A Software Framework for Inversion

William W. Symes

Geophysical Inversion Workshop, Calgary, Aug 06

Inversion: more popular all the time...

Such a popular subject deserves a good software framewWbhanks: Deschutes
Brewing Co. of Bend, OR]

The Agenda

e Optimization formulations of inverse problems combinessal/natural levels of
abstraction.

e It Is possible, and advantageous, to design code packageadtress each of
these abstraction levels separately, and combine thekagesto create appli-
cations. Possible advantages:

—reusable code (reuse = no change, not so much as a character!)

—code organization mirrors mathematics

e Examples: (1) NMO-based velocity inversion, (2) least sgsaata fitting based
on finite difference simulation of the wave equation.

Canonical Optimization Formulation

min,,e s J|m, d

where

e m = modele M = admissible set of models
e d = datae D = data “space”

e J|m, d] = objective measuring "goodness”, eg. data fit error

... but this is just a (family of) optimization problem(s).

Role of Simulation

Simulator orForward Map F' : M — E simulates physical responses to various
models,FE = “response space”.

J|m,d] = G(F|m|,d)
for some functiorG : Ex D — R

Granddaddy example = D is a Hilbert spaceZ[d;, ds] = %||dy — do||* - least
squares formulation of inverse problem.

Inverse problem asimulation-driven optimizatian

Solving it
Standing assumptiont/ C H = Hilbert space,J : M x D — R differentiable.

Steepest descent iteration: choasgc M somehow, then until “done”
Mir1 = My — apVJ|m, d|
with «;, an approximation to the solution of
ming<a<arJ|my, — aVy, Jm, d], d
wherea; = inf{a > 0: my —aV,,J|im,d] ¢ M}.

Similar but more complicated: Newton, quasi-Newtons, Kvybased,...
NB: Smoothness, Hilbert structure not necessarily naturalest assumptions -

butde factounderlie most efficient optimization algorithms, formudais of IPs as
optimization problems.

What you didn’t see:

e coordinates

e indices

e loops over coordinate indices

e simulation geometry: grids, time steps, etc.
e data geometry: headers etc.

e parallelism, data distribution,...

but this stuff has to ggsomewhere.. else you can’t do anything!

Calculus vs. Data Management

Abstract IP formulation and (at least some) solution alhons stated exclusively
In terms of vector calculus concepts: vectors, scalar- aatiov-valued functions,
etc.

Collection of computational types parallel to theseatculus package

Can beabstract like the mathematics - i.e. not in and of itself sufficientfidy
define a computation, but rather internally consistent mesan of a large class of
computationsBehaviour, not implementation!

Collection of artifacts necessary for implementation datiatcomputations - coor-
dinate descriptions of vectors, simulation and data gegmadta distribution, ... =
data management package

Example of distinction/relation between these categownestors (in f. d. vector
spaceshavecoordinate arrays, but are not logically identical withrthe

Some Attributes of a Good Calculus Package

Requirement: maintain conceptual parallelism with alestn@athematics while al-
lowing for computational realities - in particular for efeat performance in solu-
tion of very large-scale problems.

= design of caculus, data management packages inevitakBdito some extent -
but keep linkage as weak as possible!

e \ector spaces aabstract factories
e Function evaluations = jet of function at point

e Second order constructs: Cartesian products, compasjtiomear combina-
tions,...

Computational Vector Spaces

Any good textbook: aector spacever afield F is asettogether with an operation
(linear combination) satisfying ... (blah, blah, blah)

From which you see that:

e The primary concept is vectgpace notvector- a vector is a member of a vector
space (set), and is meaningless without reference to it®spa

e Except for dim=0, cardinality of vector space is infinite,cem’t realize compu-
tationally - the best you can do is a “service window”, whicbydes a member
of the set on request. Accepted name for such a tHajory.

e An abstract (nonspecific) type which realizes abstractoresppaces will build
abstract vectors, so is afstract factory

Computational Vector Spaces, cont’d

e To avoid sophomoric mistakes, should be able to compare@wvepiaces - are
they same? Only combine vectors in same space!

e The type also needs to define a linear combination method: ax + by for
scalars:, b € F and vectors, y, asserted to obey the usual axioms (assignment
form, overwrite of input: nods to computational efficiency)

e various conveniences (additive identity, scale, negatéefined in terms of LC.

e type parametrized by field (NB: true confession - floatingypaumber systems
are not fields!).

Not included: dimension- abstraction accommodates spaces without dimension,
l.e. infinite-dimensionakpaces. Can actually realize these computationally (cf.
Infinite precision arithmetic). Good desigt don't include attributes which cannot
be realized sensibly in every instance.

