
A Software Framework for Inversion

William W. Symes

Geophysical Inversion Workshop, Calgary, Aug 06

Inversion: more popular all the time...

Such a popular subject deserves a good software framework...[Thanks: Deschutes
Brewing Co. of Bend, OR]

1

The Agenda

• Optimization formulations of inverse problems combine several natural levels of
abstraction.

• It is possible, and advantageous, to design code packages that address each of
these abstraction levels separately, and combine these packages to create appli-
cations. Possible advantages:

– reusable code (reuse = no change, not so much as a character!)

– code organization mirrors mathematics

• Examples: (1) NMO-based velocity inversion, (2) least squares data fitting based
on finite difference simulation of the wave equation.

2

Canonical Optimization Formulation

minm∈M J [m, d]

where

•m = model∈M = admissible set of models

• d = data∈ D = data “space”

• J [m, d] = objective measuring ”goodness”, eg. data fit error

... but this is just a (family of) optimization problem(s).

3

Role of Simulation

Simulator orForward MapF : M → E simulates physical responses to various
models,E = “response space”.

J [m, d] = G(F [m], d)

for some functionG : E ×D → R

Granddaddy example:E = D is a Hilbert space,G[d1, d2] = 1

2
‖d1 − d2‖

2 - least
squares formulation of inverse problem.

Inverse problem assimulation-driven optimization.

4

Solving it

Standing assumption:M ⊂ H = Hilbert space,J : M ×D → R differentiable.

Steepest descent iteration: choosem0 ∈M somehow, then until “done”

mk+1 = mk − αk∇mJ [m, d]

with αk an approximation to the solution of

min0≤α≤α∗k
J [mk − α∇mJ [m, d], d]

whereα∗k = inf{α ≥ 0 : mk − α∇mJ [m, d] /∈M}.

Similar but more complicated: Newton, quasi-Newtons, Krylov-based,...

NB: Smoothness, Hilbert structure not necessarily natural or best assumptions -
butde factounderlie most efficient optimization algorithms, formulations of IPs as
optimization problems.

5

What you didn’t see:

• coordinates

• indices

• loops over coordinate indices

• simulation geometry: grids, time steps, etc.

• data geometry: headers etc.

• parallelism, data distribution,...

• ...

but this stuff has to gosomewhere.... else you can’t do anything!

6

Calculus vs. Data Management

Abstract IP formulation and (at least some) solution algorithms stated exclusively
in terms of vector calculus concepts: vectors, scalar- and vector-valued functions,
etc.

Collection of computational types parallel to these =calculus package.

Can beabstract, like the mathematics - i.e. not in and of itself sufficient tofully
define a computation, but rather internally consistent description of a large class of
computations.Behaviour, not implementation!

Collection of artifacts necessary for implementation of actual computations - coor-
dinate descriptions of vectors, simulation and data geometry, data distribution, ... =
data management package.

Example of distinction/relation between these categories: vectors (in f. d. vector
spaces)havecoordinate arrays, but are not logically identical with them.

7

Some Attributes of a Good Calculus Package

Requirement: maintain conceptual parallelism with abstract mathematics while al-
lowing for computational realities - in particular for efficient performance in solu-
tion of very large-scale problems.

⇒ design of caculus, data management packages inevitably linked to some extent -
but keep linkage as weak as possible!

• Vector spaces asabstract factories

• Function evaluations = jet of function at point

• Second order constructs: Cartesian products, compositions, linear combina-
tions,...

8

Computational Vector Spaces

Any good textbook: avector spaceover afieldF is asettogether with an operation
(linear combination) satisfying ... (blah, blah, blah)

From which you see that:

• The primary concept is vectorspace, notvector- a vector is a member of a vector
space (set), and is meaningless without reference to its space.

• Except for dim=0, cardinality of vector space is infinite, socan’t realize compu-
tationally - the best you can do is a “service window”, which provides a member
of the set on request. Accepted name for such a thing:factory.

• An abstract (nonspecific) type which realizes abstract vector spaces will build
abstract vectors, so is anabstract factory.

9

Computational Vector Spaces, cont’d

• To avoid sophomoric mistakes, should be able to compare vector spaces - are
they same? Only combine vectors in same space!

• The type also needs to define a linear combination method:y ← ax + by for
scalarsa, b ∈ F and vectorsx, y, asserted to obey the usual axioms (assignment
form, overwrite of input: nods to computational efficiency).

• various conveniences (additive identity, scale, negate,...) defined in terms of LC.

• type parametrized by field (NB: true confession - floating point number systems
are not fields!).

Not included: dimension- abstraction accommodates spaces without dimension,
i.e. infinite-dimensionalspaces. Can actually realize these computationally (cf.
infinite precision arithmetic). Good design⇒ don’t include attributes which cannot
be realized sensibly in every instance.

