,+ikE, =0

V x B — ikHI"™ =0

in D

V x Hi"t + ik N(z)E" =0

= vXFe(,z,q0 on dD=T7UIl}5
= vXxH.(,z,q on I}

_77(56)[7/ X (EZ o Ee('727Q)) X V]
+v X He(-,2,q) on Ty

electric dipole introduced previously.
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Determination of 7

Remark: The existence and uniqueness of a solution to the
interior transmission problem has to date only been proved
for the case when 7 = 0!

H.Haddar, The interior transmission problem for
anisotropic Maxwell’s equations and its application to

the inverse problem, 27
(2004), 2111-2129.

The solution E, of the interior transmission problem (if it
exists!) can be approximated by a Herglotz wave function
with kernel ¢¢ and this ¢¢ is an approximate solution to
the far field equation!
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Determination of 7

Theorem (Cakoni-Colton-Monk):
Let zy be any arbitrary point in D and q a vector in R>.
Then

— _lg_i||QH2+§R(Q' zo(ZO))
HVX (EZO(')_I_Ee('aZOa )) ||L2 (') .

Corollary: For 2y € D, ¢ € R3, we have that

2
o Bl + R Ba)
B, (1) + (-, 20, )HL2 8D)
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Examples of Reconstructions

Reconstruction of a fully coated ellipsoid with » =1 and k£ = 6.

Conducting boundary condition: reconstruction of n
Exact | Exact 0D LSM LSM /bound
0.0 -0.005 -0.01 -0.004
0.1 0.09 0.16 0.07
1 0.96 0.79 0.58
2 1.15 0.94 0.66
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Examples of Reconstructions

Reconstruction of a partially coated sphere. The coated portion '
is the hemisphere x5 > 0. Here n =1 and k£ = 3.

Conducting boundary condition: reconstruction of 7
Exact | Exact I';  LSM LSM /bound
0.1 0.045 0.037 0.027
1 0.94 0.52 0.43
2 2.00 0.81 0.65
49 of 49

Colton