10

Vectors

Sincecomputationalector spaces are factories, rather than sets, still mesifgp
the structure of vector = product of factory.

Implicit choice of basis= vector determined by its coordinate data - computation-
ally this must be stored somehow, in an instance of a type flendata manage-
ment package. Many possibilities - native array (eg. in €)isb, or tree, or... For
abstract vectors (members of abstract vector spaces)ttineggs type must be an
abstract data containerfFor what abstract data containers shadgdstay tuned...]

Upshot: a vector is a pair of

e a reference to a vector space, which provides linear corhbmand sanity-
checking (“vector knows what space it’s in”), and

e an abstract data container

11

Some Design Decisions

Since a vector “owns” an abstract data container, two pois&b exist for the
space’s factory function:

e space builds vectors
e space builds (abstract) data containers

| like the second possibility.

Construction of a vector requires a reference to a vectaresdauring construction,
the space provides the data container required by the véatiis design, the space
type need not refer explicitly to the vector type (though ustrefer to the abstract

data container type).

12

Some Design Decisions, contd

Access: should other program units be permitted directsscitethe data container
owned by a vector? Alternative: providaly an evaluation interface for abstract
function type This allows vectors to keep track of their own modificatiastdory -
Impossible if access is unrestricted.

Abstract function type: another aspect of a satisfactotg denagement package.
Permits arbitrary operations on data.

What abstract data containers do: evaluate instances tvhabginction types on
themselves. What instances of abstract function do: peh@mselves to be evalu-
ated (i.e. use, rather than action, specified!).

Enormously convenient: permit the abstract function typhavepersistent inter-
nal state so not necessarily a function: result of evaluation careddmn results
of previous evaluations. Accepted name for such thifigsction object

13

Functions and Evaluation Efficiency

Other main actor in vector calculus: functions of vectonafale (NB: completely
different notion from “function object”).

Functions have: domains, ranges, rules for computing salierivatives, etc.

Major efficiency issue for functions defined by/through siation: intermediate
datamay be shared between various related computations (\ddugative,...) and
may depend on point of evaluation. Example: data-adapteg,gtiffness matri-
ces, interpolated coefficient arrays...

This data may come at considerable computational cost.

14

Functions and Evaluation Efficiency

Several options in handling intermediate data:

e Throw it away, who cares, computers are getting faster...

e Keep data associated wiifiz), f'(x), ...; when asked forf(y), f'(y), ... check
whetherr = y. Requires comparison of vectors.

e Introduce another type which stores the intermediate de¢aled by values of
function f and its derivatives at a point (specific memory reference foereval-
uation type

Functionally, an evaluation is simply a pair consisting dfiaction and a point in
Its domain, equipped to return the value, value of derieativon demand.

15

Evaluations and Updates

Consider fixed point iteration fof : M — M: fork =0,1,2, ...

Tr = flag)

For storage efficiency, invariably implemented via assignmuntil told to stop,

z — f(z)
Clear what this means for one step: giver D(f), form the evaluation of at .
Overwritex with the value off atz.

Question:nowwhat is the value of (z)?

Answer: it should be the value gfat thenewx - i.e. the evaluation should update
as soon as the evaluation point updates.

16

Evaluations and Updates, cont’d

How can you assure the synchronization of evaluation (augnd evaluation points
(input)?

This iseasy if vectors have been structured to permit access to thé&midg data
only via evaluation of function objectand provided with aversion count Then
version count is updated whenever such evaluation takes.pla

Copy (x «— y, Implemented via a function object) alters the targgtqo the as-
signmentr — f(x) updates the version count of Ask the evaluation type for the
vector functionf to retain a reference version count: comparison now shoats:th
has been updated, so all intermediate data and final resaltddsbe recomputed.
This can be done on demand, i.e. whenever the results aredheed

= the evaluation type for vector functions can honor the s¢icaof “f(z) for
variablez”.

17

Calculus Package Overview

[Apologies to anyone whose favorite software is omittearfrmy list...]

Since no high-level language defines vector space, vectanustintroduce new
types including abstract (“polymorphic”) types. For examplayanstruction in-
volving an abstract vectors must execute properly whenlgmgwith any concrete
realization of “vector”.

Massively convenient: use a source language which dirsaiports user-defined
polymorphic types - “object oriented”. Examples: C++, Jd&®gthon,... Most work
so far in C++.

C++ is the worst object-oriented high-level language invilogld... except for all
the others (apologies to Churchill).

NB: You don’t haveto use an “object oriented” language to do this. Proof: the
compiler codes it in assembler. Q. E. D.