10

Vectors

Sincecomputationalvector spaces are factories, rather than sets, still must specify
the structure of vector = product of factory.

Implicit choice of basis⇒ vector determined by its coordinate data - computation-
ally this must be stored somehow, in an instance of a type fromthe data manage-
ment package. Many possibilities - native array (eg. in C), or list, or tree, or... For
abstract vectors (members of abstract vector spaces) this storage type must be an
abstract data container. [For what abstract data containers shoulddo, stay tuned...]

Upshot: a vector is a pair of

• a reference to a vector space, which provides linear combination and sanity-
checking (“vector knows what space it’s in”), and

• an abstract data container

11

Some Design Decisions

Since a vector “owns” an abstract data container, two possibilities exist for the
space’s factory function:

• space builds vectors

• space builds (abstract) data containers

I like the second possibility.

Construction of a vector requires a reference to a vector space. During construction,
the space provides the data container required by the vector. In this design, the space
type need not refer explicitly to the vector type (though it must refer to the abstract
data container type).

12

Some Design Decisions, cont’d

Access: should other program units be permitted direct access to the data container
owned by a vector? Alternative: provideonlyan evaluation interface for anabstract
function type. This allows vectors to keep track of their own modification history -
impossible if access is unrestricted.

Abstract function type: another aspect of a satisfactory data management package.
Permits arbitrary operations on data.

What abstract data containers do: evaluate instances of abstract function types on
themselves. What instances of abstract function do: permitthemselves to be evalu-
ated (i.e. use, rather than action, specified!).

Enormously convenient: permit the abstract function type to havepersistent inter-
nal state, so not necessarily a function: result of evaluation can depend on results
of previous evaluations. Accepted name for such things:function object.

13

Functions and Evaluation Efficiency

Other main actor in vector calculus: functions of vector variable (NB: completely
different notion from “function object”).

Functions have: domains, ranges, rules for computing values, derivatives, etc.

Major efficiency issue for functions defined by/through simulation: intermediate
datamay be shared between various related computations (value,derivative,...) and
may depend on point of evaluation. Example: data-adapted grids, stiffness matri-
ces, interpolated coefficient arrays...

This data may come at considerable computational cost.

14

Functions and Evaluation Efficiency

Several options in handling intermediate data:

• Throw it away, who cares, computers are getting faster...

• Keep data associated withf(x), f ′(x), ...; when asked forf(y), f ′(y), ... check
whetherx = y. Requires comparison of vectors.

• Introduce another type which stores the intermediate data needed by values of
functionf and its derivatives at a point (specific memory reference forx) - eval-
uation type.

Functionally, an evaluation is simply a pair consisting of afunction and a point in
its domain, equipped to return the value, value of derivative,... on demand.

15

Evaluations and Updates

Consider fixed point iteration forf : M →M : for k = 0, 1, 2, ...

xk+1 = f(xk)

For storage efficiency, invariably implemented via assignment: until told to stop,

x← f(x)

Clear what this means for one step: givenx ∈ D(f), form the evaluation off atx.
Overwritex with the value off atx.

Question:nowwhat is the value off(x)?

Answer: it should be the value off at thenewx - i.e. the evaluation should update
as soon as the evaluation point updates.

16

Evaluations and Updates, cont’d

How can you assure the synchronization of evaluation (output) and evaluation points
(input)?

This iseasy, if vectors have been structured to permit access to their defining data
only via evaluation of function objects,and provided with aversion count. Then
version count is updated whenever such evaluation takes place.

Copy (x ← y, implemented via a function object) alters the target (x) so the as-
signmentx← f(x) updates the version count ofx. Ask the evaluation type for the
vector functionf to retain a reference version count: comparison now shows thatx
has been updated, so all intermediate data and final results should be recomputed.
This can be done on demand, i.e. whenever the results are needed.

⇒ the evaluation type for vector functions can honor the semantics of “f(x) for
variablex”.

17

Calculus Package Overview

[Apologies to anyone whose favorite software is omitted from my list...]

Since no high-level language defines vector space, vector, ... mustintroduce new
types, including abstract (“polymorphic”) types. For example, any instruction in-
volving an abstract vectors must execute properly when supplied with any concrete
realization of “vector”.

Massively convenient: use a source language which directlysupports user-defined
polymorphic types - “object oriented”. Examples: C++, Java, Python,... Most work
so far in C++.

C++ is the worst object-oriented high-level language in theworld... except for all
the others (apologies to Churchill).

NB: You don’t haveto use an “object oriented” language to do this. Proof: the
compiler codes it in assembler. Q. E. D.