18

Calculus Package Overview, cont’d

e Early-mid 90’s: CLOP (Nichols, Dunbar, Claerbout), COOCHcéles, Deng) -
abstract linear operators, vectors; OPT++ (Meza), Opesat\TechX): abstract
functions and vectors, aimed at optimization.

e HCL (Gockenbach & WWS, 1996): introduced vector space araduation
types.

e RTOp (Bartlett, 2000): function objects

e Trilinos project at SNL (Heroux): interoperable collectiof packages for many
common NA tasks, including optimization. Subpackages:ral{Bartlett) de-
fines abstract vector spaces, linear operators, and “pnaijleNOX (Kolda &

Pawlowski) extends Thyra vector space type and defines dnatwa type
(“group”), aimed at optimization, nonlinear egns.

e RVL (Scott, Padula, & WWS): evolution of HCL, general roleg fonction ob-
jects, automatic updating of evaluations.

19

How Parallel Can You Get?

Examples: translations of a few common algorithmic fragmeising RVL types.

A'i1s a linear operator, cgst ep(Li near Op<fl oat> & A,

p,r are vectors irD(A) Vector<fl oat> & p,
Vector<float> & r) {

Let g be a vector irD(A) Vector<f| oat > q(A get Domai n());
q — Ap A. appl yOp(p, q) ;

(presumes thab(A) = R(A)) | (appl yOp code checks that

p. get Space() == A. get Donmai n(),
g. get Space() == A get Range())

a=(r,r)/{p,q) fl oat al pha =
r.inner(r)/p.inner(q);

r<—1r—Qq r.IinConb(-aIpha,q)

. o}

20

Data Management Packages

Required to implement “concrete” (usable) subtypes of tistract calculus types.

Example: computational vector spaces are factories th&krmdata containers -
what sort of data containers?

Simplest (maybe) choice: a type which provides access to::

e a Size or dimension

e the address of the first element of an array of this size

Everyone has one of these “simple data containers”Hely. : Vect or,
Thyra/ RTOp: : subvect or, RVL: : Local Dat aCont ai ner.

21

Data Management Packages, cont'd

Characteristics of simple data container: (1) the dataaalla.e. is stored in the
address space of a single process; (2) easy to implemenidasgvhich manipulate
this data, in any high-level language; (3) easy to make gd@styoy adding more
attributes.

Example of subtypingregularly gridded dataype: add to the simple data container
described above the ability to return a description of a gridinite hypercubical
lattice - number of axes, number of points on each axis, sgmaach axis, coor-
dinate of first point on each axis [SERiI4, d1, ol, n2, d2, o02,...].

Another example: the SEGY trace = a simple data contaings, gttace header
NB: Each of these fancier data containexys simple data container, and can be

used in any context which requires only size and array acdagscan be used in
additional contexts as well.

22

Function Objects and Abstract DCs

A tupleof simple data containers is not a simple data containerd@g is in many
arrays, rather than one), but wish to treat tuple as a dataioen.

This and other examples- need for abstract data container type.

Recall: data containers evaluate function objects. Swstyid abstract data con-
tainer type have specific evaluation rules: for exampldgetdata containers evalu-
ate function objects in loop over components. Ultimatellegate to evaluation on
DCs with direct data access (array, list,...).

Function object evaluation on simple DC (encapsulated/aoan be implemented
In any high-level language. Example: FO implementing fidifeerence time step
evaluated by regular grid DC, can be implemented in Fortran.

23

Examples from Reflection Seismology

e DSNMO Velocity Analysis

¢ Finite difference least squares inversion

Shared features:

e RVL implementation of LBFGS (Nocedal);

e regular grid and seismic trace data container implememstiseismic trace DCs
use SU library functions;

e Non-OO0 code implements basic simulation functions as “gftsinction object
- C for DSNMO, Fortran for FD.

24

Example 1: DSNMO Velocity Analysis

Differential semblance velocity estimation for CMP-sarseismic reflection data
d(t, xpn, Xm),
X/,n - XS Xr —|_ XS
Xh p— , Xm p—
2 2
x, = horizontal receiver positiorx, = horizontal source position. [Position in flat

Earth: (2, x), z = depth,x = horizontal coords.

Somewhat lengthy analysis, many approximations: if cosgomal wave velocity
v(z,x) is chosen correctly, then “moveout corrected data”

Flu, d|(ty, xp, xmm) = d(T[v](to, Xn, Xm), Xn, Xm)

will be approximately independent &f,. Mapt, — T'|v](...) is v-parametrized
change of variables related to the time of travel of waved,tars the vertical time
of travel.