18

Calculus Package Overview, cont’d

• Early-mid 90’s: CLOP (Nichols, Dunbar, Claerbout), COOOL (Scales, Deng) -
abstract linear operators, vectors; OPT++ (Meza), OptSolve++ (TechX): abstract
functions and vectors, aimed at optimization.

• HCL (Gockenbach & WWS, 1996): introduced vector space and evaluation
types.

• RTOp (Bartlett, 2000): function objects

• Trilinos project at SNL (Heroux): interoperable collection of packages for many
common NA tasks, including optimization. Subpackages: Thyra (Bartlett) de-
fines abstract vector spaces, linear operators, and “problems”; NOX (Kolda &
Pawlowski) extends Thyra vector space type and defines an evaluation type
(“group”), aimed at optimization, nonlinear eqns.

• RVL (Scott, Padula, & WWS): evolution of HCL, general role for function ob-
jects, automatic updating of evaluations.

19

How Parallel Can You Get?

Examples: translations of a few common algorithmic fragments using RVL types.

A is a linear operator, cgstep(LinearOp<float> & A,
p, r are vectors inD(A) Vector<float> & p,

Vector<float> & r) {
Let q be a vector inD(A) Vector<float> q(A.getDomain());
q ← Ap A.applyOp(p,q);
(presumes thatD(A) = R(A)) (applyOp code checks that

p.getSpace() == A.getDomain(),
q.getSpace() == A.getRange())

α = 〈r, r〉/〈p, q〉 float alpha =
r.inner(r)/p.inner(q);

r ← r − αq r.linComb(-alpha,q)
... ...}

20

Data Management Packages

Required to implement “concrete” (usable) subtypes of the abstract calculus types.

Example: computational vector spaces are factories that make data containers -
what sort of data containers?

Simplest (maybe) choice: a type which provides access to::

• a size or dimension

• the address of the first element of an array of this size

Everyone has one of these “simple data containers”: eg.HCL::Vector,
Thyra/RTOp::subvector, RVL::LocalDataContainer.

21

Data Management Packages, cont’d

Characteristics of simple data container: (1) the data is local, i.e. is stored in the
address space of a single process; (2) easy to implement functions which manipulate
this data, in any high-level language; (3) easy to make subtypes by adding more
attributes.

Example of subtyping:regularly gridded datatype: add to the simple data container
described above the ability to return a description of a gridor finite hypercubical
lattice - number of axes, number of points on each axis, step along each axis, coor-
dinate of first point on each axis [SEP’sn1, d1, o1, n2, d2, o2,...].

Another example: the SEGY trace = a simple data container, plus atrace header.

NB: Each of these fancier data containersis a simple data container, and can be
used in any context which requires only size and array access- but can be used in
additional contexts as well.

22

Function Objects and Abstract DCs

A tupleof simple data containers is not a simple data container (eg.data is in many
arrays, rather than one), but wish to treat tuple as a data container.

This and other examples⇒ need for abstract data container type.

Recall: data containers evaluate function objects. Subtypes of abstract data con-
tainer type have specific evaluation rules: for example, tuple data containers evalu-
ate function objects in loop over components. Ultimately delegate to evaluation on
DCs with direct data access (array, list,...).

Function object evaluation on simple DC (encapsulated array) can be implemented
in any high-level language. Example: FO implementing finitedifference time step
evaluated by regular grid DC, can be implemented in Fortran.

23

Examples from Reflection Seismology

• DSNMO Velocity Analysis

• Finite difference least squares inversion

Shared features:

• RVL implementation of LBFGS (Nocedal);

• regular grid and seismic trace data container implementations; seismic trace DCs
use SU library functions;

• non-OO code implements basic simulation functions as “guts” of function object
- C for DSNMO, Fortran for FD.

24

Example 1: DSNMO Velocity Analysis

Differential semblance velocity estimation for CMP-sorted seismic reflection data
d(t,xh,xm),

xh =
xr − xs

2
, xm =

xr + xs

2

xr = horizontal receiver position,xs = horizontal source position. [Position in flat
Earth:(z,x), z = depth,x = horizontal coords.

Somewhat lengthy analysis, many approximations: if compressional wave velocity
v(z,x) is chosen correctly, then “moveout corrected data”

F [v, d](t0,xh,xm) ≡ d(T [v](t0,xh,xm),xh,xm)

will be approximately independent ofxh. Map t0 → T [v](...) is v-parametrized
change of variables related to the time of travel of waves, and t0 is the vertical time
of travel.

25

Example 1: DSNMO Velocity Analysis, cont’d

Suggests optimization for extraction ofv: minimize “differential semblance” ob-
jective

J [v; d] =
1

2

∥

∥∇xh
F [v, d]

∥

∥

2

Fits sim-driven opt model

minm∈MJ [m, d], J [m, d] = G(F [m], d)

with M = {(v, d′) : d′ = d}, E = D, andG(d1, d2) = 1

2

∥

∥∇xh
d1

∥

∥

2

WWS, Stolk, Kim,...: (1)J as defined here is smooth jointly inv, d, wrt appropriate
metrics; (2)J is (essentially) the only such smoothv-dependent quadratic form in
d; (3) all stationary points are global mins.

26

Example 2: Finite Difference Least Squares
Inversion

Fits sim-driven opt model:M = “suitable” set of seismic compressional velocity
models,D = seismic traces at specified source and receiver locations for given
sources,F = FD approximation to solution of wave equation solution operator +
sampling at receiver locations,G = mean square error functional.

Least squares has long and successful history in geosciences (and other areas of
science & engineering).

Application to seismic inverse problem - proposed in late 70’s, 80’s (notable expo-
nent: A Tarantola). Not particularly successful - not smooth in the same sense as
DS, apparently many spurious local minima.

Data fitting essential goal⇒ should be component of successful seismic velocity
inversion algorithms yet to be formulated.

27

Example 2: FD LS Inversion, cont’d

Our implementation:

• 1D, 2D, 3D simulation;

• Admissible set of models defined by upper, lower velocity bounds; these plus
desired data passband determine FD grids - construction is automated;

• source, receiver locations, recording time step decoupledfrom FD grid via in-
terpolation;

• (2,4) FD schemesingle time stepcoded in Fortran;

• Fortran for linearized, linearized adjoint single time steps automatically gener-
ated using TAMC;

• TSOpt package takes single time step functions, some other code describing
model, state space, etc., and makes full-blown simulator, with RVL Operator
(vector-valued vector function) interface.

28

Example 2: FD LS Inversion, cont’d

•Within admissible set, grid isconstant;

• ⇒ discrete simulator isdifferentiableas function of parameters (velocity field);

• ⇒ straightforward verification of derivative, adjoint derivative calculations,

“The adjoint test”: choosem in domain, (pseudo)random vectorsδm, δd in (tangent
space of) domain, range of discrete forward operator, show that

|〈DF [m]δm, δd〉 − 〈δm, DF [m]∗δd〉|

be small in suiitable sense.

[Implementation in RVL: simulator constructed by TSOpt is anRVL::Operator,
has functions which return domain, rangeRVL::Spaces, use these to construct
vectors, evaluate randomizing function object on these, etc. This test isbuilt into
theRVL::Operator class.]

29

Parallelism, Clusters, other HPC considerations

Two categories of distributed execution relevant (RVL implementation):

• loop-level - decompose individual simulations by segmenting loops (“domain
decomposition”), distribute pieces.Hidden in internal structure of time step
function objects.

• task-level - distribute entire simulations to nodes or subclusters (now in 2D, soon
in 3D). Implemented generically in definition of function object evaluation for
distributed data containers - uses MPI structs.

Expl of task level parallelism: RVL/TSOpt FD simulation of shot gather (single
experiment) from IFP “Marmousi” 2D synthetic data set w. accurate 5–40 Hz band
requires 10 min on recent vintage Opteron; simulation of entire line (240 shots) on
cluster of 240 Opterons takes only a few seconds longer.

30

Conclusions

•Within limits imposed by nature of von Neumann machines, canwrite code
that closely mimicsabstractmathematics - just like the mathematics, this code
appliesipso factoto wide variety of contextswithout alteration.

• A number of such software frameworks for simulation-drivenoptimization have
been or are being constructed, from academic experiments like RVL to near-
production environments like Trilinos -take a look!

• Abstract programming occupies vanishingly small number ofcycles compared
to inner loops of large simulations, even makes parallelismmore accessible.

The (hoped-for) end result: programming tools that (like all successful program-
ming tools) make computation exploration of complex, large-scale inverse prob-
lems easier and more productive.

31

Acknowledgements

I am deeply grateful to my former students Mark Gockenbach, Shannon Scott, Hala
Dajani, Tony Padula, and Eric Dussaud for all they have taught me about scientific
computing, OOP, and related topics.

The work reported in this talk owes much to many people, but particularly to Jon
Claerbout and his students (particularly Dave Nichols and Matt Schwab), Lester
Dye, Amr el Bakri, Mike Gertz, Ross Bartlett, Juan Meza, and Mike Heroux.

The work reported here was supported in part by grants from the National Science
Foundation, the Department of Energy, ExxonMobil UpstreamResearch Co., and
by the sponsors of The Rice Inversion Project.

32

Inversion: more popular all the time...

Such a popular subject deserves a good software framework...[Thanks: Deschutes
Brewing Co. of Bend, OR]

33