25

Example 1: DSNMO Velocity Analysis, cont'd

Suggests optimization for extraction of minimize “differential semblance” ob-
jective

J[v;d] = Hvxh v, d)|”
Fits sim-driven opt model
ming,epJ|m, d], Jm,d] = G(F|m|,d)
with M = {(v,d') : d' = d}, E = D, andG(dy, ds) = & ||V, ||
WWS, Stolk, Kim,...: (1)J as defined here is smooth jointlyand, wrt appropriate

metrics; (2)J is (essentially) the only such smoatkdependent quadratic form in
d; (3) all stationary points are global mins.

26

Example 2: Finite Difference Least Squares
Inversion

Fits sim-driven opt modelM = “suitable” set of seismic compressional velocity
models, D = seismic traces at specified source and receiver locatmmgifen
sources, ;' = FD approximation to solution of wave equation solution raper +
sampling at receiver location§, = mean square error functional.

Least squares has long and successful history in geossi€and other areas of
science & engineering).

Application to seismic inverse problem - proposed in lats,/&D’s (notable expo-
nent: A Tarantola). Not particularly successful - not snhootthe same sense as
DS, apparently many spurious local minima.

Data fitting essential goat- should be component of successful seismic velocity
iInversion algorithms yet to be formulated.

27

Example 2: FD LS Inversion, cont'd

Our implementation:

e 1D, 2D, 3D simulation:

e Admissible set of models defined by upper, lower velocityrimg) these plus
desired data passband determine FD grids - constructianosnated;

e source, receiver locations, recording time step decoufpted FD grid via in-
terpolation;

¢ (2,4) FD schemsingle time stegoded in Fortran;

e Fortran for linearized, linearized adjoint single timepsteautomatically gener-
ated using TAMC;

e TSOpt package takes single time step functions, some otier describing
model, state space, etc., and makes full-blown simulatdin, RVL Oper at or
(vector-valued vector function) interface.

28

Example 2: FD LS Inversion, cont'd

¢ Within admissible set, grid isonstant
e = discrete simulator idifferentiableas function of parameters (velocity field);
e = straightforward verification of derivative, adjoint deatwe calculations,

“The adjoint test”. choose: in domain, (pseudo)random vectors, od in (tangent
space of) domain, range of discrete forward operator, shatv t

[(DF|m|ém, dd) — (d0m, DF|m|*dd)|
be small in suiitable sense.

[Implementation in RVL: simulator constructed by TSOptndRv/L: : Qper at or,
has functions which return domain, rangB€L: . Spaces, use these to construct
vectors, evaluate randomizing function object on these, €his test iouilt into
theRVL: : Qper at or class.]

29

Parallelism, Clusters, other HPC considerations

Two categories of distributed execution relevaRY[implementation

e loop-level - decompose individual simulations by segmentoops (“domain
decomposition”), distribute piecedHidden in internal structure of time step

function objects.

e task-level - distribute entire simulations to nodes or fudters (now in 2D, soon
In 3D). Implemented generically in definition of function objechlaation for
distributed data containers - uses MPI structs.

Expl of task level parallelism: RVL/TSOpt FD simulation diicg gather (single
experiment) from IFP “Marmousi” 2D synthetic data set w.wete 5-40 Hz band
requires 10 min on recent vintage Opteron; simulation afehne (240 shots) on
cluster of 240 Opterons takes only a few seconds longer.

30

Conclusions

e Within limits imposed by nature of von Neumann machines, aae code
that closely mimicsabstractmathematics - just like the mathematics, this code
appliesipso factoto wide variety of contextsvithout alteration

e A number of such software frameworks for simulation-driegriimization have
been or are being constructed, from academic experima@RV/L to near-
production environments like Trilinostake a look!

e Abstract programming occupies vanishingly small numberyafes compared
to inner loops of large simulations, even makes parallefismne accessible.

The (hoped-for) end result: programming tools that (lidesakccessful program-
ming tools) make computation exploration of complex, lasgale inverse prob-
lems easier and more productive.

31

Acknowledgements

| am deeply grateful to my former students Mark Gockenbablan8on Scott, Hala
Dajani, Tony Padula, and Eric Dussaud for all they have taoghabout scientific
computing, OOP, and related topics.

The work reported in this talk owes much to many people, bdiquaarly to Jon
Claerbout and his students (particularly Dave Nichols arattNbchwab), Lester
Dye, Amr el Bakri, Mike Gertz, Ross Bartlett, Juan Meza, anédévHeroux.

The work reported here was supported in part by grants freniNgitional Science
Foundation, the Department of Energy, ExxonMobil Upstrdamsearch Co., and
by the sponsors of The Rice Inversion Project.

32

Inversion: more popular all the time...

Such a popular subject deserves a good software framewWbhanks: Deschutes
Brewing Co. of Bend, OR]

33

